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Preface
In putting together this course pack we decided not to simply include copies of the slides
for the course presentation, but to attempt to put together a small booklet of information
that could stand by itself. The course slides and other useful information, including a new
Java-based Kalman Filter Learning Tool are available at

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/

In addition, we maintain a popular web site dedicated to the Kalman filter. This site
contains links to related work, papers, books, and even some software.

http://www.cs.unc.edu/~welch/kalman/

We expect that you (the reader) have a basic mathematical background, sufficient to
understand explanations involving basic linear algebra, statistics, and random signals.
3



       
Course Syllabus

Time Speaker Topic Time

10:00 AM Bishop Welcome, Introduction, Intuition 0:30

10:30 AM Welch Concrete examples 0:30

11:00 AM Bishop Non-linear estimation 0:15

11:15 AM Welch System identification and multi-modal filters 0:30

11:45 AM Welch Conclusions (summary, resources, etc.) 0:15

12:00 PM

Total time 2:00
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1. Introduction
The Kalman filter is a mathematical power tool that is playing an increasingly important
role in computer graphics as we include sensing of the real world in our systems. The good
news is you don’t have to be a mathematical genius to understand and effectively use
Kalman filters. This tutorial is designed to provide developers of graphical systems with a
basic understanding of this important mathematical tool. 

1.1 Course Description

While the Kalman filter has been around for about 30 years, it (and related optimal
estimators) have recently started popping up in a wide variety of computer graphics
applications. These applications span from simulating musical instruments in VR, to head
tracking, to extracting lip motion from video sequences of speakers, to fitting spline
surfaces over collections of points. 

The Kalman filter is the best possible (optimal) estimator for a large class of problems and
a very effective and useful estimator for an even larger class. With a few conceptual tools,
the Kalman filter is actually very easy to use. We will present an intuitive approach to this
topic that will enable developers to approach the extensive literature with confidence.
5
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1.2 Speaker/Author Biographies

Greg Welch is a Research Assistant Professor in the Department of Computer Science at
the University of North Carolina at Chapel Hill. His research interests include hardware
and software for man-machine interaction, 3D interactive computer graphics, virtual
environments, tracking technologies, tele-immersion, and projector-based graphics. Welch
graduated with highest distinction from Purdue University with a degree in Electrical
Engineering Technology in 1986 and received a Ph.D. in computer science from UNC-
Chapel Hill in 1996. Before coming to UNC he worked at NASA's Jet Propulsion
Laboratory and Northrop-Grumman's Defense Systems Division. He is a member of the
IEEE Computer Society and the Association of Computing Machinery.

Gary Bishop is an Associate Professor in the Department of Computer Science at the
University of North Carolina at Chapel Hill. His research interests include hardware and
software for man-machine interaction, 3D interactive computer graphics, virtual
environments, tracking technologies, and image-based rendering. Bishop graduated with
highest honors from the Southern Technical Institute in Marietta, Georgia, with a degree in
Electrical Engineering Technology in 1976. He completed his Ph.D. in computer science
at UNC-Chapel Hill in 1984. Afterwards he worked for Bell Laboratories and Sun
Microsystems before returning to UNC in 1991.
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2. Probability and Random Variables
What follows is a very basic introduction to probability and random variables. For more
extensive coverage see for example (Maybeck 1979; Brown and Hwang 1996; Kailath,
Sayed et al. 2000).

2.1 Probability

Most of us have some notion of what is meant by a “random” occurrence, or the
probability that some event in a sample space will occur. Formally, the probability that the
outcome of a discrete event (e.g., a coin flip) will favor a particular event is defined as

.

The probability of an outcome favoring either  or  is given by

. (2.1)

If the probability of two outcomes is independent (one does not affect the other) then the
probability of both occurring is the product of their individual probabilities:

. (2.2)

For example, if the probability of seeing a “heads” on a coin flip is 1/2, then the
probability of seeing “heads” on both of two coins flipped at the same time is 1/4. (Clearly
the outcome of one coin flip does not affect the other.)

Finally, the probability of outcome  given an occurrence of outcome  is called the
conditional probability of  given , and is defined as

. (2.3)

2.2 Random Variables

As opposed to discrete events, in the case of tracking and motion capture, we are more
typically interested with the randomness associated with a continuous electrical voltage or
perhaps a user’s motion. In each case we can think of the item of interest as a continuous

p A( ) Possible outcomes favoring event A
Total number of possible outcomes
--------------------------------------------------------------------------------------=

A B

p A B∪( ) p A( ) p B( )+=

p A B∩( ) p A( ) p B( )=

A B
A B

p A B( ) p A B∩( )
p B( )

-----------------------=
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random variable. A random variable is essentially a function that maps all points in the
sample space to real numbers. For example, the continuous random variable  might
map time to position. At any point in time,  would tell us the expected position.

In the case of continuos random variables, the probability of any single discrete event  is
in fact 0. That is, . Instead we can only evaluate the probability of events within
some interval. A common function representing the probability of random variables is
defined as the cumulative distribution function:

. (2.4)

This function represents the cumulative probability of the continuous random variable 
for all (uncountable) events up to and including . Important properties of the cumulative
density function are

Even more commonly used than equation (2.4) is its derivative, known as the probability
density function:

. (2.5)

Following on the above given properties of the cumulative probability function, the
density function also has the following properties:

Finally note that the probability over any interval  is defined as

.

So rather than summing the probabilities of discrete events as in equation (2.1), for
continuous random variables one integrates the probability density function over the
interval of interest.

X t( )
X t( )

A
p A( ) 0=

FX x( ) p ∞– x ],(=

X
x

1. FX x( ) 0 as x ∞–→→

2. FX x( ) 1 as x +∞→→

3. FX x( ) is a non-decreasing function of x.

f X x( )
xd

d
FX x( )=

1. f X x( ) is a non-negative function

2. f X x( ) xd
∞–

∞
∫ 1.=

a b,[ ]

pX a b,[ ] f X x( ) xd
a
b

∫=
8



Course 8—An Introduction to the Kalman Filter
2.3 Mean and Variance

Most of us are familiar with the notion of the average of a sequence of numbers. For some
 samples of a discrete random variable , the average or sample mean is given by

.

Because in tracking we are dealing with continuous signals (with an uncountable sample
space) it is useful to think in terms of an infinite number of trials, and correspondingly the
outcome we would expect to see if we sampled the random variable infinitely, each time
seeing one of  possible outcomes . In this case, the expected value of the discrete
random variable could be approximated by averaging probability-weighted events:

.

In effect, out of  trials, we would expect to see  occurrences of event , etc. This
notion of infinite trials (samples) leads to the conventional definition of expected value for
discrete random variables

(2.6)

for  possible outcomes  and corresponding probabilities . Similarly for
the continuous random variable the expected value is defined as

. (2.7)

Finally, we note that equation (2.6) and equation (2.7) can be applied to functions of the
random variable  as follows:

(2.8)

and

. (2.9)

N X

X
X1 X2 … XN+ + +

N
----------------------------------------------=

n x1…xn

X
p1N( )x1 p2N( )x2 … pnN( )xN+ + +

N
-------------------------------------------------------------------------------------------≈

N p1N( ) x1

Expected value of X E X( ) pixi
i 1=

n

∑= =

n x1…xn p1… pn

Expected value of X E X( ) x f X x( ) xd
∞–

∞
∫= =

X

E g X( )( ) pig xi( )
i 1=

n

∑=

E g X( )( ) g x( ) f X x( ) xd
∞–

∞
∫=
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The expected value of a random variable is also known as the first statistical moment. We
can apply the notion of equation (2.8) or (2.9), letting , to obtain the th

statistical moment. The th statistical moment of a continuous random variable  is given
by

. (2.10)

Of particular interest in general, and to us in particular, is the second moment of the
random variable. The second moment is given by

. (2.11)

When we let  and apply equation (2.11), we get the variance of the
signal about the mean. In other words,

Variance is a very useful statistical property for random signals, because if we knew the
variance of a signal that was otherwise supposed to be “constant” around some value—the
mean, the magnitude of the variance would give us a sense how much jitter or “noise” is in
the signal.

The square root of the variance, known as the standard deviation, is also a useful statistical
unit of measure because while being always positive, it has (as opposed to the variance)
the same units as the original signal. The standard deviation is given by

.

2.4 Normal or Gaussian Distribution

A special probability distribution known as the Normal or Gaussian distribution has
historically been popular in modeling random systems for a variety of reasons. As it turns
out, many random processes occurring in nature actually appear to be normally
distributed, or very close. In fact, under some moderate conditions, it can be proved that a
sum of random variables with any distribution tends toward a normal distribution. The
theorem that formally states this property is called the central limit theorem (Maybeck
1979; Brown and Hwang 1996). Finally, the normal distribution has some nice properties
that make it mathematically tractable and even attractive.

g X( ) Xk= k
k X

E Xk( ) xk f X x( ) xd
∞–

∞
∫=

E X2( ) x2 f X x( ) xd
∞–

∞
∫=

g X( ) X E X( )–=

Variance X E X E X( )–( )2[ ]=

E X2( ) E X( )2.–=

Standard deviation of X σX Variance of X= =
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Given a random process , i.e. a continuous random process  that is
normally distributed with mean  and variance  (standard deviation ), the probability
density function for  is given by

for . Any linear function of a normally distributed random process (variable) is
also a normally distributed random process. In particular if  and

, then

. (2.12)

The probability density function for  is then given by

. (2.13)

Finally, if  and  are independent (see Section 2.5 below), , and
, then

, (2.14)

and the density function becomes

. (2.15)

See (Kelly 1994) pp. 351-358 for further explanation and proofs of the above. Graphically,
the normal distribution is what is likely to be familiar as the “bell-shaped” curve shown
below in Figure 2.1.

2.5 Continuous Independence and Cond. Probability

Finally we note that as with the discrete case and equations (2.2) and (2.3), independence
and conditional probability are defined for continuous random variables. Two continuous
random variables  and  are said to be statistically independent if their joint probability

 is equal to the product of their individual probabilities. In other words, they are
considered independent if

.

X N µ σ2,( )∼ X
µ σ2 σ

X

f X x( )
1

2πσ2
-----------------e

1
2
--- x µ–( )2

σ2
-------------------–

=

∞– x ∞< <
X N µ σ2,( )∼

Y aX b+=

Y N aµ b+ a2σ2,( )∼

Y

f Y y( )
1

2πa2σ2
-----------------------e

1
2
--- y aµ b+( )–( )

a2σ2
----------------------------------

2
–

=

X1 X2 X1 N µ1 σ1
2,( )∼

X2 N µ2 σ2
2,( )∼

X1 X2+ N µ1 µ2+ σ1
2 σ2

2+,( )∼

f X x1 x2+( )
1

2π σ1
2 σ2

2+( )
-----------------------------------e

1
2
---

x µ1 µ2+( )–( )2

σ1
2 σ2

2+( )
--------------------------------------–

=

X Y
f XY x y,( )

f XY x y,( ) f X x( ) f Y y( )=
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Bayes’ Rule

In addition, Bayes’ rule follows from (2.3), offering a way to specify the probability
density of the random variable  given (in the presence of) random variable . Bayes’
rule is given as

.

Continuous-Discrete

Given a discrete process  and a continuous process , the discrete probability mass
function for  conditioned on  is given by

. (2.16)

Note that this formula provides a discrete probability based on the conditioning density,
without any integration. See (Kelly 1994) p. 546 for further explanation and proofs of the
above.

2.6 Spatial vs. Spectral Signal Characteristics

In the previous sections we looked only at the spatial characteristics of random signals. As
stated earlier, the magnitude of the variance of a signal can give us a sense of how much
jitter or “noise” is in the signal. However a signal’s variance says nothing about the

f X x( )

σ

x ∞→x ∞–→ mx0

Figure 2.1:  The Normal or Gaussian probability distribution function.

X Y

f X Y x( )
f Y X y( ) f X x( )

f Y y( )
-----------------------------------=

X Y
X Y y=

pX x | Y y=( )
f Y y | X x=( ) pX x( )

f Y y | X z=( ) pX z( )
z
∑
-------------------------------------------------------=
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spacing or the rate of the jitter over time. Here we briefly discuss the temporal and hence
spectral characteristics of a random signal. Such discussion can be focused in the time or
the frequency domain. We will look briefly at both.

A useful time-related characteristic of a random signal is its autocorrelation—its
correlation with itself over time. Formally the autocorrelation of a random signal  is
defined as

(2.17)

for sample times  and . If the process is stationary (the density is invariant with time)
then equation (2.17) depends only on the difference . In this common case the
autocorrelation can be re-written as

. (2.18)

Two hypothetical autocorrelation functions are shown below in Figure 2.2. Notice how
compared to random signal , random signal  is relatively short and wide. As 
increases (as you move away from  at the center of the curve) the autocorrelation
signal for  drops off relatively quickly. This indicates that  is less correlated with
itself than . 

Clearly the autocorrelation is a function of time, which means that it has a spectral
interpretation in the frequency domain also. Again for a stationary process, there is an
important temporal-spectral relationship known as the Wiener-Khinchine relation:

X t( )

RX t1 t2,( ) E X t1( )X t2( )[ ]=

t1 t2
τ t1 t2–=

RX τ( ) E X t( )X t τ+( )[ ]=

X2 X1 τ
τ 0=

X2 X2
X1

RX τ( )

0

Figure 2.2:  Two example (hypothetical) autocorrelation functions  and .X1 X2

ττ–

X1

X2

SX jω( ) ℑ RX τ( )[ ] RX τ( )e jωτ– τd
∞–

∞
∫= =
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where  indicates the Fourier transform, and  indicates the number of ( ) cycles
per second. The function  is called the power spectral density of the random
signal. As you can see, this important relationship ties together the time and frequency
spectrum representations of the same signal.

White Noise

An important case of a random signal is the case where the autocorrelation function is a
dirac delta function  which has zero value everywhere except when . In other
words, the case where

for some constant magnitude . In this special case where the autocorrelation is a “spike”
the Fourier transform results in a constant frequency spectrum. as shown in Figure 2.3.
This is in fact a description of white noise, which be thought of both as having power at all

frequencies in the spectrum, and being completely uncorrelated with itself at any time
except the present ( ). This latter interpretation is what leads white noise signals to
be called independent. Any sample of the signal at one time is completely independent
(uncorrelated) from a sample at any other time.

While impossible to achieve or see in practice (no system can exhibit infinite energy
throughout an infinite spectrum), white noise is an important building block for design and
analysis. Often random signals can be modeled as filtered or shaped white noise. Literally
this means that one could filter the output of a (hypothetical) white noise source to achieve
a non-white or colored noise source that is both band-limited in the frequency domain, and
more correlated in the time domain.

ℑ •[ ] ω 2π
SX jω( )

δ τ( ) τ 0=

RX τ( )
if τ 0=  then A

else 0⎩
⎨
⎧

=

A

RX τ( )

0

Figure 2.3:  White noise shown in both the time (left) and frequency domain (right).

