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So far
Have not sPeci{:iccl type of arrival.
Can dowith P onlg, S onlg (?D,Pand S together, or S-P.

Need velocitg model to calculate travel times and travel
time derivatives
(so earthcluakes are located with resPect to the assumed
velocitg moclel, not real earth.
Errors are “formal”, i.e. with respect to model.)

VCIOCitg modcls usua"g Iatcrang homogcncous.



Problems:
Column of I’s — if one of t
columns is constant (or a
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How can this haPPen:

~A“ FI'I"St arrivals arc head waves FI"OITI

same remcractor

~ F_:arthcluake outside the network
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All first arrivals are head waves from same refractor
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07

In this case we
cannot find the
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E:arthquake outside the network
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In this case onlg the azimuth is constrained.

»

if using both P and S, can also get range, but S “noisier
thanPsois margina imProvement.

_————————— =0

Probablg also suﬁ:ering from dcpth-origin time couPIing



Problem gets worse with addition of noise (changes
length of red lines - intersection point moves left/
right - change of distance - much more than in
perpendicular direction - change of azimuth.)
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Similar problems with depth.

d/dz column ~equal, so almost linearly dependent on
last column

and

gets worse with addition of noise (changes length of
red lines - intersection point moves left/right [depth,
up/down {drawn sideways}] much more than in
perpendicular direction [position].)

<& >




Other problems:

Earthquake locations tend to "stick-on" layers in
velocity model.

When earthquake crosses a layer boundary, or the
depth change causes the first arrival to change from
direct to head wave (or vice verse or between
different head waves), there is a discontinuity in the
travel time derivative (Newton's method). May move
trial location a large distance.

Solution is to "damp” (limit) the size of the
adjustments - especially in depth.



Other problems:

Related to earthquake location, but bigger problem
for focal mechanism determination.

Raypath for first arrival from solution may not be
actual raypath, especially when first arrival is head
wave.

Results in wrong take-off angle.

Since head wave usually very weak, oftentimes don't
actually see head wave. Measure P arrival time, but
location program models it as P,



A look at Newton’s method
Want to solve for zero(s) of F(x)

Start with gUESS, Xo.
Calculate F(x,) (Probablg not zero, unless VERY luckg) :
Find intercept X, = Xo=F (xo) /F” (X5)
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Newton’s method
Want to solve for zero(s) of F(x)
Now calculate F(x,).

See how close to zero.

If close enough — done.



Newton’s method
Iif not “close enough”, do again
Find intercept  x, = x-F(x) /I (x)

Iif close enough, done, else — do again.




Newton’s method
><n+1 : Xn~l=<xn> / F (xn)
What happens when ' (x )=07?

Geometrica"g, you get sent off to in{:initg ~ method fails.
(Mathematica“y can’t divide bg zero — method fails.)

/




Newton’s method

How does convergence clcPcncl on starting valuc?
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Some starting values iterate through x_=0 and therefore
do no converge (limited calculation to 35 iterations).



Newton’s method

Other Problems

Point is “stationary” (gjves back itself x ~>x_..).
Iteration enters looP/ cgcle: Xo =Xy =~ X 15 SX ...

Derivative Problems (does not exist).

Discontinuous derivative.



Newton’s method aPPIiccl to solution of non-linear,
complcx valued, equations

L

Consider

Z3-1=0.




Newton’s method aPPIiccl to so

complex valued, ec
P )

Consider
Z2-1=0,
Solutions

Three of them
n=0,1,2
Distance =1

E:very 120 clegrees

ution of non-linear,
uations

L
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Newton’s method aPPIiecl to so

complex valued, ec
P )

Consider
Z5-1=0
Solutions

Three of them
n=0,1,2
Distance =1

E:verg 120 clcgrees

ution of non-linear,
uations

19



Take each Point in the complex Plane as a starting guess
and a :>|:>|9 Newton’s method.

Now

Color the starting
Points to iclenti{:g
which of the three
roots each starting
Poi nt converges to
using Newton’s

method.

eg. all the red Points
converge to the root
atl.




| et the intensitg of
each startin Point’s
color be related to
the number of stePs
to converge to that
root

(brggn’cer - converges
aster, darker —
converges slower)

21



Notice that any
starting Point on the
real line converges to
the root at 1

Similar] Points on
line sFoPing 60
degrees converge to
the other 2 roots.




