
centered on the transmitters (see Figure 1).
There is some uncertainty, however, in the
receiver’s measurements, and so the location
of the range circles will be inexact and result
in an error in the computed position. This
error depends on the geometry relating the
receiver and the transmitters. 

In Figure 1a, the transmitters are far apart,
giving a relatively small region in which the
receiver must lie with some degree of cer-
tainty. Transmitter 1 lies in a direction
orthogonal to that of transmitter 2, so the
receiver’s X and Y coordinates are deter-
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How accurate is GPS? This is a question that
almost every newcomer to GPS asks. And the
answer? It depends. It depends on whether we
are talking about standalone (single receiver)
or differential positioning, single- or dual-fre-
quency receivers, real-time or postprocessed
operation, and so on. Even if we confine our-
selves to the Standard Positioning Service
(SPS), the official, standalone service the
United States government provides to all users
worldwide, the answer is still — it depends.

The specified SPS accuracy is given in
terms of “minimum performance levels;” that
is, accuracy will be no worse than a certain
level for a certain percentage of time. For any
point on the globe, the horizontal accuracy is
equal to or better than 100 meters based on
the twice-distance–root-mean-square error
measure. This means that over a 24-hour
period, the horizontal coordinates of a posi-
tion determined by GPS will be within 100
meters of the true position about 95 percent
of the time. The corresponding specified
accuracy for heights is 156 meters and 340
nanoseconds for time transfer. 

These predicted accuracies are predicated
on a 24-satellite constellation (additional
satellites are a bonus), a 5-degree satellite ele-
vation mask angle with no obstructions, and
at least four satellites in view with a position
dilution of precision (PDOP) of six or lower.
So, even the basic SPS accuracy is qualified.
This means that depending on where we are
and the time of day, actual SPS accuracy will
vary. In urban canyons, we may in fact not
even have four satellites in view, and if we do,
the PDOP may be greater than six.

The variability of actual SPS accuracy
from place to place and time to time is domi-
nated by the effects of dilution of precision, a
geometric factor that, when multiplied by
measurement and other input errors, gives the
error in position, some component of posi-
tion, or time. Before we examine how obser-
vation geometry affects GPS, let’s look at a
simple, non-GPS example.

GEOMETRY: A SIMPLE EXAMPLE
Imagine a radio positioning system in which
a receiver measures the ranges to two terres-
trial transmitters to determine its horizontal
coordinates. The receiver lies at the intersec-
tion of the circular lines of position that are
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Figure 1. In any ranging system,
receiver–transmitter geometry influ-
ences position precision. In this figure,
the uncertainty in the receiver’s position
is indicated by the patterned areas. In
(a), the position uncertainty is small (low
dilution of precision). In (b), transmitter 2
is moved closer to transmitter 1, and,
although the measurement uncertainty
is the same, the position uncertainty is
considerably larger (high dilution of
precision).
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[5]

in which C∆ x is the covariance matrix of the
parameter estimates.

Equation 5 represents a fundamental rela-
tionship widely used in science and engineer-
ing not only for actual measurement analysis
but also for experiment and system design
studies. It allows a scientist or engineer to
examine the effect a particular design or 
measurement capability will have on speci-
fied parameters without actually making any
measurements. 

In GPS-related studies, for example, we
might use the equation to answer a variety of
questions: What is the behavior of the esti-
mated parameter covariance matrix as a func-
tion of particular satellite configurations?
How do various model errors propagate into
the receiver coordinates as a function of satel-
lite configurations? What is the tolerance
value that a particular model error should not
exceed to achieve a desired positioning accu-
racy? Such questions are not limited to the
analysis of pseudoranges; they can also be
asked about more precise carrier-phase mea-
surements and differenced observables.