ττ– 0 ω

SX jω( )

τ 0=
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3. Stochastic Estimation
While there are many application-specific approaches to “computing” (estimating) an
unknown state from a set of process measurements, many of these methods do not
inherently take into consideration the typically noisy nature of the measurements. For
example, consider our work in tracking for interactive computer graphics. While the
requirements for the tracking information varies with application, the fundamental source
of information is the same: pose estimates are derived from noisy electrical measurements
of mechanical, inertial, optical, acoustic, or magnetic sensors. This noise is typically
statistical in nature (or can be effectively modeled as such), which leads us to stochastic
methods for addressing the problems. Here we provide a very basic introduction to the
subject, primarily aimed at preparing the reader for Chapter 4. For a more extensive
discussion of stochastic estimation see for example (Lewis 1986; Kailath, Sayed et al.
2000).

3.1 State-Space Models

State-space models are essentially a notational convenience for estimation and control
problems, developed to make tractable what would otherwise be a notationally-intractable
analysis. Consider a dynamic process described by an n-th order difference equation
(similarly a differential equation) of the form

, ,

where  is a zero-mean (statistically) white (spectrally) random “noise” process with
autocorrelation

,

and initial values  are zero-mean random variables with a known
 covariance matrix

, .

Also assume that

 for  and ,

which ensures (Kailath, Sayed et al. 2000) that

yi 1+ a0 i, yi … an 1– i, yi n– 1+ ui+ + += i 0≥

ui{ }

E ui u j,( ) Ru Qiδij= =

y0 y 1– … y n– 1+, , ,{ }
n n×

P0 E y j– y k–,( )= j k, 0 n 1–,{ }∈

E ui yi,( ) 0= n– 1 j 0≤ ≤+ i 0≥
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, .

In other words, that the noise is statistically independent from the process to be estimated.
Under some other basic conditions (Kailath, Sayed et al. 2000) this difference equation
can be re-written as

which leads to the state-space model

or the more general form

(3.1)

. (3.2)

Equation (3.1) represents the way a new state  is modeled as a linear combination of
both the previous state  and some process noise . Equation (3.2) describes the way the
process measurements or observations  are derived from the internal state . These two
equations are often referred to respectively as the process model and the measurement
model, and they serve as the basis for virtually all linear estimation methods, such as the
Kalman filter described below.

3.2 The Observer Design Problem

There is a related general problem in the area of linear systems theory generally called the
observer design problem. The basic problem is to determine (estimate) the internal states
of a linear system, given access only to the system’s outputs. (Access to the system’s
control inputs is also presumed, but we omit that aspect here. See for example (Kailath,
Sayed et al. 2000) for more information.) This is akin to what people often think of as the
“black box” problem where you have access to some signals coming from the box (the
outputs) but you cannot directly observe what’s inside.

E ui yi,( ) 0= i j 0≥ ≥

xi 1+

yi 1+

yi

yi 1–

 

yi n– 2+

≡

a0 a1 … an 2– an 1–

1 0 … 0 0

0 1 … 0 0

  …   

0 0 … 1 0

yi

yi 1–

yi 2–

 

yi n– 1+

1

0

0

 

0

ui+=

… … ……… …

…{ { {

A xi G

xi 1+ Axi Gui+=

yi 1 0 … 0 xi=

xi 1+ Axi Gui+=

yi Hixi=

xi 1+
xi ui

yi xi
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The many approaches to this basic problem are typically based on the state-space model
presented in the previous section. There is typically a process model that models the
transformation of the process state. This can usually be represented as a linear stochastic
difference equation similar to equation (3.1):

. (3.3)

In addition there is some form of measurement model that describes the relationship
between the process state and the measurements. This can usually be represented with a
linear expression similar to equation (3.2):

. (3.4)

The terms  and  are random variables representing the process and measurement
noise respectively. Note that in equation (3.4) we changed the dependent variable to 
instead of  as in equation (3.2). The rationale is to reinforce the notion that the
measurements to not have to be of elements of the state specifically, but can be any linear
combination of the state elements.

Measurement and Process Noise

We consider here the common case of noisy sensor measurements. There are many
sources of noise in such measurements. For example, each type of sensor has fundamental
limitations related to the associated physical medium, and when pushing the envelope of
these limitations the signals are typically degraded. In addition, some amount of random
electrical noise is added to the signal via the sensor and the electrical circuits. The time-
varying ratio of “pure” signal to the electrical noise continuously affects the quantity and
quality of the information. The result is that information obtained from any one sensor
must be qualified as it is interpreted as part of an overall sequence of estimates, and
analytical measurement models typically incorporate some notion of random
measurement noise or uncertainty as shown above.

There is the additional problem that the actual state transform model is completely
unknown. While we can make predictions over relatively short intervals using models
based on recent state transforms, such predictions assume that the transforms are
predictable, which is not always the case. The result is that like sensor information,
ongoing estimates of the state must be qualified as they are combined with measurements
in an overall sequence of estimates. In addition, process models typically incorporate
some notion of random motion or uncertainty as shown above.

xk Axk 1– Buk wk 1–+ +=

zk H xk vk+=

wk vk
zk

yk
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4. The Kalman Filter
Within the significant toolbox of mathematical tools that can be used for stochastic
estimation from noisy sensor measurements, one of the most well-known and often-used
tools is what is known as the Kalman filter. The Kalman filter is named after Rudolph E.
Kalman, who in 1960 published his famous paper describing a recursive solution to the
discrete-data linear filtering problem (Kalman 1960). A very “friendly” introduction to the
general idea of the Kalman filter is offered in Chapter 1 of (Maybeck 1979)—which is
available from the above Kalman filter web site, and we have included it (with permission)
in this course pack. A more complete introductory discussion can be found in (Sorenson
1970), which also contains some interesting historical narrative. More extensive
references include (Gelb 1974; Maybeck 1979; Lewis 1986; Jacobs 1993; Brown and
Hwang 1996; Grewal and Andrews 2001). In addition, for many years we have maintained
a web site dedicated to the Kalman filter. This site contains links to related work, papers,
books, and even some software including a new Java-based Kalman Filter Learning Tool.

http://www.cs.unc.edu/~welch/kalman/

The Kalman filter is essentially a set of mathematical equations that implement a
predictor-corrector type estimator that is optimal in the sense that it minimizes the
estimated error covariance—when some presumed conditions are met. Since the time of
its introduction, the Kalman filter has been the subject of extensive research and
application, particularly in the area of autonomous or assisted navigation. This is likely
due in large part to advances in digital computing that made the use of the filter practical,
but also to the relative simplicity and robust nature of the filter itself. Rarely do the
conditions necessary for optimality actually exist, and yet the filter apparently works well
for many applications in spite of this situation.

Of particular note here, the Kalman filter has been used extensively for tracking in
interactive computer graphics. We use a single-constraint-at-a-time Kalman filter (see
Section 5.4 on page 41) in our HiBall Tracking System (Welch, Bishop et al. 1999; Welch,
Bishop et al. 2001) which is commercially available from 3rdTech (3rdTech 2000). It has
also been used for motion prediction (Azuma and Bishop 1994; Azuma 1995), and it is
used for multi-sensor (inertial-acoustic) fusion in the commercial Constellation™ wide-
area tracking system by Intersense (Foxlin, Harrington et al. 1998; Intersense 2000). See
also (Fuchs (Foxlin) 1993; Van Pabst and Krekel 1993; Azarbayejani and Pentland 1994;
Emura and Tachi 1994; Emura and Tachi 1994; Mazuryk and Gervautz 1995). 
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4.1 The Discrete Kalman Filter

This section describes the filter in its original formulation (Kalman 1960) where the
measurements occur and the state is estimated at discrete points in time.

4.1.1 The Process to be Estimated

The Kalman filter addresses the general problem of trying to estimate the state  of
a discrete-time controlled process that is governed by the linear stochastic difference
equation

, (4.1)

with a measurement  that is

. (4.2)

The random variables  and  represent the process and measurement noise
(respectively). They are assumed to be independent (of each other), white, and with
normal probability distributions

, (4.3)

. (4.4)

In practice, the process noise covariance  and measurement noise covariance 
matrices might change with each time step or measurement, however here we assume they
are constant.

The  matrix  in the difference equation equation (4.1) relates the state at the
previous time step  to the state at the current step , in the absence of either a driving
function or process noise. Note that in practice  might change with each time step, but
here we assume it is constant. The  matrix B relates the optional control input 
to the state x. The  matrix  in the measurement equation equation (4.2) relates the
state to the measurement zk. In practice  might change with each time step or
measurement, but here we assume it is constant.

4.1.2 The Computational Origins of the Filter

We define  (note the “super minus”) to be our a priori state estimate at step k
given knowledge of the process prior to step k, and  to be our a posteriori state
estimate at step k given measurement . We can then define a priori and a posteriori
estimate errors as
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The a priori estimate error covariance is then

, (4.5)

and the a posteriori estimate error covariance is

. (4.6)

In deriving the equations for the Kalman filter, we begin with the goal of finding an
equation that computes an a posteriori state estimate  as a linear combination of an a
priori estimate  and a weighted difference between an actual measurement  and a
measurement prediction  as shown below in equation (4.7). Some justification for
equation (4.7) is given in “The Probabilistic Origins of the Filter” found below.

(4.7)

The difference  in equation (4.7) is called the measurement innovation, or the
residual. The residual reflects the discrepancy between the predicted measurement 
and the actual measurement . A residual of zero means that the two are in complete
agreement. 

The  matrix K in equation (4.7) is chosen to be the gain or blending factor that
minimizes the a posteriori error covariance equation (4.6). This minimization can be
accomplished by first substituting equation (4.7) into the above definition for ,
substituting that into equation (4.6), performing the indicated expectations, taking the
derivative of the trace of the result with respect to K, setting that result equal to zero, and
then solving for K. For more details see (Maybeck 1979; Jacobs 1993; Brown and Hwang
1996). One form of the resulting K that minimizes equation (4.6) is given by1

. (4.8)

Looking at equation (4.8) we see that as the measurement error covariance  approaches
zero, the gain K weights the residual more heavily. Specifically,

.

1. All of the Kalman filter equations can be algebraically manipulated into to several forms. 
Equation equation (4.8) represents the Kalman gain in one popular form.
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On the other hand, as the a priori estimate error covariance  approaches zero, the gain
K weights the residual less heavily. Specifically,

.

Another way of thinking about the weighting by K is that as the measurement error
covariance  approaches zero, the actual measurement  is “trusted” more and more,
while the predicted measurement  is trusted less and less. On the other hand, as the a
priori estimate error covariance  approaches zero the actual measurement  is trusted
less and less, while the predicted measurement  is trusted more and more.

4.1.3 The Probabilistic Origins of the Filter

The justification for equation (4.7) is rooted in the probability of the a priori estimate 
conditioned on all prior measurements  (Bayes’ rule). For now let it suffice to point out
that the Kalman filter maintains the first two moments of the state distribution,

The a posteriori state estimate equation (4.7) reflects the mean (the first moment) of the
state distribution— it is normally distributed if the conditions of equation (4.3) and
equation (4.4) are met. The a posteriori estimate error covariance equation (4.6) reflects
the variance of the state distribution (the second non-central moment). In other words,

.

For more details on the probabilistic origins of the Kalman filter, see (Brown and Hwang
1996).

4.1.4 The Discrete Kalman Filter Algorithm

We will begin this section with a broad overview, covering the “high-level” operation of
one form of the discrete Kalman filter (see the previous footnote). After presenting this
high-level view, we will narrow the focus to the specific equations and their use in this
version of the filter.

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall into two groups: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward (in time) the current state and error covariance
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estimates to obtain the a priori estimates for the next time step. The measurement update
equations are responsible for the feedback—i.e. for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed the final
estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems as shown below in Figure 4.1.

The specific equations for the time and measurement updates are presented below in
table 4.1 and table 4.2.

Again notice how the time update equations in table 4.1 project the state and covariance
estimates forward from time step  to step .  and B are from equation (4.1), while

 is from equation (4.3). Initial conditions for the filter are discussed in the earlier
references.

Table 4.1: Discrete Kalman filter time update equations. 

(4.9)

(4.10)

Table 4.2: Discrete Kalman filter measurement update equations. 

(4.11)

(4.12)

(4.13)

Time Update
(“Predict”)

Measurement Update
(“Correct”)

Figure 4.1: The ongoing discrete Kalman filter cycle. The
time update projects the current state estimate ahead in
time. The measurement update adjusts the projected
estimate by an actual measurement at that time. 
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The first task during the measurement update is to compute the Kalman gain, . Notice
that the equation given here as equation (4.11) is the same as equation (4.8). The next step
is to actually measure the process to obtain , and then to generate an a posteriori state
estimate by incorporating the measurement as in equation (4.12). Again equation (4.12) is
simply equation (4.7) repeated here for completeness. The final step is to obtain an a
posteriori error covariance estimate via equation (4.13).

After each time and measurement update pair, the process is repeated with the previous a
posteriori estimates used to project or predict the new a priori estimates. This recursive
nature is one of the very appealing features of the Kalman filter—it makes practical
implementations much more feasible than (for example) an implementation of a Wiener
filter (Brown and Hwang 1996) which is designed to operate on all of the data directly for
each estimate. The Kalman filter instead recursively conditions the current estimate on all
of the past measurements. Figure 4.2 below offers a complete picture of the operation of
the filter, combining the high-level diagram of Figure 4.1 with the equations from table 4.1
and table 4.2.

4.2 The Extended Kalman Filter (EKF)

4.2.1 The Process to be Estimated

As described above in Section 4.1.1, the Kalman filter addresses the general problem of
trying to estimate the state  of a discrete-time controlled process that is governed
by a linear stochastic difference equation. But what happens if the process to be estimated
and (or) the measurement relationship to the process is non-linear? Some of the most
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Figure 4.2: A complete picture of the operation of the Kalman filter, combining the
high-level diagram of Figure 4.1 with the equations from table 4.1 and table 4.2. 

x ℜ
n

∈

24



Course 8—An Introduction to the Kalman Filter
interesting and successful applications of Kalman filtering have been such situations. A
Kalman filter that linearizes about the current mean and covariance is referred to as an
extended Kalman filter or EKF.

In something akin to a Taylor series, we can linearize the estimation around the current
estimate using the partial derivatives of the process and measurement functions to
compute estimates even in the face of non-linear relationships. To do so, we must begin by
modifying some of the material presented in Section 4.1. Let us assume that our process
again has a state vector , but that the process is now governed by the non-linear
stochastic difference equation

, (4.14)

with a measurement  that is

, (4.15)

where the random variables  and  again represent the process and measurement
noise as in equation (4.3) and equation (4.4). In this case the non-linear function  in the
difference equation equation (4.14) relates the state at the previous time step  to the
state at the current time step . It includes as parameters any driving function uk and the
zero-mean process noise wk. The non-linear function  in the measurement equation
equation (4.15) relates the state  to the measurement .