Notice that in the
~third of the Plane
that contains each

root things are Pret‘tg
well behaved.

25



Notice that where any
two domains of
convergence meet, it
looks a little
comPIicated.

\
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Basicang — the
division between any
two colors is alwags
seParatcd bg the
third color.

\

AT ALL SCALES!

25



Zoom in



Zoom in again

27



it you keep cloing this (zoom in) the “triple”junctions
start to look like

Mandlebrot sets!

and you will find Points that either never converge or
converge very slowlg.

Quick imPIication —~
linear iteration to solve non-linear inversion Problems
(Newton’s metl‘nocl, non-linear least squares, etc.)

may be unstable.



More inversion Pi’cFa"s

Bill and Ted's misadventure.

Bill and Ted are geo~chemis’cs who wish to measure the
number of grams of each of three ditferent minerals
AB,C heldina singlc rock sample.

a
b

C

e t
e t

Nc NUMm.
€ Nnum

e t

ne num

| et
ber of grams of A,
ber of grams of B,

ber of grams of C

dbe the number of grams in the sample.

From Todd Will



B? PerForming complicatecl exPeriments Bill and Ted are
able to measure four rela’cionships between a,b,c, dwhich
theg record in the matrix below:

(9% 477 10.202 -28.832) (34.7177)
1.9% 32.816 62414 70.9241
26.821 36816  57.2%4 82.9271
232134 -863925 44.693)" 1 (-26222,

S
I

Ax =b

Now we havc more ccluations than we neecl

What to do?

From Todd Will



One thing to do is throw out one of the ecluations

(in realit onlg a Mathematician is naive enov.;:gh to think
that three ccluations is sufficient to solve for three
unknowns — butlets trg it angwag) .

So throw out one - |eaving

(9% 477 10202 -28.8%2\a\ (34.7177)
1.9% 32816 62414 | b|=]70.9241
| 26.821 56816 57.234 \c) 829271

Ax=b
e (different A and b from before)



Remembering some of their linear algebra the know that
the matrix is not invertible if the determinant is Zero, so

theg check that

9% 477 10.202 -28.8%2
1.9% 32816 62414
26.821 36816 57.23%4

U
I
\®)

OK so far
(or “fat, dumb and happg”)

From Todd Will



(a)

\C/

From Todd Will

S0 now we can compute

(9%.477
1.9%

\26.821

10.202 -28.8%2)
32816 62414

%6816 57.2%4 |

x=ADb

-1

(34.7177)
70.9241

K82.9271/

So now we’re done.




Or are we”?




Next theg realize that the measurements are rea"g onlg
goocl to O.1

S
I

From Todd Will

So tl‘ncg round to 0.1 and do it again

(9%.477
1.9%

\26.821

10.202 -28.8%2)

%2 816
36.816

X

62 414

57.25%4 |

AD

(34.7)
709

\82.9/

(~1.68294)
$.92282

\-3.50254



Now they notice a small Problem —~

TI"ICg gCt a VCl'y @ H:FCI"Cﬂt answer

(ancl they don’t notice ’cl‘ncg nave a l:)igger Problem that
they have negativc weiglﬂts/ amounts!)

(a) (0.5) (a) (-1.68294)
bl=108 b|=| 892282
\C) \O .7) \C ) \—3 .50254/

From Todd Will



So what’s the Problcm?

First find the SVD of A.
(93477  10.202 -28.8%2)
A=|1.9% 52816 62414 |=
\26.821 36816 57254
100 (G, )
A= (le h, 53) 0 a,
\ 0 \ds)

Since there are three non-zero values on the cliagonal A
is invertible

From Todd Will



BUT, one of the singular values is much, much less than

the others
(93477 10202 -28.8%2)
A=1.9% 52816 62414 | =
\26.821 36816 57234 |
(100
A=(hh )| 0
\ O

So the matrix is “almost” rank 2

(which would be non-invertible)

From Todd Will



From Todd Will

We can also calculate the SVD of A~

A

a d, d,

)

(0.01
0

\ 0

0
0.01
0

0 )
0
5000
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S0 now we can see what haPPenecl
(why the two answers were so different)
Let g be the first version of b
Let 4’ be the second version of b (to 0.1)

ATly-A"ly| = ‘A‘l(y -y') | =
001 0 0o \(h

(@ aa,)| o 0o 0 ||h|(y-y)
L0 0 5000/ \h,,

So A stretches vectors parallel to /7} ancl 3s l’)g a factor
ot 5000.