In Equation 5, if we assume that the 
measurement and model errors are the same
for all observations with a particular stand-
ard deviation (σ) and that they are uncorre-
lated, then C∆PC

is Iσ2 (in which I is the iden-
tity matrix). The expression for the
covariance of ∆ x thus simplifies to

[6]

(A more accurate error analysis can be car-
ried out using slightly more realistic non-
homogeneous variances and nonzero
correlations, but for pedagogical as well as
planning and assessment purposes, the equal-
variance, zero-correlation assumption is usu-
ally more than adequate.)

Because the least-squares estimates of the
parameter offsets are simply added to the lin-
earization point values — a linear operation
— the parameter estimates and the correc-
tions have the same covariance. The diagonal
elements of C∆x are the estimated receiver-
coordinate and clock-offset variances, and
the off-diagonal elements (the covariances)
indicate the degree to which these estimates
are correlated.

UERE. As we mentioned, σ represents the
standard deviation of the pseudorange mea-
surement error plus the residual model error,
which we’ve assumed to be equal for all
simultaneous observations. If we further
assume that the measurement error and the

C∆∆x = ATA
–1

σ2 = Dσ2

C∆∆x = ATWA
–1

ATW C∆∆Pc
ATWA

–1
ATW

T

= ATC∆∆Pc

–1 A
–1

availability[SA]). There are n such equations
that a receiver must solve using the n-simul-
taneous measurements.

The parameter ρ is a nonlinear function of
the receiver and satellite coordinates. To
determine the receiver coordinates, we can
linearize the pseudorange equations using
some initial estimates or guesses for the
receiver’s position (the linearization point).
We can then determine corrections to these
initial estimates to obtain the receiver’s
actual coordinates and clock offset. Grouping
our equations together and representing them
in matrix form, our model is now 

[3]

in which ∆Pc is the n-length vector of differ-
ences between the corrected pseudorange
measurements and modeled pseudorange
values based on the linearization point 
coordinates; ∆ x designates the four-element
vector of unknowns — the receiver position
and clock offset (in distance units) — from
the linearization point; A is the n 2 4 
matrix of the partial derivatives of the
pseudoranges with respect to the unknowns;
and ec is the n-length vector of measurement
and other errors. The first three columns of
the A matrix are simply the components of
the unit vectors pointing from the lineariza-
tion point to the satellites; the fourth column
is all ones.

The receiver (or postprocessing software)
solves the matrix equation using least
squares. (The receiver might use a Kalman
filter, which is a more general form of con-
ventional least squares.) Equation 4 gives this
solution:

[4]

A weight matrix (W) characterizes the dif-
ferences in the errors of the simultaneous
measurements as well as any correlations that
may exist among them. This weight matrix 
is also equal to σ0

2C∆PC
-1 , in which C∆PC

is 
the covariance matrix of the pseudorange
errors and σ0

2 is a scale factor known as the a
priori variance of unit weight. In general, the
solution of a nonlinear problem must be iter-
ated to obtain the result. However, if the lin-
earization point is sufficiently close to the
true solution, then only one iteration is
required. 

The Covariance Matrix. So how accurate are the
receiver’s coordinates and clock offset from
such a solution? What we are actually asking
is how do the pseudorange measurement and
model errors affect the estimated parameters
obtained from Equation 4? This is given by
the law of propagation of error — also known
as the covariance law: 

∆∆x = – ATWA
–1

ATW∆∆Pc

∆∆Pc = A ∆∆x+ ec

mined with equal precision. In panel (b), the
transmitters are closer together resulting in a
considerably larger uncertainty region, with
the confidence in the Y coordinate being
smaller than the X coordinate. We say that
the precision in case (b) is diluted in compar-
ison to that of (a).

Although fictitious, this simple example is
not too far removed from the case of Loran-C
radionavigation (although in Loran-C,
because we typically measure range differ-
ences, the lines of position are usually hyper-
bolas, not circles). In fact, the concept of
dilution of precision originated with Loran-C
users.

With this simple analogy under our collec-
tive belt, we can now examine the effect of
geometry on GPS accuracy. First, though,
let’s quickly review the basics of GPS posi-
tioning using pseudoranges.

