
Earth Science Applications of Space Based Geodesy

DES-7355

Tu-Th 9:40-11:05

Seminar Room in 3892 Central Ave. (Long building)

Bob Smalley

Office: 3892 Central Ave, Room 103

678-4929

Office Hours – Wed 14:00-16:00 or if I’m in my office.

http://www.ceri.memphis.edu/people/smalley/ESCI7355/ESCI_7355_Applications_of_Space_Based_Geodesy.html

Class 22

1

2

DEFNODE

DEFNODE is a Fortran program to model elastic
lithospheric block rotations and strains, and

locking or coseismic slip on block-bounding faults.

3

Quote of the day.

I make no guarantees whatsoever that this program will
do what you want it to

do or what you think it is doing.

4

The program can solve for

• interseismic plate locking or coseismic slip distribution
on faults,

• block (plate) angular velocities,

• uniform strain rates within blocks, and

• rotation of GPS velocity solutions relative to reference
frame.

5

Data to constrain the models include

• GPS vectors,

• surface uplifts,

• earthquake slip vectors,

• spreading rates,

• rotation rates,

• fault slip rates,

• transform azimuths,

• surface strain rates, and

• surface tilt rates.

6

RUNNING:

% defnode

the program will ask for the control file name and the
model name.

Enter the control file name as a command line argument:

% defnode control_file_name

Enter model name as second command line argument:

% defnode control_file_name model_name

Runtime messages are all output to the screen. Many
files are generated.

7

Directories:

All output will be put into a directory specified by the
MO: (model) command.

The program also produces a directory called 'gfs' (or a
user-assigned directory) to store the Green's

function files.

8

Poles (angular velocities) and blocks:

You can specify many poles and many blocks

(dimensioned with MAX_poles, MAX_blocks).

There is NOT a one-one correspondence

between poles and blocks.

More than one block can be assigned the same pole (ie,
the blocks rotate together) but each block can be

assigned only one pole.

Poles can be specified as

(lat,lon,omega) or by their Cartesian components (Wx,

Wy, Wz).

9

Strain rates and blocks:

The strain rate tensors (SRT) for the blocks are input in
a similar way as the rotation poles.

Each SRT is assigned an index (integer) and blocks are
assigned a SRT index.

As with poles, more than one block can be assigned to a
single SRT.

Velocities are estimated from the SRT using the block's
centroid as origin (default) or a user-assigned origin; if

multiple blocks use the same SRT assign an origin for this
SRT (see ST: option)

10

Faults and blocks:

Faults along which backslip is applied are specified and
must coincide point-for-point at the surface with block

boundary polygons.

However, not all sections of block boundaries have to be
specified as a fault.

If the boundary is not specified as a fault it is treated as
free-slipping and will not produce any elastic strain (ie,

there will be a step in velocity across the boundary).

By specifying no faults, you can solve for the block
rotations alone.

11

Fault nodes:

Fault surfaces are specified in 3 dimensions by nodes
which are given by their long and lat (in degrees) and

depth (in km, positive down).

Nodes are placed along depth contours of the faults and
each depth contour has the same number of nodes.

Nodes are numbered in order first along strike, then
down dip.

12

Fault nodes:

Strike is the direction faced if the fault dips off to your

right.

Faults cannot be exactly vertical (90o dip) as the
hangingwall and footwall blocks must be defined.

The fault
geometry at

depth can be
built either by

specifying all the
node

coordinates
individually or by

using the DD:
and ZD: options.

13

Green's functions:

If you are performing an inversion, the program uses unit
response (Green's) functions (GFs) for the elastic
deformation part of the problem since the inversion

method (downhill simplex) has to calculate numerous
forward models.

14

Once you have calculated GFs for a particular set of
faults you can use these in inversions without

recalculating them (see option GD:).

The GFs are based on the node geometry, GPS data,
uplift data, strain tensor data, and tilt rate data so if you

change the node positions or ADD data, you need to
re-calculate GFs.

If you REMOVE data, you do not need to recalculate
GFs.

15

If you add GPS vectors, the program will not detect that
and GFs may not be calculated. In this case, re-calculate

all the GFs.