From Todd Will



7/ Returning to GPS \\ \\\




We have 4 unknowns (x%, y,ZK and ™)
And 4 (nonlinear) ecluations
(later we will allow more satellites)
So we can solve for the unknowns



Again, we cannot solve this clirectlg

will solve interativelg 133
1) Assuming a location
2) Linearizing the range equations
%) Use least squares to comPu’ce new (better) location

4) Go back to1 using location from 3

We do this till some conver%i:nce criteria is met (if we’re

luc g)

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”



linearize

So - for one satellite we have

T model + V

ObSCWCd

= P(x,y,z,r) +V

O]DS@FVCCI

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”



inearize

P(x,y,z,r) ~ P(xo,yo,zo ,170) + (x — xo)%

(XO 5Y0 520 ’TO)

oP oP
) (y / yo )@ (XO’yO ’ZO’TO) | (Z [ ZO)a_Z

oP
+ (T — T, )E

(xo Y0 20 ’To) (xo Y0 20 ’To)

oP oP oP oP
P(x,y,z,t)zP td+—A)c+—Ay+—Az+—A1:
computed gx 0y 07 0T



Residual

Difference between observed and calculated

(linearized)
observed 7 P(X,y,Z,T) i ‘7
AP 7 Pobservecl T computed

AP = P(x,y,z,r) +v-—P

comPutecl

oP oP oP oP

AP =P A+ —Ay+—Az+—AT+V-P |
ComPUtC ax ay aZ aT ComPu’ce

oP oP JP oP ]
AP =—Ax+—Ay+—Az+—AT+V
0x dy 0z 0T

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”



So we have the Fo"owing for one satellite

oP oP oP oP il
AP=—Ax+—Ay+—Az+—At+vV
0x Jy 0z 0T

Which we can recast in matrix form

(0P 9P 9P 9P)|Ay| _
ox dy dz 0t)|Az

AP

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
PR



For m satellites (Where m=4)

(P aP'  aP' | aPHIII
0x dy 0z 0T
1) (1)
(AP') | ap2 P2 9P’ aP? | ag \
1
AP ox  Qdy 0z 0T Ay |
AP' |=| oP® oP> oP® 9P’ A |t v
: ox Ay 0z 0T :
NN LTI
\ / m m m m \V /
IP™  9P™ 9P"™ 9P

\ ox 0y 07 0T )

Which is usua"g written as

b = A% +Vv

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”



Calculate the derivatives

AN ) ) ol )

P (=0 (1) 2) (2 () - 2*(1*))

W)= O ) -y ) () -2

o™ (¥*(r%) - ("))

= imilarly £ d
PR F , similarly ror y and z

GPRS

oT" 7f



So we get

/xo_x )’0_)’1 g —X<
g
X=X Yo~V Zp—X
P P P
Xo =X Yo=Y o Zp-Z
L3 L3 L3
Xo =X Yo=Y Z—Z
\  Pn P P

Is function of direction to satellite

Note last column is a constant

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”



Consider some candidate solution x’

Then we can write

v =>b-AX

b are the observations

v hat are the residuals

We would like to find the x’that minimizes the v hat

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”



So the question now is how to find this x’

One way, and the way we will do it

Least Sc]uarcs

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”



Since we have alreaclg done this — we’ll £o fast

Use solution to linearized form of observation ecluations
to write estimated residuals

—

b =b— AR

Varg value of x to minimize

Blewitt, Basics of GPS in “Geodetic APPhcations of GPS”






% =(ATA) " ATh

Assumes
Inverse exists

(m grea’cer than or equal to 4, necessary but not
sufficient condition)

Can have Problems similar to earthcluake |ocatin$ (two
satellites in “same?” direction for examPlc — has ettect of

reclucing rank bg one)




GPS tutorial Signals and Data

Good DOP Intersecting Ranges
FOn ' I3Y |

.o,\\/,@,

An antenna on the roof
would have a good DOP

56

!’xt‘tP://www.unav—micro.com/about_gps.htm



GPS tutorial Signals and Data

Intersecting Ranges

Poor DOP

An antenna 1n a window
would have a poor DOP

57

!’xt‘tP://www.unav—micro.com/about_gps.htm



Elemcntarg ConccPts

Variables:

things that we measure, control, or maniPulatc in
rcscarc%. Tl"lcg differ in many respects, most notably In
the role thcg are gjven in our research and in the type of
measures that can be aPPIiecl to them.