PSEUDORANGE MEASUREMENTS
A GPS receiver computes its three-dimen-
sional coordinates and its clock offset from
four or more simultaneous pseudorange mea-
surements. These are measurements of the
biased range (hence the term pseudorange)
between the receiver’s antenna and the anten-
nas of each of the satellites being tracked.
This is derived by cross-correlating the
pseudorandom noise code received from a
satellite with a replica generated in the
receiver. The accuracy of the measured
pseudoranges and the fidelity of the model
used to process those measurements deter-
mine, in part, the overall accuracy of the
receiver-derived coordinates.

The basic pseudorange model is given by

[1]

in which P denotes the pseudorange mea-
surement; ρ is the geometric range between
the receiver’s antenna at signal reception
time and the satellite’s antenna at signal
transmission time; dT and dt represent
receiver and satellite clock offsets from GPS
Time, respectively; dion and dtrop are the
ionospheric and tropospheric propagation
delays; e accounts for measurement noise as
well as unmodeled effects such as multipath;
and c stands for the vacuum speed of light. 

Assuming the receiver accounts for the
satellite clock offset (using the navigation
message) and atmospheric delays (from mod-
els programmed into its firmware), we can
simplify the pseudorange model as follows: 

[2]

In this equation, ec represents the original
measurement noise plus model errors and
any unmodeled effects (such as selective

Pc = ρ + c ⋅ dT + ec

P = ρ + c(dT – dt) + dion + dtrop + e
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model error components are all independent,
then we can simply root-sum-square these
errors to obtain a value for σ. When we com-
bine receiver noise, satellite clock and
ephemeris error, atmospheric error, multi-
path, and SA — all expressed in units of dis-
tance — we obtain a quantity known as the
total user equivalent range error (UERE),
which we can use for σ. 

For SPS, the total UERE is typically in the
neighborhood of 25 meters. When SA is
turned off, total UERE could be less than 5
meters, with the actual value dominated by
ionospheric and multipath effects. Dual-fre-
quency Precise Positioning Service users,
with the capability to remove almost all of
the ionospheric delay from the pseudorange
observations, can experience even smaller
UEREs. Future users of the proposed new
civilian GPS signals will likewise be able to
compensate for ionospheric effects and
achieve superior UEREs.

THE DOPS
With a value for σ, we can compute the com-
ponents of C∆x using Equation 6. We then
can get a measure of the overall quality of the
least-squares solution by taking the square
root of the sum of the parameter estimate
variances:

[7]

in which σE
2, σN

2, and σU
2 are the variances of

the east, north, and up components of the
receiver position estimate, and σT

2 is the vari-
ance of the receiver clock offset estimate. If
the solution algorithm is parameterized in
terms of geocentric Cartesian coordinates, it
is a straightforward procedure to transform
the solution covariance matrix to the local
coordinate frame. This estimate of solution
accuracy — the square root of the trace of the
solution covariance matrix — is equal to the
pseudorange measurement and modeling
error standard deviation (σ) multiplied by a
scaling factor equal to the square root of the
trace of matrix D. The elements of matrix D
are a function of the receiver–satellite geom-
etry only. And because the scaling factor is
typically greater than one, it amplifies the
pseudorange error, or dilutes the precision, of
the position determination. This scaling fac-
tor is therefore usually called the geometric
dilution of precision (GDOP).

Rather than examining the quality of the
overall solution, we may prefer to look at
specific components such as the three-dimen-
sional receiver position coordinates, the hori-
zontal coordinates, the vertical coordinate, or

σG = σE
2 + σN

2 + σU
2 + σT

2

= D11 + D22+ D33+ D44 σ

the zenith and three satellites are below the
earth’s horizon at an elevation angle of
–19.47 degrees and equally spaced in
azimuth: GDOP works out to be 1.581. Of
course, a GPS receiver on or near the earth’s
surface cannot see the three below-horizon
satellites, so in this case, the lowest possible
GDOP (1.732) is obtained with one satellite
at the zenith and three satellites equally-
spaced on the horizon. Some early GPS
receivers could only track a maximum of
four satellites simultaneously. Such receivers
made use of a satellite selection algorithm to
choose the best four satellites of those visible
— the four that would produce the lowest
DOP values.