In practice of course one does not know the individual values of the noise  and  at
each time step. However, one can approximate the state and measurement vector without
them as

(4.16)

and

, (4.17)

where  is some a posteriori estimate of the state (from a previous time step k).

It is important to note that a fundamental flaw of the EKF is that the distributions (or
densities in the continuous case) of the various random variables are no longer normal
after undergoing their respective nonlinear transformations. The EKF is simply an ad hoc
state estimator that only approximates the optimality of Bayes’ rule by linearization. Some
interesting work has been done by Julier et al. in developing a variation to the EKF, using
methods that preserve the normal distributions throughout the non-linear transformations
(Julier and Uhlmann 1996).
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4.2.2 The Computational Origins of the Filter

To estimate a process with non-linear difference and measurement relationships, we begin
by writing new governing equations that linearize an estimate about equation (4.16) and
equation (4.17),

, (4.18)

. (4.19)

where

•  and  are the actual state and measurement vectors,

•  and  are the approximate state and measurement vectors from 

equation (4.16) and equation (4.17),

•  is an a posteriori estimate of the state at step k,

• the random variables  and  represent the process and measurement noise 

as in equation (4.3) and equation (4.4). 

• A is the Jacobian matrix of partial derivatives of  with respect to x, that is

,

• W is the Jacobian matrix of partial derivatives of  with respect to w,

,

• H is the Jacobian matrix of partial derivatives of  with respect to x,

,

• V is the Jacobian matrix of partial derivatives of  with respect to v,

.

Note that for simplicity in the notation we do not use the time step subscript  with the
Jacobians , , , and , even though they are in fact different at each time step.

xk x̃k A xk 1– x̂k 1––( ) W wk 1–+ +≈

zk z̃k H xk x̃k–( ) V vk+ +≈

xk zk

x̃k z̃k

x̂k

wk vk

f

A i j,[ ] x j[ ]∂

∂ f i[ ] x̂k 1– uk 0, ,( )=

f

W i j,[ ] w j[ ]∂

∂ f i[ ] x̂k 1– uk 0, ,( )=

h

H i j,[ ] x j[ ]∂

∂h i[ ] x̃k 0,( )=

h

V i j,[ ] v j[ ]∂

∂h i[ ] x̃k 0,( )=

k
A W H V
26



Course 8—An Introduction to the Kalman Filter
Now we define a new notation for the prediction error,

, (4.20)

and the measurement residual,

. (4.21)

Remember that in practice one does not have access to  in equation (4.20), it is the
actual state vector, i.e. the quantity one is trying to estimate. On the other hand, one does
have access to  in equation (4.21), it is the actual measurement that one is using to
estimate . Using equation (4.20) and equation (4.21) we can write governing equations
for an error process as

, (4.22)

, (4.23)

where  and  represent new independent random variables having zero mean and
covariance matrices  and , with  and  as in (4.3) and (4.4) respectively.

Notice that the equations equation (4.22) and equation (4.23) are linear, and that they
closely resemble the difference and measurement equations equation (4.1) and
equation (4.2) from the discrete Kalman filter. This motivates us to use the actual
measurement residual  in equation (4.21) and a second (hypothetical) Kalman filter to
estimate the prediction error  given by equation (4.22). This estimate, call it , could
then be used along with equation (4.20) to obtain the a posteriori state estimates for the
original non-linear process as

. (4.24)

The random variables of equation (4.22) and equation (4.23) have approximately the
following probability distributions (see the previous footnote):

Given these approximations and letting the predicted value of  be zero, the Kalman
filter equation used to estimate  is

. (4.25)
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By substituting equation (4.25) back into equation (4.24) and making use of
equation (4.21) we see that we do not actually need the second (hypothetical) Kalman
filter:

(4.26)

Equation equation (4.26) can now be used for the measurement update in the extended
Kalman filter, with  and  coming from equation (4.16) and equation (4.17), and the
Kalman gain  coming from equation (4.11) with the appropriate substitution for the
measurement error covariance.

The complete set of EKF equations is shown below in table 4.3 and table 4.4. Note that we
have substituted  for  to remain consistent with the earlier “super minus” a priori
notation, and that we now attach the subscript  to the Jacobians , , , and , to
reinforce the notion that they are different at (and therefore must be recomputed at) each
time step. 

As with the basic discrete Kalman filter, the time update equations in table 4.3 project the
state and covariance estimates from the previous time step  to the current time step

. Again  in equation (4.27) comes from equation (4.16),  and  are the process
Jacobians at step k, and  is the process noise covariance equation (4.3) at step k.

As with the basic discrete Kalman filter, the measurement update equations in table 4.4
correct the state and covariance estimates with the measurement . Again  in
equation (4.30) comes from equation (4.17),  and V are the measurement Jacobians at
step k, and  is the measurement noise covariance equation (4.4) at step k. (Note we now
subscript  allowing it to change with each measurement.)

Table 4.3: EKF time update equations. 

(4.27)

(4.28)

Table 4.4: EKF measurement update equations. 
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+=

x̃k Kk zk z̃k–( )+=

x̃k z̃k
Kk

x̂k
-

x̃k
k A W H V

x̂k
- 

f x̂k 1– uk 0, ,( )=

Pk
-

AkPk 1– Ak
T WkQk 1– Wk

T+=

k 1–
k f Ak Wk

Qk

Kk Pk
-
Hk

T HkPk
-
Hk

T V kRkV k
T+( )

1–
=

x̂k x̂k
-

Kk zk h x̂k
-

0,( )–( )+=

Pk I KkHk–( )Pk
-

=

zk h
Hk

Rk
R

28



Course 8—An Introduction to the Kalman Filter
The basic operation of the EKF is the same as the linear discrete Kalman filter as shown in
Figure 4.1. Figure 4.3 below offers a complete picture of the operation of the EKF,
combining the high-level diagram of Figure 4.1 with the equations from table 4.3 and
table 4.4.

Figure 4.3: A complete picture of the operation of the extended Kal-
man filter, combining the high-level diagram of Figure 4.1 with the 
equations from table 4.3 and table 4.4.

An important feature of the EKF is that the Jacobian  in the equation for the Kalman
gain  serves to correctly propagate or “magnify” only the relevant component of the
measurement information. For example, if there is not a one-to-one mapping between the
measurement  and the state via , the Jacobian  affects the Kalman gain so that it
only magnifies the portion of the residual  that does affect the state. Of
course if over all measurements there is not a one-to-one mapping between the
measurement  and the state via , then as you might expect the filter will quickly
diverge. In this case the process is unobservable.

4.3 An Example: Estimating a Random Constant

In the previous two sections we presented the basic form for the discrete Kalman filter, and
the extended Kalman filter. To help in developing a better feel for the operation and
capability of the filter, we present a very simple example here.
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4.3.1 The Process Model

In this simple example let us attempt to estimate a scalar random constant, a voltage for
example. Let’s assume that we have the ability to take measurements of the constant, but
that the measurements are corrupted by a 0.1 volt RMS white measurement noise (e.g. our
analog to digital converter is not very accurate). In this example, our process is governed
by the linear difference equation

,

with a measurement  that is

.

The state does not change from step to step so . There is no control input so
. Our noisy measurement is of the state directly so . (Notice that we

dropped the subscript k in several places because the respective parameters remain
constant in our simple model.)

4.3.2 The Filter Equations and Parameters

Our time update equations are

,

,

and our measurement update equations are

, (4.32)

,

.

Presuming a very small process variance, we let . (We could certainly let
 but assuming a small but non-zero value gives us more flexibility in “tuning” the

filter as we will demonstrate below.) Let’s assume that from experience we know that the
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true value of the random constant has a standard normal probability distribution, so we
will “seed” our filter with the guess that the constant is 0. In other words, before starting
we let .

Similarly we need to choose an initial value for , call it . If we were absolutely
certain that our initial state estimate  was correct, we would let . However
given the uncertainty in our initial estimate , choosing  would cause the filter to
initially and always believe . As it turns out, the alternative choice is not critical.
We could choose almost any  and the filter would eventually converge. We’ll start
our filter with . 

4.3.3 The Simulations

To begin with, we randomly chose a scalar constant  (there is no “hat” on
the z because it represents the “truth”). We then simulated 50 distinct measurements 
that had error normally distributed around zero with a standard deviation of 0.1 (remember
we presumed that the measurements are corrupted by a 0.1 volt RMS white measurement
noise). We could have generated the individual measurements within the filter loop, but
pre-generating the set of 50 measurements allowed me to run several simulations with the
same exact measurements (i.e. same measurement noise) so that comparisons between
simulations with different parameters would be more meaningful.

In the first simulation we fixed the measurement variance at . Because
this is the “true” measurement error variance, we would expect the “best” performance in
terms of balancing responsiveness and estimate variance. This will become more evident
in the second and third simulation. Figure 4.4 depicts the results of this first simulation.
The true value of the random constant  is given by the solid line, the noisy
measurements by the cross marks, and the filter estimate by the remaining curve.
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Figure 4.4: The first simulation: . The true val-
ue of the random constant  is given by the solid line, 
the noisy measurements by the cross marks, and the filter estimate 
by the remaining curve.

When considering the choice for  above, we mentioned that the choice was not critical
as long as  because the filter would eventually converge. Below in Figure 4.5 we
have plotted the value of  versus the iteration. By the 50th iteration, it has settled from
the initial (rough) choice of 1 to approximately 0.0002 (Volts2).

Figure 4.5: After 50 iterations, our initial (rough) error covariance 
 choice of 1 has settled to about 0.0002 (Volts2).

In Section 5.1 under the topic “Parameter Estimation or Tuning” we briefly discussed
changing or “tuning” the parameters Q and R to obtain different filter performance. In
Figure 4.6 and Figure 4.7 below we can see what happens when R is increased or
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decreased by a factor of 100 respectively. In Figure 4.6 the filter was told that the
measurement variance was 100 times greater (i.e. ) so it was “slower” to believe
the measurements.

Figure 4.6: Second simulation: . The filter is slower to re-
spond to the measurements, resulting in reduced estimate variance.

In Figure 4.7 the filter was told that the measurement variance was 100 times smaller (i.e.
) so it was very “quick” to believe the noisy measurements.

Figure 4.7: Third simulation: . The filter responds to 
measurements quickly, increasing the estimate variance.

While the estimation of a constant is relatively straight-forward, it clearly demonstrates
the workings of the Kalman filter. In Figure 4.6 in particular the Kalman “filtering” is
evident as the estimate appears considerably smoother than the noisy measurements.
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5. Other Topics

5.1 Parameter Estimation or Tuning

In the actual implementation of the filter, the measurement noise covariance  is usually
measured prior to operation of the filter. Measuring the measurement error covariance  is
generally practical (possible) because we need to be able to measure the process anyway
(while operating the filter) so we should generally be able to take some off-line sample
measurements in order to determine the variance of the measurement noise.

The determination of the process noise covariance  is generally more difficult as we typ-
ically do not have the ability to directly observe the process we are estimating. Sometimes
a relatively simple (poor) process model can produce acceptable results if one “injects”
enough uncertainty into the process via the selection of . Certainly in this case one would
hope that the process measurements are reliable.

In either case, whether or not we have a rational basis for choosing the parameters, often
times superior filter performance (statistically speaking) can be obtained by tuning the
filter parameters  and . The tuning is usually performed off-line, frequently with the
help of another (distinct) Kalman filter in a process generally referred to as system
identification.

Under conditions where  and .are in fact constant, both the estimation error
covariance  and the Kalman gain  will stabilize quickly and then remain constant. If
this is the case, these parameters can be pre-computed by either running the filter off-line,
or for example by determining the steady-state value of  as described in (Grewal and
Andrews 2001).

It is frequently the case however that the measurement error (in particular) does not remain
constant. For example, when sighting beacons in our optoelectronic tracker ceiling panels,
the noise in measurements of nearby beacons will be smaller than that in far-away beacons.
Also, the process noise  is sometimes changed dynamically during filter operation—be-
coming —in order to adjust to different dynamics. For example, in the case of tracking
the head of a user of a 3D virtual environment we might reduce the magnitude of  if the
user seems to be moving slowly, and increase the magnitude if the dynamics start changing
rapidly. In such cases  might be chosen to account for both uncertainty about the user’s
intentions and uncertainty in the model.

See (Welch 1996) for more information on this topic.
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5.2 Multi-Modal (Multiple Model) Filters

5.2.1 Random Processes and the Kalman Filter

The Kalman filter is based on the assumption of a continuous system that can be m
as a normally distributed random process , with mean  (the state) and variance 
error covariance). In other words,

.

Similarly the Kalman filter is based on the assumption that the output of the system 
modeled as a random process  which is a linear function of the state  pl
independent, normally distributed, zero-mean white noise process ,1

(5.1)

where , , and . From equations (2.12) and (2.1
we have

.

However, the expression  reflects the filter’s estimate of the measuremen
residuals (innovations), not the actual residuals. This becomes clear when one ex
the update expressions for  in the Kalman filter:  does not depend on the measu
residual. The effect of this is that the expression  may indicate some s
residual variance, when in fact at particular points in time the variance is relatively 
This is indeed exactly the case when one is simultaneously considering multiple m
for a process—one of the models, or some combination of them, is “right” and ac
has small residuals, while others are “wrong” and will suffer from large residuals. 
when one is computing the likelihood of a residual for the purpose of comparing m
performance, one must consider the liklihood of the actual measurement  at each tim
step, given the expected performance of each model.

The Likelihood of the Measurements Given a Particular Model

Given equations (2.13) and (2.15), we can use the following conditional probab
density function as an indicator of the likelihood of a measurement  at step :

, (5.2)

1. Recall that “white” means that the spectral density is constant and the autocorrelation is a del
function. In other words, the output of the noise source at any one instant in time is independe
from that at any other instant in time.

X x P

X N x P,( )∼

Z x
V

z H x v+=

X N x P,( )∼ V N 0 R,( )∼ E XV{ } 0=

Z N H x HPHT R+,( )∼

HPHT R+

P P
HPHT R+

z

z k

f z µ( ) 1

2π( )nµ 2⁄ Cµ

-------------------------------------e
1
2
--- z Hµxµ

- –( )T Cµ
1– z Hµxµ–( )–

=

36



Course 8—An Introduction to the Kalman Filter
where

.

We have omitted the subscript  for clarity. Note again that the state vector  and error
covariance matrix  are the a priori (predicted) versions at step , already computed at
each filter prediction step using equation (4.9) and equation (4.10). In other words, the
density is conditioned on the model  and all of its associated a priori (predicted)
parameters.