16

The GFs are the responses at the surface observation
points to a unit velocity (or displacement) in the North

and East directions at the central node.

The slip velocity is tapered to zero at all adjacent nodes.

17

Specifying how slip dies off.

18

CONTROL FILE

The program reads the model and all controls from an

control file.

Lines in the control file comprise a keyword section and a
data section.

19

CONTROL FILE

The keyword section starts with a 2-character keyword
(in the first 2 columns) and ends with a colon (:).

Normally only the first 2 characters of the keyword are
used so in general any characters between the 3rd

character and the : are ignored. (Sometimes the third
character specifies a format.)

THE KEYWORD MUST START IN THE FIRST
COLUMN OR THE LINE IS IGNORED.

Case does not matter.

20

The data section of the input line goes from the colon to
the end of the line and its contents depend on the

keyword.

In a few cases the data section comprises multiple lines
(i.e., always BL: and FA:, and sometimes others).

21

For example, the key characters for a fault are 'FA' and
this has two arguments, the fault name and the fault

number, so the following lines are correct:

fa: JavaTrench 1

fault: JT 1

fault (Java trench): JavaTr 1

FA: JT 1

22

It is advisable and good practice to start comment lines
with a space, *, # or some other character outside the

range A - Z (the program has many undocumented
options and you may trigger one by accident).

23

smalley-14:costa_rica_example robertsmalley$ more cr.dfn!
Costa Rica example!

flag to set random number seed to 1 to reproduce test case!
delete from real runs!
fl: +rs1!

name the model!
Model: crc1!

where to store model parameters!
pf: "crc1/pio" 3!

green's function controls!
gd: g1d 4 2 0 1.0 1.0 2000.!

em:!

data from Lundgren et al. 1997, downweight it!
gps data: LUND "lundgren_1997.vec" 1 2 0 0 0 !

data from Norabuena et al. 2003!
gps data: NORA "norabuena_2003.vec" 2 1 0 0 0 !

rotate LUND data into NORA's Carib ref frame!
gi: 1 2!

uplift rates from same!
uplift data: "lundgren_1997.upz" 1 !

24

slip vector data from quakes!
sv data: costa_rica.svs FORE COCO 10!

simulated annealing controls!
sa: 0 40 0.0 1.0 !

grid search controls!
gs: 75 0.1 4 2!

run through inversion twice!
ni: 2!

set flags: set downdip constraint, estimate parameter uncertainties, do forward run at end!
flag: +ddc +cov +for!

solve for pole 3, the forearc!
pi: 3!

interpolate faults with 4km x 4 km grid at end!
in: 4 4!

CARI is reference frame!
re: CARI!

starting poles!
pole COCO-CARI: 2 21.9 -123.1 1.26!
pole FORE-CARI: 3 9.0 273.8 1.55!

profiles to calculate!
pr: 1 273.5 10.0 100 .03 45 30!
pr: 2 274.09 9.36 100 .03 40 30!

25

Blocks ###!

block: CARI 1 !
 9999!
 271.1989 13.3500 !
 273.2309 16.0077 !
 280.5192 10.5942 !
 278.6573 8.1589 !
 276.4709 9.7829 !
 274.8961 10.7273 !
 272.6565 12.2669 !
 271.1989 13.3496 !
 9999 9999!

block: FORE 3 !
9999!
 271.1989 13.3496!
.!
.!
. !

Continue till all blocks defined

26

275.0271 3.4103 !
 9999 9999!

Faults ###!

ft: 1 1!

Fault: MidAmTr 1 !
 7 5 FORE COCO 1 0 0!
 3.00 !
 275.5262 8.5473!
 274.5473 9.0604!
 274.2448 9.2626!
 273.9441 9.4521!
 273.6727 9.7100!
 273.4306 9.9912!
 272.7812 10.9354!
 12.3 !
 275.7426 8.8303!
 273.6500 12.0719!