From G. Mattioli



Obscrvational VS. exPerimcntaI research.

Most emPirical research belongs clearly to one of those
two general catcgories.

In observational research we do not (or at least trg not
to) influence any variables but onlg measure them and
look for relations (correlations) between some set of
variables.

In experimental research, we maniPulatc some variables
and then measure the effects of this maniPulation on
other variables.

From G. Mattioli



Observational vs. exPerimental research.
DcPenclent VS. inclcPenclcnt variables.

Inc]ePenclent variables are those that are maniPulatccl

whereas dePendent variables are onlg measured or
registcrecl.

From G. Mattioli



Variable Tgpcs and Information Content

Measurement scales.
Variables differ in *how well* tlﬂeg can be measured.

Measurement error involved in every measurement, which
determines the "amount of information” obtained.

Another factor is the variable’s “tch of measurement
scale.“

From G. Mattioli



Variable Tgpes and Information Content

Nominal variables
allow for onlg qualitative classification.

That =3 they can be measured only in terms of whether
the individual items belong to some clistinctivelg different
catcgories, but we cannot quan’ci{g or even rank order
those categories.

TgPical examples of nominal variables are gencler, race,
color, city, etc.

From G. Mattioli



Variable Tchs and Information Content

Ordinal variables
a”ow us to rank order the items we measure

in terms of which has less and which has more of the
c]ualitg rePresented bg the variable, but still thcg do not
allow us to say "how much more.”

A tgPical example of an ordinal variable is the
socioeconomic status of families.

From G. Mattioli



Variable Tgpes and Information Content

Interval variables

a"ow us not onlg to rank order the items that are
measurecl,

but also to &uantifg and compare the sizes of
differences between them.

For example, temPerature, as measured in degrccs
Fahrenhert or Celsius, constitutes an interval scale.

From G. Mattioli



Variable TgPes and Information Content

Ratio variables

are very similar to interval variables;

in addition to all the Propcrties of interval variables,

theg feature an identifiable absolute zero Point, thus
thcg allow for statements such as x is two times more

than y.

'lypical examples of ratio scales are measures of time or
From G. Mattioli SP ace.



Sgs’cematic and Random Errors

Error:

DeFinecl as the digerence between a calculated or
observed value and the “true” value

From G. Mattioli



Systematic and Random Errors

Blunders:
Usua"g aPParen’t

either as obviouslg incorrect data Points or results that
are not reasonablg close to the exPected value.

E:asy to detect
Easyto fix (throw out data).

From G. Mattioli



Sgstema’cic and Random Errors

Sgstematic Errors:

Errors that occur reProducng from Faultg calibration of
ecluiPment or observer bias.

Statistical analgsis In gcncra“g not useful,

but rather corrections must be macle bascc on
cxPerimcntal conditions.

From G. Mattioli



Sgstema’cic and Random Errors

Random Errors:
Errors that result from the Huctuations in observations.

Rccluircs that cxPcrimcnts be rcPcatecl a sufficient
number of time to establish the Precision of
measurement.

(statistics useful here)

From G. Mattioli



Accuracy vs. Precision \ \\\\\\\\\\\\\\\\\
1L




Accuracg vs. Precision

Accuracg: A measure of how close an exPerimental result
is to the true value.

Precision: A measure of how exactlg the resultis

determined. Itis also a measure of how reProclucible the
result is.

PRECISION ACCURACY

From G. Mattioli



Accuracg vs. Precision

Absolute Precision:

indicates the uncertaintg in the same units as the
observation

Relative Precision:

indicates the uncertaintg in terms of a fraction of the
value of the result

From G. Mattioli



Uncertainties

In most cases,

cannot know what the “true” value is unless there is an
inclel:)enclent determination

(J.e. ditferent measurement techniclue) !

From G. Mattioli



Uncertainties

Onlg can consider estimates of the error-.

DiscrePancg is the difference between two or more
observations. This gives rise to unceﬁ:aintg.

Probable Error:
Indicates the magnitudc of the error we estimate to have
made in the measurements.
Means that if we make a measurement that we will be
wrong by that amount “on average”.

From G. Mattioli



Parent vs. Sample PoPulations

Parent PoPulation:

HgPothetical Probabilitg distribution if we were to make
an infinite number of measurements of some variable or
set of variables.