5.2.2 Fixed Multiple Models

We begin with the case where we believe that there is one correct model for the process,
and that the model is fixed or does not change over time, however we don’t know what that
model is. Over time, as the filter reaches a steady state, we want to converge on a choice
for the single most likely model. For this approach let us assume that the correct model 
is one of  possible known fixed models,

.

The Probability of a Particular Model Given the Measurements

Given a new measurement  at time step , and associated a priori state and covariance
estimates from equation (4.9) and equation (4.10), we can use equation (5.2) to compute
the recursive probability  that candidate model  is the correct model at that time:

. (5.3)

One would initialize  with some a priori estimate of the probability that  is the
correct model. For example, one could consider all models equally likely to begin with,
and set

, .

Note that  and  are scalars, and at every time step ,

.
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The Final Model-Conditioned Estimate

The final combined or model-conditioned estimate of the state  and error covariance 
are computed as a weighted combination of each candidate filter’s a posteriori state and
error covariance estimates. The weight for each candidate model is the model probability
given by equation (5.3). The final model-conditioned state estimate is computed as

, and (5.4)

the final model-conditioned error covariance as

, (5.5)

where .

The Algorithm

To begin with, one would instantiate  independent Kalman filters, one for each of the 
candidate models. Each of these filters would then be run independently, in parallel, with
the addition of the necessary individual density and final probability computations.

At each time update (see Figure 4.1) one would compute the normal a priori Kalman filter
elements (see table 4.1), and then

a. using the conditional density function given in equation (5.2), compute

the liklihood of the current (actual) measurement  for each candidate

model ;

b. using the previous probability  for each candidate model ,

use the recursive equation (5.3) to compute the probability  that

each individual model  is correct;

c. for each candidate model , compute the a posteriori (corrected) state

estimate  and error covariance  using equation (4.12) and

equation (4.13);

d. given each candidate filter’s a posteriori (corrected) state estimate

, compute the final model-conditioned state estimate  using

equation (5.4); and
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e. if desired, given each candidate filter’s a posteriori (corrected) error

covariance estimate , compute the final model-conditioned error

covariance  using equation (5.5).

Convergence of the Mode Estimates

As described in (Bar-Shalom and Li 1993), the final mode-conditioned state estimate will
converge to agree with one of the models, if one of the models is the correct one. In any
case, it will converge to some constant mode represented by a fixed weighting of the
individual multiple models.

If the actual mode is not constant, i.e. if the process can be switching or varying between
different models, one can use various ad hoc methods to prevent convergence on a single
mode. For example,

a. One can impose an artificial lower bound on the model probabilities,

b. impose a finite memory (sliding window) on the likelihood function, or

c. impose an exponential decay on the likelihood function.

A problem with using ad hoc means of varying the blending of fixed multiple models is
that the error in the incorrect models (at any moment) can grow unbounded, i.e. the
incorrect filters can get lost. Thus the filters might have to be re-initialized.

5.2.3 Dynamic Multiple Model Method

The multiple-model approach described in Section 5.2.2 is appropriate for systems where
we believe there is one correct model for the process, and that the model is fixed. However
there are situations where the choice from a set of candidate models varies continuously
while the filter is in operation.´In such a case one cannot make a fixed a priori choice of
filter parameters. Instead one could operate a set of candidate filters in parallel (similar to
Section 5.2.2) and use a continuously varying model-conditioned combination of the
candidate state and error covariance estimates.

The dynamic multiple model approach is virtually identical to the fixed approach outlined
in Section 5.2.2, with the exception of the model probability given by equation (5.3). In
the dynamic case we do not want the probabilities to converge to fixed values, but to
remain free to change with each new measurement. Given a new measurement  at time

Pk µ j,

Pk

z
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step , and associated a priori state and covariance estimates from equation (4.9) and
equation (4.10), one could compute the probability  that candidate model  is the
correct model at that time simply using

. (5.6)

The algorithm would remain the same as in Section 5.2.2, except that in step (b) one
would use equation (5.6) instead of equation (5.3).

5.3 Hybrid or Multi-Sensor Fusion

Stochastic estimation tools such as the Kalman filter can be used to combine or fuse
information from different “mediums or sensors for hybrid systems. The basic idea is to
use the Kalman filter to weight the different mediums most heavily in the circumstances
where they each perform best, thus providing more accurate and stable estimates than a
system based on any one medium alone. In particular, the indirect feedback Kalman filter
shown in Figure 5.1 (also called a complementary or error-state Kalman filter) is often
used to combined the two mediums (Maybeck 1979). In such a configuration, the Kalman
filter is used to estimate the difference between the current inertial and optical (or acoustic)
outputs, i.e. it continually estimates the error in the inertial estimates by using the optical
system as a second (redundant) reference. This error estimate is then used to correct the
inertial estimates. The tuning of the Kalman filter parameters (see “Parameter Estimation
or Tuning” on page 35) then adjusts the weight of the correction as a function of
frequency. By slightly modifying the Kalman filter, adaptive velocity response can be
incorporated also. This can be accomplished by adjusting (in real time) the expected
optical measurement error as a function of the magnitude of velocity. The dashed line in
Figure 5.1 also indicates the use of inertial estimates to help a image-based optical system
to prevent tracking of moving scene objects (i.e. unrelated motion in the environment).

In such a configuration, the Kalman filter uses a common process model, but a distinct
measurement model for each of the inertial and optical subsystems.
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Figure 5.1: The Kalman filter used in an indirect-feedback
configuration to optimally weight inertial and optical information. 
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5.4 Single-Constraint-at-a-Time (SCAAT)

A conventional approach to pose estimation is to collect a group of sensor measurements
and then to attempt to simultaneously solve a system of equations that together completely
constrain the solution. For example, the 1991 UNC-Chapel Hill wide-area opto-electronic
tracking system (Wang 1990; Ward, Azuma et al. 1992) collected a group of diverse
measurements for a variety of LEDs and sensors, and then used a method of simultaneous
non-linear equations called Collinearity to estimate the pose of the head-worn sensor
fixture (Azuma and Ward 1991). There was one equation for each measurement,
expressing the constraint that a ray from the front principal point of the sensor lens to the
LED, must be collinear with a ray from the rear principal point to the intersection with the
sensor. Each estimate made use of typically 20 (or more) measurements that together over-
constrained the solution. 

This multiple constraint method had several drawbacks. First, it had a significantly lower
estimate rate due to the need to collect multiple measurements per estimate. Second, the
system of non-linear equations did not account for the fact that the sensor fixture
continued to move throughout the collection of the sequence of measurements. Instead the
method effectively assumes that the measurements were taken simultaneously. The
violation of this simultaneity assumption could introduce significant error during even
moderate motion. Finally, the method provided no means to identify or handle unusually
noisy individual measurements. Thus, a single erroneous measurement could cause an
estimate to jump away from an otherwise smooth track.

In contrast, there is typically nothing about typical solutions to the observer design
problem in general (Section 3.2), or the Kalman filter in particular (see “Parameter
Estimation or Tuning” on page 35), that dictates the ordering of measurement information.
In 1996 we introduced a new approach to tracking with a Kalman filter, an approach that
exploits this flexibility in measurement processing. The basic idea is to update the pose
estimate as each new measurement is made, rather than waiting to form a complete
collection of measurement. Because single measurements under-constrain the
mathematical solution, we refer to the approach as single-constraint-at-a-time or SCAAT
tracking (Welch 1996; Welch and Bishop 1997). The key is that the single measurements
provide some information about the tracker state, and thus can be used to incrementally
improve a previous estimate. We intentionally fuse each individual “insufficient”
measurement immediately as it is obtained. With this approach we are able to generate
estimates more frequently, with less latency, with improved accuracy, and we are able to
estimate the LED positions on-line concurrently while tracking.

This approach is used in our laboratory-based HiBall Tracking System (Welch, Bishop et
al. 1999; Welch, Bishop et al. 2001), the commercial version of the same system (3rdTech
2000), and the commercial systems manufactured by Intersense (Foxlin, Harrington et al.
1998; Intersense 2000). For more information see (Welch 1996; Welch and Bishop 1997),
the former which is included at the end of this course pack.
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B. Related Papers
This appendix includes a sample of some relevant papers that we have permission to
reproduce.
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 1
Introduction

 

1.1 WHY STOCHASTIC MODELS, ESTIMATION,
AND CONTROL?

 

When considering system analysis or controller design, the engineer has at
his disposal a wealth of knowledge derived from deterministic system and
control theories. One would then naturally ask, why do we have to go beyond
these results and propose stochastic system models, with ensuing concepts of
estimation and control based upon these stochastic models? To answer this
question, let us examine what the deterministic theories provide and deter-
mine where the shortcomings might be.

Given a physical system, whether it be an aircraft, a chemical process, or
the national economy, an engineer first attempts to develop a mathematical
model that adequately represents some aspects of the behavior of that system.
Through physical insights, fundamental “laws,” and empirical testing, he tries
to establish the interrelationships among certain variables of interest, inputs to
the system, and outputs from the system.

With such a mathematical model and the tools provided by system and con-
trol theories, he is able to investigate the system structure and modes of
response. If desired, he can design compensators that alter these characteris-
tics and controllers that provide appropriate inputs to generate desired system
responses.

In order to observe the actual system behavior, measurement devices are
constructed to output data signals proportional to certain variables of interest.
These output signals and the known inputs to the system are the only informa-
tion that is directly discernible about the system behavior. Moreover, if a feed-
back controller is being designed, the measurement device outputs are the
only signals directly available for inputs to the controller.

There are three basic reasons why deterministic system and control theories
do not provide a totally sufficient means of performing this analysis and
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design. First of all, 

 

no mathematical system model is perfect

 

. Any such model
depicts only those characteristics of direct interest to the engineer’s purpose.
For instance, although an endless number of bending modes would be required
to depict vehicle bending precisely, only a finite number of modes would be
included in a useful model. The objective of the model is to represent the
dominant or critical modes of system response, so many effects are knowingly
left unmodeled. In fact, models used for generating online data processors or
controllers must be pared to only the basic essentials in order to generate a
computationally feasible algorithm.

Even effects which are modeled are necessarily 

 

approximated

 

 by a mathe-
matical model. The “laws” of Newtonian physics are adequate approximations
to what is actually observed, partially due to our being unaccustomed to
speeds near that of light. It is often the case that such “laws” provide adequate
system 

 

structures

 

, but various 

 

parameters

 

 within that structure are not deter-
mined absolutely. Thus, there are many sources of uncertainty in any mathe-
matical model of a system.

A second shortcoming of deterministic models is that dynamic systems are
driven not only by our own control inputs, but also by 

 

disturbances which we
can neither control nor model deterministically

 

. If a pilot tries to command a
certain angular orientation of his aircraft, the actual response will differ from
his expectation due to wind buffeting, imprecision of control surface actuator
responses, and even his inability to generate exactly the desired response from
his own arms and hands on the control stick.

A final shortcoming is that sensors 

 

do not provide perfect and complete
data

 

 about a system. First, they generally do not provide all the information
we would like to know: either a device cannot be devised to generate a mea-
surement of a desired variable or the cost (volume, weight, monetary, etc.) of
including such a measurement is prohibitive. In other situations, a number of
different devices yield functionally related signals, and one must then ask how
to generate a best estimate of the variables of interest based on partially
redundant data. Sensors do not provide exact readings of desired quantities,
but introduce their own system dynamics and distortions as well. Furthermore,
these devices are also always noise corrupted.

As can be seen from the preceding discussion, to assume perfect knowledge
of all quantities necessary to describe a system completely and/or to assume
perfect control over the system is a naive, and often inadequate, approach.
This motivates us to ask the following four questions:

(1) How do you develop system models that account for these uncertainties
in a direct and proper, yet practical, fashion?

(2) Equipped with such models and incomplete, noise-corrupted data from
available sensors, how do you optimally estimate the quantities of interest to
you?
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(3) In the face of uncertain system descriptions, incomplete and noise-cor-
rupted data, and disturbances beyond your control, how do you optimally con-
trol a system to perform in a desirable manner?

(4) How do you evaluate the performance capabilities of such estimation
and control systems, both before and after they are actually built? This book
has been organized specifically to answer these questions in a meaningful and
useful manner.

 

1.2 OVERVIEW OF THE TEXT

 

Chapters 2-4 are devoted to the stochastic modeling problem. First Chapter
2 reviews the pertinent aspects of deterministic system models, to be exploited
and generalized subsequently. Probability theory provides the basis of all of
our stochastic models, and Chapter 3 develops both the general concepts and
the natural result of static system models. In order to incorporate dynamics
into the model, Chapter 4 investigates stochastic processes, concluding with
practical linear dynamic system models. The basic form is a linear system
driven by white Gaussian noise, from which are available linear measurements
which are similarly corrupted by white Gaussian noise. This structure is justi-
fied extensively, and means of describing a large class of problems in this con-
text are delineated.

Linear estimation is the subject of the remaining chapters. Optimal filtering
for cases in which a linear system model adequately describes the problem
dynamics is studied in Chapter 5. With this background, Chapter 6 describes
the design and performance analysis of practical online Kalman filters. Square
root filters have emerged as a means of solving some numerical precision dif-
ficulties encountered when optimal filters are implemented on restricted word-
length online computers, and these are detailed in Chapter 7.

Volume 1 is a complete text in and of itself. Nevertheless, Volume 2 will
extend the concepts of linear estimation to smoothing, compensation of model
inadequacies, system identification, and adaptive filtering. Nonlinear stochas-
tic system models and estimators based upon them will then be fully devel-
oped. Finally, the theory and practical design of stochastic controllers will be
described.

 

1.3 THE KALMAN FILTER:
AN INTRODUCTION TO CONCEPTS

 

Before we delve into the details of the text, it would be useful to see where
we are going on a conceptual basis. Therefore, the rest of this chapter will
provide an overview of the optimal linear estimator, the Kalman filter. This
will be conducted at a very elementary level but will provide insights into the
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underlying concepts. As we progress through this overview, contemplate the
ideas being presented: try to conceive of graphic 

 

images

 

 to portray the con-
cepts involved (such as time propagation of density functions), and to gener-
ate a 

 

logical structure

 

 for the component pieces that are brought together to
solve the estimation problem. If this basic conceptual framework makes sense
to you, then you will better understand the need for the details to be developed
later in the text. Should the idea of where we are going ever become blurred
by the development of detail, refer back to this overview to regain sight of the
overall objectives.

First one must ask, what is a Kalman filter? A Kalman filter is simply an

 

optimal recursive data processing algorithm

 

. There are many ways of defining

 

optimal

 

, dependent upon the criteria chosen to evaluate performance. It will
be shown that, under the assumptions to be made in the next section, the Kal-
man filter is optimal with respect to virtually any criterion that makes sense.
One aspect of this optimality is that the Kalman filter incorporates all infor-
mation that can be provided to it. It processes all available measurements,
regardless of their precision, to estimate the current value of the variables of
interest, with use of (1) knowledge of the system and measurement device
dynamics, (2) the statistical description of the system noises, measurement
errors, and uncertainty in the dynamics models, and (3) any available informa-
tion about initial conditions of the variables of interest. For example, to deter-
mine the velocity of an aircraft, one could use a Doppler radar, or the velocity
indications of an inertial navigation system, or the pitot and static pressure
and relative wind information in the air data system. Rather than ignore any of
these outputs, a Kalman filter could be built to combine all of this data and
knowledge of the various systems’ dynamics to generate an overall best esti-
mate of velocity.