5 sections of 7 segments

27

node indices for fault 1 !
NNg: 1 7 5!
 1 1 1 1 1 1 1!
 2 3 4 5 6 7 8!
 9 10 11 12 13 14 15 !
16 17 18 19 20 21 22!
 0 0 0 0 0 0 0!

starting phi values corresponding to fault 1 node indices !
NV: 1 1.0 .9 .9 .9 .4 .4 .4 .1 .1 .1!

near vertical fault along arc!
fault: Arc_SS 2!
4 2 CARI FORE 1 0!
0.0!
 278.6573 8.1589 !
 276.4709 9.7829 !
 274.8961 10.7273 !
 272.6565 12.2670 !
zd: 15.0 88.0!

node indices for fault 2 !
this fault will have uniform phi at all nodes!
nn: 2 1 1 1 1 1 1 1 1!

starting phi values corresponding to fault 2 node indices !
nv: 2 1.0!

end:!

28

After running get a directory full of output.

rsmalley-14:crc1 robertsmalley$ ls!
crc1.fault_detail crc1.poles crc1.summary crc1_blk3.gmt ! crc1_model.input !crc1_sa.out!
crc1.moment ! crc1.res crc1.svs crc1_blocks.out !crc1_p01.out ! !loc2_dn.tmp!
crc1.net ! crc1.rot crc1.ups crc1_control.backup !crc1_p02.out ! !loc3_dn.tmp!
crc1.nod ! crc1.slp crc1.vec crc1_flt_atr.gmt !crc1_parameter.tmp !loc_dn.tmp!
crc1.obs ! crc1.str crc1_blk.gmt crc1_lin.gmt ! crc1_pio.tmp ! !pio!
crc1.omr ! crc1.strain crc1_blk2.gmt crc1_mid.vec ! crc1_removed.vec!

29

Red – measurements

Black - model.

30

Example II

Combine GPS and geologic data to estimate Euler pole
for Scotia plate.

31

Results for GPS-Geologic combination for Scotia
Arc.

Use Combination of GPS
(velocity and azimuth, focal

mechanisms (azimuth), Scotia-
South Sandwich spreading.

Smalley et al., 2007

32

First – write a bunch of programs to make the input files.

33

rsmalley-14:defnode_stuff robertsmalley$ more scot.sh!
#!/bin/sh!

EXP=scot!
DEFNINFILE=$EXP.dfn!
#erase stuff in output directories!
#picks up greens functions in gsc and uses them - may be wrong, from previous different run, etc.!
\rm -r $EXP!
\rm -r gsc!
\rm -r $EXP.vec!
touch $EXP.vec!
\rm -r ${EXP}_no_rescerr.vec!
touch ${EXP}_no_rescerr.vec!

DATA=/gaia/home/rsmalley/defnode_stuff!

#make block files from plate boundary data!
#use breakitup to break up scot.pb.gmt file from UT into individual segments!
#use anatwblock.sh, samblock.sh, scotblock.sh, ssandblock.sh to make the block files!
#based on texas plate boundaries -- but too detailed and high freq -- making of!
#blocks also filters and decimates and produces file that can be used to generate!
#faults for defnode pulls out appropriate sections and puts in *.dfn!

antwblock.sh!
samblock.sh!
scotblock.sh!
ssandblock.sh!

Erase old files.

Set up environment variables.

Make blocks.

34

Blocks have to be closed
polygons whose sides are

traversed in order.

You may have to piece them
from pre-existing data files.

rsmalley-14:defnode_stuff robertsmalley$ more antwblock.sh!
#!/bin/sh!
#goes cw around west antarctica block (antarctica - hanging wall - to right)!
OF=newantw.block!
\rm $OF!
touch $OF!
#remove first line (file id) from all files!
echo 9999 >> $OF!
sed '1,1d' scot.pb.gmt.03 | smoothbound 5 | nawk '{print $0, NR}' >> $OF!

#also remove second line (first point) from 2nd through end file to not duplicate points!
sed '1,2d' scot.pb.gmt.04 | smoothbound 15 | nawk '{print $0, NR}' >> $OF!
sed '1,2d' scot.pb.gmt.11 | nawk '{print $0, NR}' >> $OF!
sed '1,2d' scot.pb.gmt.12 | nawk '{print $0, NR}' >> $OF!

#remove header line, reverse it, then delete new first point (or remove last pt !
#before reversal)!
sed '1,1d' scot.pb.gmt.08.orig | sed '1!G;h;$!d' | sed '1,1d' | nawk '{print $0, NR}' >> $OF!
sed '1,1d' scot.pb.gmt.07 | sed '1!G;h;$!d' | sed '1,1d' | nawk '{print $0, NR}' >> $OF!