From G. Mattioli



Parent vs. Sample PoPulations

Sample Population:
Ac’tual set of exl:)erimental observations or
measurements of some variable or set of variables.
In General:

(Parent Parameter) = limit (Sample Parameter)

When the number of observations, N, goes to in{:inity.

From G. Mattioli



some univariate statistical terms:

mode:
value that occurs most Frecluentlg in a distribution
(usua"g the highest point of curve)
may have more than one mode

(eg. Bimodal - example later)
in a dataset

From G. Mattioli



some univariate statistical terms:
median:

value miclwaﬂ in the Frec]uency distribution
_..half the area under the curve is to right and other to

left

mean:

arithmetic avcrage
...sum of all observations divided y # of observations

the meanis a poor measure of central tenclcncg in
skewed distributions

From G. Mattioli



Average, mean or exPec’ced value for random variable



some univariate statistical terms:

range: measure of clispersion about mean

(maximum minus minimum)

when max and min are unusual valucs, range may be
a mislcading measure of clisPersion

From G. Mattioli



Histogram
useful graplﬁic rePresentation of information content of
sample or Parent Population

Histograms of Symmetric and Skewed Distributions

Symmetric Skewed

: et 1 e many statistical tests
3 5 | |

| I |
- Normal ]iistribution ® Negatively Skiwed I:Disiribution Va l U Cs a re n O rm a l lﬂ

s ot distributed

|
g | |
% Mean % : l :
= Median = | : | / h l
. o i A not a ways the case!
1
o Multimodal Distribution Positively Skewed Distribution

examine data Prior
to Proccsslhg

an
e Median
|

(]
Uniform Distribution,
no mode exists

from: Jensen, 1996

From G. Mattioli



Distribution vs. Samplc Size

F Sample Size of 2 5T06: Histegram

THE SAMPLING DISTRIBUTION BECOMES NORMAL AS THE SAMPLE SIZE INCREASES

- - aa - - - v v v

X6 SAMPLING DISTRIBUTION
OF THE MEAN

P 3 2 FOR SAMPLE SUE 7

724

=

Number of Observations
g B8

&

'

7

R S ——

<=7 (718 (1522] 2230) A037) (3744) (4452) 5259| 598686) >68
Sample Means (n=2)

http:/ '/dhm.mstu.edu.ru/ e_librarg/ statistica/textbook/ g,raPhics/



Deviations

The clcviation, 0, of any measurement x; from the mean m
of the Parent distribution is defined as the difference
between x,and m

From G. Mattioli



Deviations

Average deviation, «,

is defined as the average of the magnitudes
of the deviations,

Magnitudes given by the absolute value of the
deviations.
&
o =lim—

xz'_//“

From G. Mattioli



Root mean square

1 n
RMS = lim J—Exf

n i=1

Of deviations or residuals — standard deviation

1 n
o=lim.[— ) §°
im | 35




Sample Mean and Standard Deviation

For a series of nobservations, the most Probable
estimate of the mean pis the average of the
observations.

We refer to this as the sample mean to dis’tinguish it from
the Parent mean .

1 n

From G. Mattioli



Sample Mean and Standard Deviation

Our best estimate of the standard deviation o would be
from:

n

1 © |
0" =lim 3 (x, ~ 1) = (x, - 10)
i=1

n i=1

But we cannot know the true parent mean U SO the best
estimate of the sample variance and standard deviation
WOUICI DE:

n

o =5 = : 12(3@ - 3_6)2 Sample Variance

From G. Mattioli



Some other forms to write variance

o -t - 60 - g8

if have Probability for each X;

o = VAR(x Epl .= F

n



The standard deviation

1 >
0 = |VAR(x) = J D) Eéxi

(Normalization decreased from Nto (N=1) for the
“sample” variance, as p is used in the calculation)

Fora scalar random variable or measurement with a
Normal (Gaussian) distribution,

the Probabilitg of being within one o of the mean is 68.3%



small std dev:

observations are clustered ‘cightlg about the mean

Iargc std dev:

observations are scattered wiclelg about the mean



Distributions

Binomial Distribution: Allows us to define the
Probabilit » P> of observing Xa slaeci{:ic combination of n
items, wl‘lic?LL is derived from the fundamental formulas for

the Permu’tations and combinations.