The word 

 

recursive

 

 in the previous description means that, unlike certain
data processing concepts, the Kalman filter does not require all previous data
to be kept in storage and reprocessed every time a new measurement is taken.
This will be of vital importance to the practicality of filter implementation.

The “filter” is actually a 

 

data processing algorithm

 

. Despite the typical con-
notation of a filter as a “black box” containing electrical networks, the fact is
that in most practical applications, the “filter” is just a computer program in a
central processor. As such, it inherently incorporates discrete-time measure-
ment samples rather than continuous time inputs.

Figure 1.1 depicts a typical situation in which a Kalman filter could be used
advantageously. A system of some sort is driven by some known controls, and
measuring devices provide the value of certain pertinent quantities. Knowl-
edge of these system inputs and outputs is all that is explicitly available from
the physical system for estimation purposes.

The 

 

need

 

 for a filter now becomes apparent. Often the variables of interest,
some finite number of quantities to describe the “state” of the system, cannot
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be measured directly, and some means of inferring these values from the avail-
able data must be generated. For instance, an air data system directly provides
static and pitot pressures, from which velocity must be inferred. This infer-
ence is complicated by the facts that the system is typically driven by inputs
other than our own known controls and that the relationships among the vari-
ous “state” variables and measured outputs are known only with some degree
of uncertainty. Furthermore, any measurement will be corrupted to some
degree by noise, biases, and device inaccuracies, and so a means of extracting
valuable information from a noisy signal must be provided as well. There may
also be a number of different measuring devices, each with its own particular
dynamics and error characteristics, that provide some information about a par-
ticular variable, and it would be desirable to combine their outputs in a sys-
tematic and optimal manner. A Kalman filter combines all available
measurement data, plus prior knowledge about the system and measuring
devices, to produce an estimate of the desired variables in such a manner that
the error is minimized statistically. In other words, if we were to run a number
of candidate filters many times for the same application, then the average
results of the Kalman filter would be better than the average results of any
other.

Conceptually, what any type of filter tries to do is obtain an “optimal” esti-
mate of desired quantities from data provided by a noisy environment, “opti-
mal” meaning that it minimizes errors in some respect. There are many means
of accomplishing this objective. If we adopt a Bayesian viewpoint, then we
want the filter to propagate the 

 

conditional probability density 

 

of the desired

FIG. 1. 1 Typical Kalman filter application
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quantities, conditioned on knowledge of the actual data coming from the mea-
suring devices. To understand this concept, consider Fig. 1.2, a portrayal of a
conditional probability density of the value of a scalar quantity  at time
instant  ( ), conditioned on knowledge that the vector measurement  at
time instant 1 took on the value  ( ) and similarly for instants 2
through , plotted as a function of possible  values. This is denoted as

. For example, let  be the one-dimensional
position of a vehicle at time instant 1, and let  be a two-dimensional vector
describing the measurements of position at time  by two separate radars.
Such a conditional probability density contains all the available information
about : it indicates, for the given value of all measurements taken up
through time instant , what the probability would be of  assuming any
particular value or range of values.

It is termed a “conditional” probability density because its shape and loca-
tion on the  axis is dependent upon the values of the measurements taken. Its
shape conveys the amount of certainty you have in the knowledge of the value
of . If the density plot is a narrow peak, then most of the probability
“weight” is concentrated in a narrow band of  values. On the other hand, if
the plot has a gradual shape, the probability “weight” is spread over a wider
range of , indicating that you are less sure of its value.

FIG. 1. 2 Conditional probability density.
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Once such a conditional probability density function is propagated, the
“optimal” estimate can be defined. Possible choices would include

(1) the mean—the “center of probability mass” estimate;
(2) the mode—the value of  that has the highest probability, locating the

peak of the density; and
(3) the median—the value of  such that half of the probability weight lies

to the left and half to the right of it.

A Kalman filter performs this conditional probability density propagation
for problems in which the system can be described through a linear model and
in which system and measurement noises are white and Gaussian (to be
explained shortly). Under these conditions, the mean, mode, median, and vir-
tually any reasonable choice for an “optimal” estimate all coincide, so there is
in fact a unique “best” estimate of the value of . Under these three restric-
tions, the Kalman filter can be shown to be the best filter of any conceivable
form. Some of the restrictions can be relaxed, yielding a qualified optimal fil-
ter. For instance, if the Gaussian assumption is removed, the Kalman filter can
be shown to be the best (minimum error variance) filter out of the class of lin-
ear unbiased filters. However, these three assumptions can be justified for
many potential applications, as seen in the following section.

1.4 BASIC ASSUMPTIONS
At this point it is useful to look at the three basic assumptions in the Kal-

man filter formulation. On first inspection, they may appear to be overly
restrictive and unrealistic. To allay any misgivings of this sort, this section
will briefly discuss the physical implications of these assumptions.

A linear system model is justifiable for a number of reasons. Often such a
model is adequate for the purpose at hand, and when nonlinearities do exist,
the typical engineering approach is to linearize about some nominal point or
trajectory, achieving a perturbation model or error model. Linear systems are
desirable in that they are more easily manipulated with engineering tools, and
linear system (or differential equation) theory is much more complete and
practical than nonlinear. The fact is that there are means of extending the Kal-
man filter concept to some nonlinear applications or developing nonlinear fil-
ters directly, but these are considered only if linear models prove inadequate.

“Whiteness” implies that the noise value is not correlated in time. Stated
more simply, if you know what the value of the noise is now, this knowledge
does you no good in predicting what its value will be at any other time. White-
ness also implies that the noise has equal power at all frequencies. Since this
results in a noise with infinite power, a white noise obviously cannot really
exist. One might then ask, why even consider such a concept if it does not

x

x

x
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exist in real life? The answer is twofold. First, any physical system of interest
has a certain frequency “bandpass”—a frequency range of inputs to which it
can respond. Above this range, the input either has no effect, or the system so
severely attenuates the effect that it essentially does not exist. In Fig. 1.3, a
typical system bandpass curve is drawn on a plot of “power spectral density”
(interpreted as the amount of power content at a certain frequency) versus fre-
quency. Typically a system will be driven by wideband noise—one having
power at frequencies above the system bandpass, and essentially constant
power at all frequencies within the system bandpass—as shown in the figure.
On this same plot, a white noise would merely extend this constant power
level out across all frequencies. Now, within the bandpass of the system of
interest, the fictitious white noise looks identical to the real wideband noise.
So what has been gained? That is the second part of the answer to why a white
noise model is used. It turns out that the mathematics involved in the filter are
vastly simplified (in fact, made tractable) by replacing the real wideband noise
with a white noise which, from the system’s “point of view,” is identical.
Therefore, the white noise model is used.

One might argue that there are cases in which the noise power level is not
constant over all frequencies within the system bandpass, or in which the
noise is in fact time correlated. For such instances, a white noise put through a
small linear system can duplicate virtually any form of time-correlated noise.
This small system, called a “shaping filter,” is then added to the original sys-
tem, to achieve an overall linear system driven by white noise once again.

Whereas whiteness pertains to time or frequency relationships of a noise,
Gaussianness has to do with its amplitude. Thus, at any single point in time,
the probability density of a Gaussian noise amplitude takes on the shape of a
normal bell-shaped curve. This assumption can be justified physically by the
fact that a system or measurement noise is typically caused by a number of
small sources. It can be shown mathematically that when a number of inde-
pendent random variables are added together, the summed effect can be de-
scribed very closely by a Gaussian probability density, regardless of the shape
of the individual densities.

FIG. 1. 3 Power spectral density bandwidths.
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There is also a practical justification for using Gaussian densities. Similar
to whiteness, it makes the mathematics tractable. But more than that, typically
an engineer will know, at best, the first and second order statistics (mean and
variance or standard deviation) of a noise process. In the absence of any
higher order statistics, there is no better form to assume than the Gaussian
density. The first and second order statistics completely determine a Gaussian
density, unlike most densities which require an endless number of orders of
statistics to specify their shape entirely. Thus, the Kalman filter, which propa-
gates the first and second order statistics, includes all information contained
in the conditional probability density, rather than only some of it, as would be
the case with a different form of density.

The particular assumptions that are made are dictated by the objectives of,
and the underlying motivation for, the model being developed. If our objective
were merely to build good descriptive models, we would not confine our atten-
tion to linear system models driven by white Gaussian noise. Rather, we
would seek the model, of whatever form, that best fits the data generated by
the “real world.” It is our desire to build estimators and controllers based upon
our system models that drives us to these assumptions: other assumptions gen-
erally do not yield tractable estimation or control problem formulations. For-
tunately, the class of models that yields tractable mathematics also provides
adequate representations for many applications of interest. Later, the model
structure will be extended somewhat to enlarge the range of applicability, but
the requirement of model usefulness in subsequent estimator or controller
design will again be a dominant influence on the manner in which the exten-
sions are made.

1.5 A SIMPLE EXAMPLE
To see how a Kalman filter works, a simple example will now be developed.

Any example of a single measuring device providing data on a single variable
would suffice, but the determination of a position is chosen because the proba-
bility of one’s exact location is a familiar concept that easily allows dynamics
to be incorporated into the problem.

Suppose that you are lost at sea during the night and have no idea at all of
your location. So you take a star sighting to establish your position (for the
sake of simplicity, consider a one-dimensional location). At some time  you
determine your location to be . However, because of inherent measuring
device inaccuracies, human error, and the like, the result of your measurement
is somewhat uncertain. Say you decide that the precision is such that the stan-
dard deviation (one-sigma value) involved is  (or equivalently, the variance,
or second order statistic, is ,). Thus, you can establish the conditional prob-
ability of , your position at time , conditioned on the observed value of

t1
z1

σz1

σz1

2

x t1( ) t1
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the measurement being , as depicted in Fig. 1.4. This is a plot of
 as a function of the location : it tells you the probability of

being in any one location, based upon the measurement you took. Note that
 is a direct measure of the uncertainty: the larger  is, the broader the

probability peak is, spreading the probability “weight” over a larger range of
 values. For a Gaussian density, 68.3% of the probability “weight” is con-

tained within the band  units to each side of the mean, the shaded portion in
Fig. 1.4.

Based on this conditional probability density, the best estimate of your
position is

(1-1)

and the variance of the error in the estimate is

(1-2)

Note that  is both the mode (peak) and the median (value with  of the
probability weight to each side), as well as the mean (center of mass).

Now say a trained navigator friend takes an independent fix right after you
do, at time  (so that the true position has not changed at all), and obtains
a measurement  with a variance . Because he has a higher skill, assume
the variance in his measurement to be somewhat smaller than in yours. Figure
1.5 presents the conditional density of your position at time , based only on
the measured value . Note the narrower peak due to smaller variance, indi-
cating that you are rather certain of your position based on his measurement.

At this point, you have two measurements available for estimating your
position. The question is, how do you combine these data? It will be shown
subsequently that, based on the assumptions made, the conditional density of

FIG. 1. 4 Conditional density of position based on measured value .z1
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FIG. 1. 5 Conditional density of position based on measurement  alone.z2

FIG. 1. 6 Conditional density of position based on data  and .z1 z2
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your position at time , , given both  and , is a Gaussian density
with mean  and variance  as indicated in Fig. 1.6, with

(1-3)

(1-4)

Note that, from (l-4),  is less than either  or , which is to say that the
uncertainty in your estimate of position has been decreased by combining the
two pieces of information.

Given this density, the best estimate is
(1-5)

with an associated error variance . It is the mode and the mean (or, since it
is the mean of a conditional density, it is also termed the conditional mean).
Furthermore, it is also the maximum likelihood estimate, the weighted least
squares estimate, and the linear estimate whose variance is less than that of
any other linear unbiased estimate. In other words, it is the “best” you can do
according to just about any reasonable criterion.

After some study, the form of  given in Eq. (1-3) makes good sense. If 
were equal to , which is to say you think the measurements are of equal
precision, the equation says the optimal estimate of position is simply the
average of the two measurements, as would be expected. On the other hand, if

 were larger than , which is to say that the uncertainty involved in the
measurement  is greater than that of , then the equation dictates “weight-
ing”  more heavily than . Finally, the variance of the estimate is less than

, even if  is very large: even poor quality data provide some information,
and should thus increase the precision of the filter output.

The equation for  can be rewritten as

(1-6)

or, in final form that is actually used in Kalman filter implementations [noting
that ]

(1-7)

where

(1-8)

These equations say that the optimal estimate at time , , is equal to the
best prediction of its value before  is taken, , plus a correction term of
an optimal weighting value times the difference between  and the best pre-
diction of its value before it is actually taken, . It is worthwhile to under-
stand this “predictor-corrector” structure of the filter. Based on all previous
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information, a prediction of the value that the desired variables and measure-
ment will have at the next measurement time is made. Then, when the next
measurement is taken, the difference between it and its predicted value is used
to “correct” the prediction of the desired variables.

Using the  in Eq. (l-8), the variance equation given by Eq. (1-4) can be
rewritten as

(1-9)

Note that the values of  and  embody all of the information in
. Stated differently, by propagating these two variables, the

conditional density of your position at time , given  and , is completely
specified.

Thus we have solved the static estimation problem. Now consider incorpo-
rating dynamics into the problem.

Suppose that you travel for some time before taking another measurement.
Further assume that the best mode1 you have of your motion is of the simple
form

(1-10)

where  is a nominal velocity and  is a noise term used to represent the un-
certainty in your knowledge of the actual velocity due to disturbances, off-
nominal conditions, effects not accounted for in the simple first order equa-
tion, and the like. The “noise”  will be modeled as a white Gaussian noise
with a mean of zero and variance of .

Figure 1.7 shows graphically what happens to the-conditional density of
position, given  and . At time  it is as previously derived. As time
progresses, the density travels along the  axis at the nominal speed , while
simultaneously spreading out about its mean. Thus, the probability density
starts at the best estimate, moves according to the nominal model of dynamics,
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FIG. 1. 7 Propagation of conditional probability density.
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and spreads out in time because you become less sure of your exact position
due to the constant addition of uncertainty over time. At the time , just
before the measurement is taken at time , the density  is
as shown in Fig. 1.7, and can be expressed mathematically as a Gaussian den-
sity with mean and variance given by

(1-11)

(1-12)

Thus,  is the optimal prediction of what the  value is at , before the
measurement is taken at , and  is the expected variance in that
prediction.