HDOP versus VDOP. Generally, the more satel-
lites used in the solution, the smaller the DOP
values and hence the smaller the solution
error. Figure 3 shows the DOP values com-
puted for the current GPS constellation
viewed from Fredericton, New Brunswick,
Canada, with an elevation mask angle of 15
degrees. HDOP values are typically between
one and two. VDOP values are larger than
the HDOP values indicating that vertical
position errors are larger than horizontal
errors. We suffer this effect because all of the
satellites from which we obtain signals are
above the receiver. The horizontal coordi-
nates do not suffer a similar fate as we usu-
ally receive signals from all sides. 

the clock offset. To do this, we simply take or
combine the appropriate C∆x variances:

[8]

For each of these error measures, we can
determine the corresponding position, hori-
zontal, vertical, and time DOPs:

[9]

Note that PDOP2 = HDOP2 + VDOP2, and
GDOP2 = PDOP2 + TDOP2. These relation-
ships may be useful for interrelating the vari-
ous DOP values. Because the various DOPs
are functions only of receiver and satellite
coordinates, they may be predicted ahead of
time for any given set of satellites in view
from a specified location using a satellite
almanac.

If the tips of the receiver–satellite unit
vectors lie in a plane, the DOP factors are
infinitely large. In fact, no position solution
is possible with this receiver–satellite geom-
etry, as the matrix ATA (see Equation 6) is
singular: The solution cannot distinguish
between an error in the receiver clock and an
error in the position of the receiver. DOP val-
ues are smaller and hence solution errors are
smaller when the satellites used in computing
the solution are spread out in the sky.

We can most easily visualize the depen-
dence of solution error on receiver–satellite
geometry if we assume a receiver is observ-
ing only four satellites. This scenario has no
measurement redundancy and makes possi-
ble a direct solution of the linearized obser-
vation equations (as long as A is not
singular). However, the covariance of the
solution, again assuming equal uncorrelated
errors, has the same form as that of the least-
squares solution given in Equation 6.

The Tetrahedron. The tips of the four
receiver–satellite unit vectors form a tetra-
hedron (see Figure 2). The volume of this
geometrical figure is related to the DOP 
values. The larger the tetrahedron’s volume,
the smaller the DOPs. The largest possible
tetrahedron is one for which one satellite is at

TDOP =
σT
σ = D44

VDOP=
σU
σ = D33

HDOP=
σE

2 + σN
2

σ = D11+ D22

PDOP=
σE

2 + σN
2 + σU

2

σ = D11+ D22+ D33

σT = σT
2

σU = σU
2

σH = σE
2 + σN

2

σP = σE
2 + σN

2 + σU
2
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Figure 2. If only four GPS satellites 
are observed, the tips of the receiver-
satellite unit vectors form a tetrahedron
circumscribed by a unit sphere. Two
faces of the tetrahedron — formed by
one satellite at the zenith and three at a
10-degree elevation angle, equally
spaced in azimuth — are shaded in this
figure. The tetrahedron’s volume is
highly correlated with GDOP. Maximiz-
ing the volume tends to minimize GDOP.
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available and the HDOP value drops to about
one, with a correspondingly small GDOP
(see Figure 5). In fact, the HDOP value stays
close to one for the whole day except for short
periods when it grows to about 1.5 or so.

Latitude. The disparity between HDOP and
VDOP values is larger for higher (north or
south) latitudes because there are fewer satel-
lites high in the sky. This limitation comes
from the fact that the inclination of the GPS
satellite orbits is about 55 degrees, which
means that you can never have a satellite
directly overhead at a latitude north of 55
degrees north (or south of 55 degrees south).
At the poles, the highest elevation angle pos-
sible is about 45 degrees. 