Permutations: Enumerate the number of Permutations,
Pm(n,x), of coin ﬂips, when we Pick up the coins one at a
time from a collection of n coins and put X of them into

the “heads” box.

!
P (n,x)= i

m

From G. Mattioli



Combinations:

Relates to ’the number of ways we can combine the
various Pcrmutations enumerated above from our coin
Hil:) exPeriment.

Thus the number of combinations is equal to the number
of Permutations divided bg the clegeneracy factor x! of
the Permutations (number indistinguishable
Permutations) .

C(n,x)=Pm(n’x)= n! =(n)

x! x!(n - x)!

From G. Mattioli



Probabilitg and the Binomial Distribution

Coin Toss ExPcriment: It p IS

the Probabilitg of success

(Ianding heads up)
Is hot necessarilg eclual to the pro abilitg g= ] - p for

failure
(lancling tails uP) because the coins may be loPsiclecl!

The Probabilitg foreach of t
heads u

he combinations of x coins

> and

n -x coins tails up IS cqual to P"q”"".

The binomial distribution can be used to calculate the

Probabilitg:

From G. Mattioli



Probabilitg and the Binomial Distribution

The binomial distribution can be used to calculate the
Probabilitg of x “successes
in n tries where the individual Probabliligt IS p:

n n!

)p I x!(n—x)!p i

P, (nx.p) - (x

The coefficients P (x,n, P) are closely related to the
binomial theorem for the exPansion of a power of a sum

(psq) - i(z)pan_x

From G. Mattioli



Mean and Variance: Binomial Distribution

M:

Tl"lC average O{: thC number O{: SUCCESSES Wl" aPPI”OaCh a

mean value p

givcn ]:)3 the Probabilitg for success of each item p times

the number of items.

For the coin toss exPerimcnt PzI/Z, half the coins should

From G. Mattioli

|ancl heacls UP on average.



Mean and Variance: Binomial Distribution

The standard deviation is

(x T M)2 x!<nn!_ ») p'(l-p)

If the the Probabilitﬁfor a sir}ge success p IS eclual to the
>roba ili’tg for failure quzl/z,

= np(l - p)

the final distribution is symmetric about the mean,

and ITIOCIC and median eclual thC mecan.

The variance, 02 = m/2.

From G. Mattioli



Other Probabilitg Distributions: SPecial Cases

Poisson Distribution: Approximation to binomial
distribution for sPecial case when average number of

SUCCESSES 1S very much smaller th
u<<n because

4

an possi le number j.e.
D <<,

Distribution is NOT necessarilg sgmmetric! Data are

usua"y bounded on one sid

e and not the other.

Advantage o% = m.

n=1.67
o=1.29

From G. Mattioli



Gaussian or Normal Error Distribution

Gaussian Distribution: Most important Probabilitg
distribution in the statisi(::lical ana 3si5 of exPerimentaI
ata.

Functional form is rela’civelg simple and the resultant
distribution is reasonable.

04

0.3 —

J

& P .E.

P.E. = 067450 = 0\2865 I’

T=23540/ I
— >

o N

From G. Mattioli




Gaussian or Normal Error Distribution

Another sPccial Iimiting case of binomial distribution
where the number of PossiHe different observations, n,
becomes in{:initelg |arge gielcling np >> 1.

Most Probable estimate of the mean u from a random
sample of observations is the average of those
observations!

J

P.E. = 067450 = 0\2865 I’

o N

T=23540/ I
— >

& P.E.

From G. Mattioli




Gaussian or Normal Error Distribution

Probable Error (PE) is defined as the absolute value of
the deviation such that P_. of the deviation of any

random o
Tangent along the stee

bservation is < Y2

best Portiono{: the Prol:)abi lity

curve intersects at e 2 and intersects x axis at the Points
X=dt20

04

0.3 — P.E.
T=23540/ 1 ° X"
o B 0

—PT & P.E.

= (0,7456 = 02865 T’

From G. Mattioli



For gaussian I normal error distributions:
Total area underneath curve is 1.00 (100%)

68.27% of observations lie within £ 1 std dev of mean
95%  of observations lie within + 2 std dev of mean
99%  of observations lie within £+ % std dev of mean

Variance, standard clevia’cion, Probable error, mean, and
weightecl root mean square error are commonly used
statistical terms in gcodesg.

compare (rather than attach signiﬁcancc to numerical
value)

From G. Mattioli