Now a measurement is taken, and its value turns out to be , and its vari-
ance is assumed to be . As before, there are now two Gaussian densities
available that contain information about position, one encompassing all the
information available before the measurement, and the other being the infor-
mation provided by the measurement itself. By the same process as before, the
density with mean  and variance  is combined with the density
with mean  and variance  to yield a Gaussian density with mean

(1-13)

and variance

(1-14)

where the gain  is given by

(1-15)

The optimal estimate, , satisfies the same form of equation as seen previ-
ously in (1-7). The best prediction of its value before  is taken is corrected
by an optimal weighting value times the difference between  and the predic-
tion of its value. Similarly, the variance and gain equations are of the same
form as (1-8) and (1-9).

Observe the form of the equation for . If , the measurement noise
variance, is large, then  is small; this simply says that you would tend to
put little confidence in a very noisy measurement and so would weight it
lightly. In the limit as ,  becomes zero, and  equals ; an
infinitely noisy measurement is totally ignored. If the dynamic system noise
variance  is large, then  will be large [see Eq. (l-12)] and so will

; in this case, you are not very certain of the output of the system mode1
within the filter structure and therefore would weight the measurement
heavily. Note that in the limit as ,  and , so Eq. (1-
13) yields

(1-16)
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Thus in the limit of absolutely no confidence in the system model output, the
optimal policy is to ignore the output and use the new measurement as the
optimal estimate. Finally, if  should ever become zero, then so does

; this is sensible since if , you are absolutely sure of your esti-
mate before  becomes available and therefore can disregard the measure-
ment.

Although we have not as yet derived these results mathematically, we have
been able to demonstrate the reasonableness of the filter structure.

1.6 A PREVIEW
Extending Eqs. (1-11) and (1-12) to the vector case and allowing time vary-

ing parameters in the system and noise descriptions yields the general Kalman
filter algorithm for propagating the conditional density and optimal estimate
from one measurement sample time to the next. Similarly, the Kalman filter
update at a measurement time is just the extension of Eqs. (l-13)-(1-15). Fur-
ther logical extensions would include estimation with data beyond the time
when variables are to be estimated, estimation with nonlinear system models
rather than linear, control of systems described through stochastic models, and
both estimation and control when the noise and system parameters are not
known with absolute certainty. The sequel provides a thorough investigation
of those topics, developing both the theoretical mathematical aspects and
practical engineering insights necessary to resolve the problem formulations
and solutions fully.
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Abstract

 

We present a promising new mathematical method for tracking a
user's pose (position and orientation) for interactive computer
graphics. The method, which is applicable to a wide variety of both
commercial and experimental systems, improves accuracy by
properly assimilating sequential observations, filtering sensor
measurements, and by concurrently autocalibrating source and
sensor devices. It facilitates user motion prediction, multisensor
data fusion, and higher report rates with lower latency than
previous methods.

Tracking systems determine the user's pose by measuring
signals from low-level hardware sensors. For reasons of physics
and economics, most systems make mult iple sequential
measurements which are then combined to produce a single tracker
report. For example, commercial magnetic trackers using the
SPASYN (

 

Space Synchro

 

) system sequentially measure three
magnetic vectors and then combine them mathematically to
produce a report of the sensor pose.

Our new approach produces tracker reports as each new low-
level sensor measurement is made rather than waiting to form a
complete collection of observations. Because single observations
under-constrain the mathematical solution, we refer to our
approach as single-constraint-at-a-time or SCAAT tracking. The
key is that the single observations provide some information about
the user's state, and thus can be used to incrementally improve a
previous estimate. We recursively apply this principle,
incorporating new sensor data as soon as it is measured. With this
approach we are able to generate estimates more frequently, with
less latency, and with improved accuracy. We present results from
both an actual implementation, and from extensive simulations.

 

CR Categories and Subject Descriptors

 

: I.3.7 [Computer
Graphics] Three-Dimensional Graphics and Realism—Virtual
reality; I.4.4 [Image Processing] Restoration—Kalman filtering;
I.4.8 [Image Processing] Scene Analysis—Sensor fusion; G.0
[Mathematics of Computing] General—Numerical Analysis,
Probability and Statistics, Mathematical Software.

 

Additional Key Words and Phrases

 

: virtual environments
tracking, feature tracking, calibration, autocalibration, delay,
latency, sensor fusion, Kalman filter.

 

1 INTRODUCTION

 

The method we present requires, we believe, a fundamental change
in the way people think about estimating a set of unknowns in
general, and tracking for virtual environments in particular. Most
of us have the preconceived notion that to estimate a set of
unknowns we need as many constraints as there are degrees of
freedom at any particular instant in time. What we present instead
is a method to constrain the unknowns 

 

over time

 

, continually
refining an estimate for the solution, a 

 

single constraint at a time

 

.
For applications in which the constraints are provided by real-

time observations of physical devices, e.g. through measurements
of sensors or visual sightings of landmarks, the SCAAT method
isolates the effects of error in individual measurements. This
isolation can provide improved filtering as well as the ability to
individually calibrate the respective devices or landmarks
concurrently and continually while tracking. The method
facilitates user motion prediction, multisensor or multiple modality
data fusion, and in systems where the constraints can only be
determined sequentially, it provides estimates at a higher rate and
with lower latency than multiple-constraint (batch) approaches.

With respect to tracking for virtual environments, we are
currently using the SCAAT method with a new version of the UNC
wide-area optoelectronic tracking system (section 4). The method
could also be used by developers of commercial tracking systems
to improve their existing systems or it could be employed by end-
users to improve custom multiple modality hybrid systems. With
respect to the more general problem of estimating a set of
unknowns that are related by some set of mathematical constraints,
one could use the method to trade estimate quality for computation
time. For example one could incorporate individual constraints,
one at a time, stopping when the uncertainty in the solution
reached an acceptable level.

 

1.1 Incomplete Information

 

The idea that one might build a tracking system that generates a
new estimate with each individual sensor measurement or

 

observation

 

 is a very interesting one. After all, individual
observations usually provide only partial information about a
user’s complete state (pose), i .e. they are “incomplete”
observations. For example, for a camera observing landmarks in a
scene, only limited information is obtained from observations of
any single landmark. In terms of control theory, a system designed
to operate with only such incomplete measurements is
characterized as 

 

unobservable

 

 because the user state cannot be
observed (determined) from the measurements.

The notion of observability can also be described in terms of
constraints on the unknown parameters of the system being
estimated, e.g. constraints on the unknown elements of the system
state. Given a particular system, and the corresponding set of
unknowns that are to be estimated, let  be defined as the minimal
number of independent simultaneous constraints necessary to
uniquely determine a solution, let  be the number actually used
to generate a new estimate, and let  be the number of

 

independent

 

 constraints that can be formed from the 
constraints. For any  constraints, if  the
problem is 

 

well constrained

 

, if  it is 

 

over constrained

 

,
and if  it is 

 

under-constrained

 

. (See Figure 1.)
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1.2 Landmark Tracking

 

Consider for example a system in which a single camera is used to
observe known scene points to determine the camera position and
orientation. In this case, the constraints provided by the
observations are multi-dimensional: 2D image coordinates of 3D
scene points. Given the internal camera parameters, a set of four
known coplanar scene points, and the corresponding image
coordinates, the camera position and orientation can be uniquely
determined in closed-form [16]. In other words if 
constraints (2D image points) are used to estimate the camera
position and orientation, the system is completely observable. On
the other hand, if  then there are multiple solutions. For
example with only  non-collinear points, there are up to 4
solutions. Even worse, with  or  points, there are
infinite combinations of position and orientation that could result
in the same camera images.

In general, for closed-form tracking approaches, a well or
over-constrained system with  is observable, an under-
constrained system with  is not. Therefore, if the individual
observat ions provide only part ia l  information, i .e.  the
measurements provide insufficient constraints, then multiple
devices or landmarks must be excited and (or) sensed prior to
estimating a solution. Sometimes the necessary observations can
be obtained simultaneously, and sometimes they can not. Magnetic
trackers such as those made by Polhemus and Ascension perform
three 

 

sequential

 

 source excitations, each in conjunction with a
complete sensor unit observation. And while a camera can indeed
observe multiple landmarks simultaneously in a single image, the
image processing to identify and locate the individual landmarks
must be done sequentially for a single CPU system. If the
landmarks can move independently over time, for example if they
are artificial marks placed on the skin of an ultrasound patient for
the purpose of landmark-based tracking [41], batch processing of
the landmarks can reduce the effectiveness of the system. A
SCAAT implementation might grab an image, extract a 

 

single

 

landmark, update the estimates of both the camera 

 

and

 

 landmark
positions, and then throw-away the image. In this way estimates
are generated faster and with the most recent landmark
configurations.

 

1.3 Putting the Pieces Together

 

Given a tracker that uses multiple constraints that are each
individually incomplete, a 

 

measurement model

 

 for any one of
incomplete constraints would be characterized as 

 

locally
unobservable

 

. Such a system must incorporate a sufficient set of
these incomplete constraints so that the resulting overall system is
observable. The corresponding aggregate measurement model can
then be characterized as 

 

globally observable

 

. Global observability
can be obtained over 

 

space

 

 or over 

 

time

 

. The SCAAT method
adopts the latter scheme, even in some cases where the former is
possible.

 

2 MOTIVATION

2.1 The Simultaneity Assumption

 

Several well-known virtual environment tracking systems collect
position and orientation constraints (sensor measurements)
sequentially. For example, tracking systems developed by
Polhemus and Ascension depend on sensing a sequence of
variously polarized electromagnetic waves or fields. A system that
facilitated simultaneous polarized excitations would be very
difficult if not impossible to implement. Similarly both the original
UNC optoelectronic tracking system and the newer HiBall version
are designed to observe only one ceiling-mounted LED at a time.
Based on the available literature [25,27,37] these systems currently
assume (mathematically) that their sequential observations were
collected simultaneously. We refer to this as the 

 

simultaneity
assumption

 

. If the target remains motionless this assumption
introduces no error. However if the target is moving, the violation
of the assumption introduces error.

To put things into perspective, consider that typical arm and
wrist motion can occur in as little as 1/2 second, with typical “fast”
wrist tangential motion occurring at 3 meters/second [1]. For the
current versions of the above systems such motion corresponds to
approximately 2 to 6 centimeters of translation 

 

throughout

 

 the
sequence of measurements required for a single estimate. For
systems that attempt sub-millimeter accuracies, even slow motion
occurring during a sequence of sequential measurements impacts
the accuracy of the estimates.
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Figure 1: SCAAT and constraints on a system of simultaneous equations.  is the minimal number of independent simultaneous 
constraints necessary to uniquely determine a solution,  is the number of given constraints, and  is the number of independent 
constraints that can be formed from the . (For most systems of interest ). The conventional approach is to ensure  and 

, i.e. to use enough measurements to well-constrain or even over-constrain the estimate. The SCAAT approach is to employ the 
smallest number of constraints available at any one time, generally  constraint. From this viewpoint, each SCAAT 
estimate is severely under-constrained.
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The error introduced by violation of the simultaneity
assumption is of greatest concern perhaps when attempting any
form of system 

 

autocalibration

 

. Gottschalk and Hughes note that
motion during their autocalibration procedure must be severely
restricted in order to avoid such errors [19]. Consider that for a
multiple-measurement system with 30 mill iseconds total
measurement time, motion would have to be restricted to
approximately 1.5 centimeters/second to confine the translation
(throughout a measurement sequence) to 0.5 millimeters. For
complete autocalibration of a large (wide-area) tracking system,
this restriction results in lengthy specialized sessions.

 

2.2 Device Isolation & Autocalibration

 

Knowledge about source and sensor imperfections can be used to
improve the accuracy of tracking systems. While intrinsic sensor
parameters can often be determined off-l ine, e.g. by the
manufacturer, this is generally not the case for extrinsic
parameters. For example it can be difficult to determine the exact
geometric relationship between the various sensors of a hybrid
system. Consider that the coordinate system of a magnetic sensor
is located at some unknown location inside the sensor unit.
Similarly the precise geometric relationship between visible
landmarks used in a vision-based system is often difficult to
determine. Even worse, landmark positions can change over time
as, for example, a patient’s skin deforms with pressure from an
ultrasound probe. In general, goals such as flexibility, ease of use,
and lower cost ,  make the not ion of  sel f -cal ibrat ion or

 

autocalibration

 

 attractive.
The general idea for autocalibration is not new. See for

example [19,45]. However, because the SCAAT method 

 

isolates

 

the measurements provided by each sensor or modality, the
method provides a new and elegant means to autocalibrate
concurrently while tracking. Because the SCAAT method isolates
the individual measurements, or measurement dimensions,
individual source and sensor imperfections are more easily
identified and dealt with. Furthermore, because the simultaneity
assumption is avoided, the motion restrictions discussed in
section 2.1 would be removed, and autocalibration could be
performed 

 

while concurrently tracking a target

 

.
The isolation enforced by the SCAAT approach can improve

results even if the constraints are obtained simultaneously through
multidimensional measurements. An intuitive explanation is that if
the elements (dimensions) are corrupted by independent noise,
then incorporating the elements independently can offer improved
filtering over a batch or ensemble estimation scheme. 

 

2.3 Temporal Improvements

 

Per Shannon’s sampling theorem [24] the measurement

 

 

 

or

 

sampling

 

 frequency should be at least twice the true target motion
bandwidth, or an estimator may track an alias of the true motion.
Given that common arm and head motion bandwidth specifications
range from 2 to 20 Hz [13,14,36], the 

 

sampling

 

 rate should ideally
be greater than 40 Hz. Furthermore, the 

 

estimate 

 

rate should be as
high as possible so that normally-distributed white estimate error
can be discriminated from any non-white error that might be
observed during times of significant target dynamics, and so
estimates will always reflect the most recent user motion.

In addition to increasing the estimate rate, we want to reduce
the latency associated with generating an improved estimate, thus
reducing the overall latency between target motion and visual
feedback in virtual environment systems [34]. If too high, such
latency can impair adaptation and the illusion of presence [22], and
can cause motion discomfort or sickness. Increased latency also
contributes to problems with head-mounted display registration
[23] and with motion prediction [4,15,29]. Finally, post-rendering

image deflection techniques are sometimes employed in an attempt
to address latency variability in the rendering pipeline [32,39].
Such methods are most effective when they have access to (or
generate) accurate motion predictions and low-latency tracker
updates. With accurate prediction the best possible position and
orientation information can be used to render a preliminary image.
With fast tracker updates there is higher probability that when the
preliminary image is ready for final deflection, recent user motion
has been detected and incorporated into the deflection.