If we use an elevation mask angle of 15
degrees and track only four satellites — the
four that produce the lowest DOP values —
we find that while HDOP values are always
between one and two, VDOP values are
almost always above three and sometimes as
large as seven. This isn’t too surprising
because we are only using satellites in an ele-
vation-angle band of about 30 degrees around
the sky. How bad is a VDOP of seven? If the
UERE is 25 meters, the root-mean-square
vertical error would be about 175 meters, and
at the 95 percent uncertainty level, this error
would increase to 350 meters. Dropping the
elevation mask angle to 5 degrees improves
the VDOP values to between two and three
with an occasional excursion to four.

More Satellites. High DOP values can some-
times occur even for all-in-view receivers
operating at midlatitudes. In some environ-
ments, such as heavily forested areas or
urban canyons, a GPS receiver’s antenna
may not have a clear view of the whole sky
because of obstructions. If it can only receive
GPS signals from a small region of the sky,
the DOPs will be large, and position accuracy
will suffer. Being able to track more satellites

If the Earth were
transparent to radio
waves, we would be
able to determine 
vertical coordinates
with about the same
accuracy as horizon-
tal coordinates. More
realistically, we can
also get improved
vertical coordinates 
if we have an accu-
rate receiver clock 
or one whose offset
from GPS Time can
be accurately deter-
mined so that the
receiver only needs 
to estimate its posi-
tion. For example,
let’s assume we are

observing one satellite at the zenith and three
equally spaced in azimuth at a 15-degree ele-
vation angle. If we estimate the receiver
clock offset along with the receiver coordi-
nates, HDOP is 1.195, and VDOP is 1.558.
If, however, we assume the clock error to be
zero, and we only estimate the receiver coor-
dinates, then HDOP is still 1.195, but VDOP
is 0.913 — actually better than HDOP. 

Getting back to Figure 3, we notice a large
spike in the HDOP values (and hence in the
PDOP and GDOP values as well) just before
0000 hours. What’s going on here? At this
time, the number of visible satellites above
the mask angle has dropped to five. While
this is not particularly unusual, the arrange-
ment of these five satellites in the sky is (see
Figure 4). The satellite positions, projected
onto the user’s horizon plane, are almost col-
inear, which makes the elements of matrix D
large. If we accept a lower elevation mask
angle of 5 degrees, several more satellites are

Figure 3. DOP values at Fredericton, New Brunswick, Canada,
— computed from broadcast satellite ephemerides using a 
15-degree elevation mask angle — are sufficiently small 
except just before 0000 hours when HDOP, PDOP, and 
GDOP increase to more than 12 (#SV represents the number
of visible satellites [space vehicles]).
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Figure 4. The spike in the DOP values
in Figure 3 is caused by the almost
perfect alignment of the five satellites
above the elevation mask angle.
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Figure 5. Lowering the elevation mask angle to 5 degrees
removes the spikes just before 0000 hours in the DOPs of
Figure 3. Now, the GDOP has an average value of about two
and never exceeds 3.5 (#SV represents the number of visible
satellites [space vehicles]).
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can help in such situations, and a combined
GPS/GLONASS receiver may provide
acceptable accuracies. New receiver technol-
ogy permitting use of weaker GPS signals,
even those present inside buildings, will also
be beneficial.

CONCLUSION
In this brief article we have introduced the
concept of dilution of precision and exam-
ined the important role that receiver–satellite

geometry plays in determining GPS position
accuracy. While this geometry will always be
of some concern in GPS positioning, the new
satellite signals, improvements in receiver
design, and use of additional signals from
GLONASS or the proposed European
Galileo constellations of satellites will help
to minimize its impact. And in the not too
distant future, we might expect real-time,
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standalone GPS position accuracies even in
urban areas of a few meters or perhaps better.
Stay tuned. ■
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