With these requirements in mind, let us examine the effect of
the measurements on the estimate latency and rate. Let  be the
time needed to determine one constraint, e.g. to measure a sensor
or extract a scene landmark, let  be the number of (sequential)
constraints used to compute a complete estimate, and let  be the
time needed to actually compute that estimate. Then the estimate
latency  and rate  are

 

(1)

 

As the number of constraints  increases, equation (1) shows how
the estimate latency and rate increase and decrease respectively.
For example the Polhemus Fastrak, which uses the SPASYN
(

 

Space Synchro

 

) method for determining relative position and
orientation, employs  sequential electromagnetic
excitations and measurements per estimate [25,27,37], the original
University of North Carolina (UNC) optoelectronic tracking
system sequentially observed  beacons per estimate
[3,44], and the current UNC hybrid landmark-magnetic tracking
system extracts (from a camera image) and then incorporates

 landmarks per update. The SCAAT method seeks to
improve the latencies and data rates of such systems by updating
the current estimate with each new (individual) constraint, i.e. by
fixing 

 

 

 

at 1. In other words, it increases the estimate rate to
approximately the rate that individual constraints can be obtained
and likewise decreases the estimate latency to approximately the
time required to obtain a single constraint, e.g. to perform a single
measurement of a single sensor, or to extract a single landmark.

Figure 2 illustrates the increased data rate with a timing
diagram that compares the SPASYN (Polhemus Navigation
Systems) magnetic position and orientation tracking system with a
hypothetical SCAAT implementation. In contrast to the SPASYN
system, a SCAAT implementation would generate a new estimate
after sensing each 

 

individual

 

 excitation vector rather than waiting
for a complete pattern.
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Figure 2: A timing diagram comparing the SPASYN 
(Polhemus Navigation Systems) magnetic position and 
orientation tracking system with a hypothetical SCAAT 
implementation.
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2.4 Data Fusion & Hybrid Systems

 

The Kalman filter [26] has been widely used for data fusion. For
example in navigation systems [17,30], virtual environment
tracking systems [5,12,14], and in 3D scene modeling [20,42].
However the SCAAT method represents a new approach to
Kalman filter based 

 

multi-sensor data fusion

 

. Because constraints
are intentionally

 

 

 

incorporated one at a time, one can pick and
choose which ones to add, and when to add them. This means that
information from different sensors or modalities can be woven
together in a common, flexible, and expeditious fashion.
Furthermore, one can use the approach to ensure that each estimate
is computed from the most recently obtained constraint.

Consider for a moment the UNC hybrid landmark-magnetic
presented at SIGGRAPH 96 [41]. This system uses an off-the-shelf
Ascension magnetic tracking system along with a vision-based
landmark recognition system to achieve superior synthetic and real
image registration for augmented reality assisted medical
procedures. The vision-based component attempts to identify and
locate multiple known landmarks in a single image before
applying a correction to the magnetic readings. A SCAAT
implementation would instead identify and locate only one
landmark per update, using a new image (frame) each time. Not
only would this approach increase the frequency of landmark-
based correction (given the necessary image processing) but it
would offer the added benefit that unlike the implementation
presented in [41], no special processing would be needed for the
cases where the number of visible landmarks falls below the
number  necessary to determine a complete position and
orientation solution. The SCAAT implementation would simply
cycle through any available landmarks, one at a time. Even with
only one visible landmark the method would continue to operate as
usual, using the information provided by the landmark sighting to
refine the estimate where possible, while increasing the uncertainty
where not.

 

3 METHOD

 

The SCAAT method employs a 

 

Kalman filter

 

 (KF) in an unusual
fashion. The Kalman filter is a mathematical procedure that
provides an efficient computational (recursive) method for the
least-squares estimation of a linear system. It does so in a

 

predictor-corrector

 

 fashion, predicting short-term (since the last
estimate) changes in the state using a 

 

dynamic model

 

, and then
correcting them with a measurement and a corresponding

 

measurement model

 

. The 

 

extended 

 

Kalman filter (EKF) is a
variation of the Kalman filter that supports estimation of 

 

nonlinear

 

systems, e.g. 3D position and orientation tracking systems. A basic
introduction to the Kalman filter can be found in Chapter 1 of [31],
while a more complete introductory discussion can be found in
[40], which also contains some interesting historical narrative.
More extensive references can be found in [7,18,24,28,31,46].

The Kalman filter has been employed previously for virtual
environment tracking estimation and prediction. For example see
[2,5,12,14,42], and most recently [32]. In each of these cases
however the filter was applied directly and only to the 6D pose
estimates delivered by the off-the-shelf tracker. The SCAAT
approach could be applied to either a hybrid system using off-the-
shelf and/or custom trackers, or it could be employed by tracker
developers to improve the existing systems for the end-user
graphics community.

In this section we describe the method in a manner that does
not imply a specific tracking system. (In section 3.4 we present
experimental results of a specific implementation, a SCAAT wide-
area optoelectronic tracking system.) In section 3.1 we describe
the method for tracking, and in section 3.2 we describe one
possible method for concurrent autocalibration.

Throughout we use the following conventions.

 

3.1 Tracking

 

3.1.1 Main Tracker Filter

 

The use of a Kalman filter requires a mathematical (state-space)
model for the dynamics of the process to be estimated, the target
motion in this case. While several possible dynamic models and
associated state configurations are possible, we have found a
simple 

 

position-velocity

 

 model to suffice for the dynamics of our
applications. In fact we use this same form of model, with different
parameters, for all six of the position and orientation components

. Discussion of some other potential models and
the associated trade-offs can be found in [7] pp. 415-420. Because
our implementation is discrete with inter sample time  we
model the target’s dynamic motion with the following linear
difference equation:

 

. (2)

 

In the standard model corresponding to equation (2), the

 

 

 

dimensional Kalman filter 

 

state vector

 

  would completely
describe the target position and orientation at any time . In
practice we use a method similar to [2,6] and maintain the
complete target orientation externally to the Kalman filter in order
to avoid the nonl ineari t ies associated with or ientat ion
computations. In the internal state vector  we maintain the
target position as the Cartesian coordinates , and the

 

incremental 

 

orientation as small rotations  about the
 axis. Externally we maintain the target orientation as the

 

external  quaternion 

 

.  (See [9]  for
discussion of quaternions.) At each filter update step, the
incremental orientations  are factored into the external
quaternion , and then zeroed as shown below. Thus the
incremental orientations are linearized for the EKF, centered about
zero. We maintain the derivatives of the target position and
orientation internally, in the state vector . We maintain the
angular velocities internally because the angular velocities behave
like orthogonal vectors and do not exhibit the nonlinearities of the
angles themselves. The target state is then represented by the

 element internal state vector

 

(3)

 

and the four-element external orientation quaternion

 

, (4)

 

where the time designations have been omitted for clarity.
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The  state transition matrix  in (2) projects the
state forward from time  to time . For our linear model, the
matrix implements the relationships

(5)

and likewise for the remaining elements of (3).
The  process noise vector  in (2) is a normally-

distributed zero-mean sequence that represents the uncertainty in
the target state over any time interval . The corresponding 
process noise covariance matrix is given by

. (6)

Because our implementation is discrete with inter sample time ,
we can use the transfer function method illustrated by [7] pp. 221-
222 to compute a sampled process noise covariance matrix.
(Because the associated random processes are presumed to be time
stationary, we present the process noise covariance matrix as a
function of the inter-sample duration  only.) The non-zero
elements of  are given by

(7)

for each pair

.

The  in (7) are the correlation kernels of the (assumed
constant) noise sources presumed to be driving the dynamic
model. We determined a set of values using Powell’s method, and
then used these in both simulation and our real implementation.
The values can be “tuned” for different dynamics, though we have
found that the tracker works well over a broad range of values. 

The use of a Kalman filter requires not only a dynamic model
as described above, but also a measurement model for each
available type of measurement. The measurement model is used to
predict the ideal noise-free response of each sensor and source
pair, given the filter’s current estimate of the target state as in
equations (3) and (4).

It is the nature of the measurement models and indeed 
the actual sensor measurements that distinguishes a 
SCAAT Kalman filter from a well-constrained one.

For each sensor type σ we define the  measurement
vector  and corresponding measurement function  such
that

. (8)

Note that in the “purest” SCAAT implementation  and the
measurements are incorporated as single scalar values. However if
it is not possible or necessary to isolate the measurements, e.g. to
perform autocalibration, then multi-dimensional measurements
can be incorporated also. Guidelines presented in [47] lead to the
following heuristic for choosing the SCAAT Kalman filter
measurement elements (constraints):

During each SCAAT Kalman filter measurement update 
one should observe a single sensor and source pair only.

For example, to incorporate magnetic tracker data as an end-user,
 for the three position and four orientation (quaternion)

elements, while if the manufacturer were to use the SCAAT
implementation,  for each 3-axis electromagnetic
response to a single excitation. For an image-based landmark
tracker such as [41] the measurement function would, given
estimates of the camera pose and a single landmark location,
transform the landmark into camera space and then project it onto
the camera image plane. In this case  for the 2D image
coordinates of the landmark.

The  measurement noise vector  in (8) is a
normally-distributed zero-mean sequence that represents any
random error (e.g. electrical noise) in the measurement. This
parameter  can be determined f rom component  design
specifications, and (or) confirmed by off-line measurement. For
our simulations we did both. The corresponding 
measurement noise covariance matrix is given by

. (9)

For each measurement function  we determine the
corresponding Jacobian function

, (10)

where  and . Finally, we note the use of the
standard (Kalman filter)  error covariance matrix 
which maintains the covariance of the error in the estimated state.

3.1.2 Tracking Algorithm
Given an initial state estimate  and error covariance estimate

, the SCAAT algorithm proceeds similarly to a conventional
EKF, cycling through the following steps whenever a discrete
measurement  from some sensor (type σ) and source becomes
available at time :

a. Compute the time  since the previous estimate.

b. Predict the state and error covariance.

(11)

c. Predict the measurement and compute the corresponding Jaco-
bian.

(12)

d. Compute the Kalman gain.

(13)

e. Compute the residual between the actual sensor measurement
 and the predicted measurement from (12).

(14)

f. Correct the predicted tracker state estimate and error covariance
from (11).

(15)
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g. Update the external orientation of equation (4) per the change
indicated by the  elements of the state.*

(16)

h. Zero the orientation elements of the state vector.

(17)

The equations (11)-(17) may seem computationally complex,
however they can be performed quite efficiently. The computations
can be optimized to eliminate operations on matrix and vector
elements that are known to be zero. For example, the elements of
the Jacobian  in (12) that correspond to the velocities in the state

 will always be zero. In addition, the matrix inverted in the
computation of  in (13) is of rank  (  for our example in
section 3.4) which is smaller for a SCAAT filter than for a
corresponding conventional EKF implementation. Finally, the
increased data rate a l lows the use of  the smal l  angle
approximations  and  in  and

. The total per estimate computation time can therefore
actually be less than that of a corresponding conventional
implementation. (We are able to execute the SCAAT filter
computations, with the autocalibration computations discussed in
the next section, in approximately  on a 200 MHz PC-
compatible computer.)

3.1.3 Discussion
The key to the SCAAT method is the number of constraints
provided by the measurement vector and measurement function in
equation (8). For the 3D-tracking problem being solved, a unique
solution requires  non-degenerate constraints to resolve six
degrees of freedom. Because individual sensor measurements
typically provide less than six constraints, conventional
implementations usually construct a complete measurement vector

from some group of  individual sensor measurements over
time , and then proceed to compute an estimate. Or a
particular implementation may operate in a moving-window
fashion, combining the most recent measurement with the 
previous measurements, possibly implementing a form of a finite-
impulse-response filter. In any case, for such well-constrained
systems complete observability is obtained at each step of the
filter. Systems that collect measurements sequentially in this way
inherently violate the simultaneity assumption, as well as increase
the time  between estimates.

In contrast ,  the SCAAT method blends indiv idual
measurements that each provide incomplete constraints into a
complete state estimate. The EKF inherently provides the means
for this blending, no matter how complete the information content
of each individual measurement . The EKF accomplishes this
through the Kalman gain  which is computed in (13). The
Kalman gain, which is used to adjust the state and the error
covariance in (15), is optimal in the sense that it minimizes the
error covariance if certain conditions are met. Note that the
inversion in (13) forms a ratio that reflects the relative uncertainties
of the state and the measurement. Note too that the ratio is affected
by the use of the measurement function Jacobian . Because the
Jacobian reflects the rate of change of each measurement with
respect to the current state, it indicates a direction in state space
along which a measurement could possibly affect the state.
Because the gain is recomputed at each step with the appropriate

*  The operation  is used to indicate a quaternion multiply [9].

measurement function and associated Jacobian, it inherently
reflects the amount and direction of information provided by the
individual constraint. 

3.2 Autocalibration
The method we use for autocalibration involves augmenting the
main tracker filter presented in section 3.1 to effectively
implement a distinct device filter, a Kalman filter, for each source
or sensor to be calibrated. (We use the word “device” here to
include for example scene landmarks which can be thought of as
passive sources, and cameras which are indeed sensors.) In
general, any constant device-related parameters used by a
measurement function  from (8) are candidates for this
autocalibration method. We assume that the parameters to be
estimated are contained in the device parameter vectors  and ,
and we also present the case where both the source and sensor are
to be calibrated since omission of one or the other is trivial. We
note the following new convention.

3.2.1 Device Filters
For each device (source, sensor, landmark, etc.) we create a
distinct device filter as follows. Let  represent the corresponding
device parameter vector and .

a. Allocate an  state vector  for the device, initialize
with the best a priori device parameter estimates, e.g. from design.

b. Allocate an  noise covariance matrix , initialize
with the expected parameter variances.

c. Allocate an  error covariance matrix , initialize to
indicate the level of confidence in the a priori device parameter
estimates from (a) above.

3.2.2 Revised Tracking Algorithm
The algorithm for tracking with concurrent autocalibration is the
same as that presented in section 3.1, with the following
exceptions. After step (a) in the original algorithm, we form
augmented versions of the state vector

, (18)

the error covariance matrix

, (19)

the state transition matrix

, (20)

and the process noise matrix

. (21)
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We then follow steps (b)-(h) from the original algorithm, making
the appropriate substitutions of (18)-(21), and noting that the
measurement and Jacobian functions used in step (c) have become

 and  because the estimates of parameters 
and  (  and ) are now contained in the augmented state
vector  per (18). After step (h) we finish by extracting and
saving the device filter portions of the augmented state vector and
error covariance matrix

(22)

where

and , , and  are the dimensions of the state vectors for the
main tracker filter, the source filter, and the sensor filter
(respectively). We leave the main tracker filter state vector and
error covariance matrix in their augmented counterparts, while we
swap the device filter components in and out with each estimate.
The result is that individual device filters are updated less
frequently than the main tracker filter. The more a device is used,
the more it is calibrated. If a device is never used, it is never
calibrated.

With respect to added time complexity, the computations can
again be optimized to eliminate operations on matrix and vector
elements that are known to be zero: those places mentioned in
section 3.1, and see (19)-(21). Also note that the size of and thus
time for the matrix inversion in (13) has not changed. With respect
to added space complexity, the autocalibration method requires
storing a separate state vector and covariance matrix for each
device—a fixed amount of (generally small) space per device. For
example, consider autocalibrating the beacon (LED) positions for
an optical tracking system with 3,000 beacons. For each beacon
one would need 3 words for the beacon state (its 3D position),

 words for the noise covariance matrix, and 
words for the error covariance matrix. Assuming 8 bytes per word,
this is only  bytes.

3.2.3 Discussion
The ability to simultaneously estimate two dependent sets of
unknowns (the target and device states) is made possible by several
factors. First, the dynamics of the two sets are very different as
would be reflected in the process noise matrices. We assume the
target is undergoing some random (constant) acceleration,
reflected in the noise parameter  of  in (6). Conversely, we
assume the device parameters are constant, and so the elements of

 for a source or sensor simply reflect any allowed variances
in the corresponding parameters: usually zero or extremely small.
In addition, while the target is expected to be moving, the filter
expects the motion between any two estimations to closely
correspond to the velocity estimates in the state (3). If the tracker
estimate rate is high enough, poorly estimated device parameters
will result in what appears to be almost instantaneous target
motion. The increased rate of the SCAAT method allows such
motion to be recognized as unlikely, and attributed to poorly
estimated device parameters.

3.3 Stability
Because the SCAAT method uses individual measurements with
insufficient information, one might be concerned about the
potential for instability or divergence. A linear system is said to be
stable if its response to any input tends to a finite steady value after
the input is removed [24]. For the Kalman filter in general this is
certainly not a new concern, and there are standard requirements
and corresponding tests that ensure or detect stability (see [18],
p. 132):

a. The filter must be uniformly completely observable, 

b. the dynamic and measurement noise matrices in equations (6)
and (9) must be bounded from above and below, and

c. the dynamic behavior represented by  in equation (2)
must be bounded from above.

As it turns out, these conditions and their standard tests are equally
applicable to a SCAAT implementation. For the SCAAT method
the conditions mean that the user dynamics between estimates
must be bounded, the measurement noise must be bounded, one
must incorporate a sufficient set of non-degenerate constraints over
time. In particular, the constraints must be incorporated in less than
1/2 the time of the user motion time-constant in order to avoid
tracking an alias of the true motion. In general these conditions are
easily met for systems and circumstances that would otherwise be
stable with a multiple-constraint implementation. A complete
stability analysis is beyond the scope of this paper, and is presented
in [47].

3.4 Measurement Ordering
Beyond a simple round-robin approach, one might envision a
measurement scheduling algorithm that makes better use of the
available resources. In doing so one would like to be able to
monitor and control uncertainty in the state vector. By periodically
observing the eigenvalues and eigenvectors of the error covariance
matrix , one can determine the directions in state-space along
which more or less information is needed [21]. This approach can
be used to monitor the stability of the tracker, and to guide the
source/sensor ordering.

4 EXPERIMENTS
We are using the SCAAT approach in the current version of the
UNC wide-area optoelectronic tracking system known as the
HiBall tracker. The HiBall, shown below in Figure 3, incorporates
six optical sensors and six lenses with infrared filters into one golf
ball sized sensing unit that can be worn on a user’s head or hand.
The principal mechanical component of the HiBall, the senor
housing unit, was fabricated by researchers at the University of
Utah using their  modeling environment.

Because the HiBall sensors and lenses share a common
transparent space in the center of the housing, a single sensor can
actually sense light through more than one lens. By making use of
all of these views we end up with effectively 26 “cameras”. These
cameras are then used to observe ceiling-mounted light-emitting
diodes (LEDs) to track the position and orientation of the HiBall.
This inside-looking-out approach was first used with the previous
UNC optoelectronic tracking system [44] which spanned most of
the user’s head and weighed approximately ten pounds, not
including a backpack containing some electronics. In contrast, the
HiBall sensing unit is the size of a golf ball and weighs only five
ounces, including the electronics. The combination of reduced
weight, smaller packaging, and the new SCAAT algorithm results
in a very ergonomic, fast, and accurate system.

In this section we present results from both simulations
performed during the design and development of the HiBall, and
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preliminary results from the actual implementation. The
simulations are useful because we have control over the “truth”
and can perform controlled experiments. The results from the
actual implementation serve to demonstrate actual operation and to
provide some support for our accuracy and stability claims.

With respect to the SCAAT implementation, the tracker
sensors are the HiBall cameras and the tracker sources are the
ceiling-mounted 2D array of approximately 3000 electronic
beacons (LEDs). The cameras provide a single 2D measurement
vector, i.e. a 2D constraint, which is the  image coordinates
of the beacon as seen by the camera. So for this example, 
and . The measurement function  transforms
the beacon into camera coordinates and then projects it onto the
camera’s image plane in order to predict the camera response.

For the simulations we generated individual measurement
events (a single beacon activation followed by a single camera
reading) at a rate of 1000 Hz, and corrupted the measurements
using the noise models detailed in [8]. We tested components of
our real system in a laboratory and found the noise models in [8] to
be reasonably accurate, if not pessimistic. We also perturbed the
3D beacon positions prior to simulations with a normally-
distributed noise source with approximately 1.7 millimeters
standard deviation. We controlled all random number generators to
facilitate method comparisons with common random sequences.

To evaluate the filter performance we needed some reference
data. Our solution was to collect motion data from real-user
sessions with a conventional tracking system, and then to filter the
data to remove high frequency noise. We then defined this data to
be the “truth”. We did this for seven such sessions.

The simulator operated by sampling the truth data, choosing
one beacon and camera (round-robin from within the set of valid
combinations), computing the corresponding camera measurement
vector , and then adding some measurement noise. The (noisy)
measurement vector, the camera parameter vector  (position and
orientation in user coordinates), and the beacon parameter vector

 (position in world coordinates) were then sent to the tracker.

For the tracking algorithm, we simulated both the SCAAT
method (section 3.1, modified per section 3.2 for autocalibration)
and several multiple-constraint methods, including the Collinearity
method [3] and several variations of moving window (finite
impulse response) methods. For each of the methods we varied the
measurement noise, the measurement frequency, and the beacon
position error. For the multiple constraint methods we also varied
the number of constraints (beacon observations) per estimate .
In each case the respective estimates were compared with the truth
data set for performance evaluation.

4.1 Tracker Filter
The 12 element state vector  for the main tracker filter
contained the elements shown in (3). Each of the 3000 beacon
filters was allocated a 3 element state vector

where  represents the beacon’s estimated position in
cartesian (world) coordinates. The  state transition matrix
for the main tracker filter was formed as discussed section 3.1, and
for each beacon filter it was the  identity matrix. The

 process noise matrix for the main tracker was computed
using (7), using elements of  that were determined off-line using
Powell’s method and a variety of real motion data. For each beacon
filter we used an identical noise covariance matrix

for , with beacon position variance  also determined
off-line. (See [47] for the complete details.) At each estimate step,
the augmented 15 element state vector,  process noise
matrix,  state transition matrix, and  error
covariance matrix all resembled (18)-(21) (without the camera
parameter components). The measurement noise model was
distance dependent (beacon light falls-off with distance) so 
from (9) was computed prior to step (d), by using a beacon
distance estimate (obtained from the user and beacon positions in
the predicted state ) to project a distance-dependent electrical
variance onto the camera.

4.2 Initialization
The position and orientation elements of the main tracker state
were initialized with the true user position and orientation, and the
velocities were initialized to zero. The 3000 beacon filter state
vectors were initialized with (potentially erroneous) beacon
position estimates. The main tracker error covariance matrix was
initialized to the null matrix. All beacon filter error covariance
matrices were initialized to

for , to reflect 1 millimeter of uncertainty in the initial
beacon positions.

While for the presented simulations we initialized the filter
state with the true user pose information, we also performed (but
will not show here) simulations in which the state elements were
initialized to arbitrary values, e.g. all zeros. It is a testament to the
stability of the method that in most cases the filter completely
converged in under a tenth of a second, i.e. with fewer than 100
measurements. (In a few cases the camera was facing away from
the beacon, a condition not handled by our simulator.)

Figure 3: The HiBall is shown here with the internal circuitry 
exposed and the lenses removed. The sensors, which can be seen 
through the lens openings, are mounted on PC boards that fold-
up into the HiBall upon assembly. The mechanical pencil at the 
bottom conveys an indication of the relative size of the unit.
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4.3 Simulation Results
We present here only comparisons of the SCAAT method with the
Collinearity method, the “conventional approach” mentioned in
the accompanying video. More extensive simulation results can be
found in [47], including tests for stability under “cold starts” and
periodic loss of data. All error measures reflect the RMS position
error for a set of three imaginary points located approximately at
arms length. This approach combines both position and orientation
error into a metric that is related to the error a user would
encounter in [HMD] screen space.

Figure 4 contains two related plots. The upper plot shows the
entire three minutes (180 seconds) of the x-axis position for the
first of seven data sets, data set ‘a’. The lower plot shows a close-
up of a particular segment of 300 milliseconds near the end. Notice
that the Collinearity estimates appear very jerky. This is partially a
result of the lower estimate rate, it is using  beacon
observations to compute an estimate, and partially due to the
method’s inability to deal with the erroneous beacon position data.
In contrast, the SCAAT method hugs the actual motion track,
appearing both smooth and accurate. This is partly a result of the
higher update rate (10 times Collinearity here), and partly the
effects of Kalman filtering, but mostly the accuracy is a result of
the SCAAT autocalibration scheme. With the autocalibration
turned on, the initially erroneous beacon positions are being
refined at the same high rate that user pose estimates are generated.

Figure 5 shows progressively improving estimates as the
number of beacons  is reduced from 15 (Collinearity) down to 1
(SCAAT), and a clear improvement in the accuracy when
autocalibration is on. Consider for a moment that the motion
prediction work of Azuma and Bishop [4] was based on jerky
Collinearity estimates similar to those in Figure 4. The smooth and
accurate SCAAT estimation should provide a much better basis for
motion prediction, which could in turn provide a more effective
means for addressing other system latencies such as those in the
rendering pipeline. The improved accuracy should also improve
post-rendering warping or image deflection [32,39]. 
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As further evidence of the smoothing offered by the SCAAT
approach, Figure 6 presents an error spectra comparison between a
Collinearity implementation with , and a SCAAT
implementation with and without autocalibration. Even without
autocalibration the SCAAT output has significantly less noise than
collinearity, and with autocalibration it is better by more than a
factor of 10. These reductions in noise are clearly visible to the
HMD user as a reduction in the amount of jitter in virtual-world
objects.

Figure 7 provides results for all seven of the real-user motion
data sets. Again the Collinearity implementations observe

 beacons per estimate, while the SCAAT implementations
observe only . Because the beacon positions were being
autocalibrated during the SCAAT run, we repeated each run, the
second time using the beacon position estimation results from the
first simulation. The more beacons are sighted during tracking, the
better they are located. The second-pass simulation results are
identified with the dagger (†) in Figure 7.

Figure 8 presents results that support the claim that the
beacon location estimates are actually improving during tracking
with autocalibration, as opposed to simply shifting to reduce
spectral noise. Note that in the case of data set ‘d’, the beacon error
was reduced nearly 60%.

Finally, we simulated using the SCAAT approach with
tracking hardware that allowed truly simultaneous observations of
beacons. For the Collinearity and other multiple-constraint
methods we simply used the methods as usual, except that we
passed them truly simultaneous measurements. For the SCAAT
method we took the  simultaneous observations, and simply
processed them one at a time with . (See equation (2).) We
were, at first, surprised to see that even under these ideal
circumstances the SCAAT implementation could perform better,
even significantly better than a multiple-constraint method with
simultaneous constraints. The reason seems to be autocalibration.
Even though the multiple-constraint methods were “helped” by the
truly simultaneous observations, the SCAAT method still had the
advantage in that it could still autocalibrate the beacons more

effectively that any multiple-constraint method. This again arises
from the method’s inherent isolation of individual observations. 

4.4 Real Results
We have demonstrated the SCAAT algorithm with the HiBall
tracker, a head-mounted display, and a real application. However,
at the time of the submission of this publication we have yet to
perform extensive optimization and analysis. As such we present
here only limited, albeit compelling results.

The SCAAT code runs on a 200 MHz PC-compatible
computer with a custom interface board. With unoptimized code,
the system generates new estimates at approximately 700 Hz. We
expect the optimized version to operate at over 1000 Hz. Out of the
approximately 1.4 millisecond period, the unoptimized SCAAT
code takes approximately 100 microseconds and sampling of the
sensors takes approximately 200 microseconds. The remaining
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time is spent on overhead including a significant amount of
unoptimized code to choose an LED and to gather results.

In one experiment we set the HiBall on a flat surface under
the ceiling beacons and collected several minutes worth of data.
Given that the platform was relatively stable, we believe that the
deviation of the estimates provides an indication of the noise in the
system. Also, because the HiBall was not moving, we were able to
observe the progressive effects of the autocalibration. The standard
deviation of the position estimates for the first 15 seconds is shown
in Figure 9. With autocalibration off, the estimates deviate
approximately 6.0 millimeters in translation and 0.25 degrees in
orientation (not shown). With autocalibration on, notice in Figure 9
how the deviation decreases with time, settling at approximately
0.3 millimeters in translation and 0.01 degrees in orientation (again
not shown).

In another experiment we mounted the HiBall on a calibrated
translation rail of length one meter, and slid (by hand) the HiBall
from one end to the other and then back again. The disagreement
between the HiBall and the calibrated position on the rail was less
than 0.5 millimeters. The deviation of the measured track from co-
linearity was 0.9 millimeters. Because the tolerances of our simple
test fixture are of similar magnitude, we are unable to draw
conclusions about how much of this disagreement should be
attributed to error in the tracking system.

5 CONCLUSIONS
Stepping back from the details of the SCAAT method, we see an
interesting relationship: Because the method generates estimates
with individual measurements, it not only avoids the simultaneity
assumption but it operates faster; by operating faster, it decreases
the elapsed time since the previous state estimate; the more recent
the previous estimate, the better the prediction in (12); the better
the prediction, the more l ikely we can discriminate bad
measurements; if we can discriminate bad measurements, we can
autocalibrate the measurement devices; and if we can calibrate the
measurement  dev ices,  we can improve the ind iv idual
measurements, thus improving predictions, etc. In other words, the
faster, the better.

Looking more closely, it is amazing that such a tracker can
function at all. Consider for example the system presented in
section 4. Any single beacon sighting offers so few constraints—

the user could be theoretically anywhere. Similarly, knowledge
about where the user was a moment ago is only an indicator of
where the user might be now. But used together, these two sources
of information can offer more constraints than either alone. With a
Kalman filter we can extract the information from the previous
state and a new (individual) measurement, and blend them to form
a better estimate than would be possible using either alone.

The SCAAT method is accurate, stable, fast, and flexible, and
we believe it can be used to improve the performance of a wide
variety of commercial and custom tracking systems.
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