#also remove second line (first point) from 2nd through end file to not duplicate points!
sed '1,2d' scot.pb.gmt.09 | nawk '{print $0, NR}' >> $OF!

cat samant.pb.gmt >> $OF!
cat antsplit.pb.gmt >> $OF!

#delete last 3 lines of chile ridge file!
sed '$d' /gaia/home/rsmalley/ptect/f066 | sed '$d' | sed '$d' >> $OF!
echo 9999, 9999 >> $OF!

35

Blocks only have to agree with plates, etc. where there is
data and/or you are trying to estimate behavior.

Blocks can’t include pole as interior point – Antarctica
composed of two blocks.

36

if [$selection = everything]!
then!

echo everything!
SAM_SCO_SV=1!
SAN_SCOT_SV=1!
SAM_SAN_SV_tlp=1!
SAM_SAN_SV_mt_tlp=1!
ANT_SAN_SV=1!
ANT_SCO_SV=1!
NSR_SYNTH_SV=1!

SCOT_SAN_SSV=1!
SAN_SCOT_TA_tlp=1!

FAULTS=1!
NSR_SS=1!
SSR_SS=1!
ANT_B_SAM=1!
ANT_B_SCOT=1!

Set flags for what to process.

37

#setup or rerun!
#NEW=0!
#with selection of solution - have to do setup each time!
NEW=1!
if [$NEW = 1]!
then!
echo build ${DEFNINFILE}!
\rm -r ${DEFNINFILE}!
cat ${DEFNINFILE}.form > ${DEFNINFILE}!
#pole 2 scotia, 3 sandwich, 4 antarctica!
#echo pi pole: 2 3 4 >> ${DEFNINFILE}!
echo pi pole: ${POLES} >> ${DEFNINFILE}!

if [$SAM_SCO_SV = 1]!
then!
echo eq slip vector data north scotia ridge paw, tlp and new, SAM_SCO${SIGMA}.slip!
echo sv: SAM_SCO${SIGMA}.slip SCOT SAMR 1 >> ${DEFNINFILE}!
echo sv: tdf1949.slip SCOT SAMR 1 >> ${DEFNINFILE}!
fi!

Build input control file.

Define which poles to find.

Put in geologic data (slip vectors)

38

if [$FAULTS = 1]!
then!
 echo add faults to ${DEFNINFILE}!
#have to only include faults with GPS data!
makedefnodefault filename lowleftlon lowerleftlat upperrightlon upperrightlat faultdep dip faultno!
faultname hangingwall footwall!
cutdefnodefault!
#have to be careful that fault goes correct direction hanging wall to right!
#footwall correct and unique on fault!

#define faults and put in dfn file!

 if [$NSR_SS = 1]!
 then!
#newsam.block goes ccw around sam, bounding block on right - scot - is hangingwall - make go other way, switch!
#ll strike slip on nsr!
#sector of NSR corresponding to Magallanes-Fagnano fault!
 cutdefnodefault newsam.block -75.9962 -51.8223 -60.0172 -53.6962 15. 89. 1 SAMR-SCOT SCOT SAMR >> ${DEFNINFILE}!
Greens function controls - directory name 3 char only, x spacing, down dip spacing, fault id #!
 echo gd: gsc 20 15 1 >> ${DEFNINFILE}!
 fi!

Build input control file.

Put in faults

39

if [$CALCRELVEC = 1]!
then!
 echo specify points to calc velocity A wrt B!

#cant smooth scot-sand boundary easily!
#sctually dont need to smooth to find ponts to determine vel!
#(only need to smooth is want unailaised resampling or azimuth info)!
 if [$SCOT_SAND = 1]!
 then!
 nawk '{ print "fsp: SCOT SAND", $1, $2}' <<END>> ${DEFNINFILE}!
-30.20 -57.39!
-30.32 -57.29!
.!
.!
.!
-29.62 -59.25!
-29.59 -59.52!
END!
 fi!

Build input control file.

Specify types output and positions to calculate it.

40

echo build ${DEFNINFILE} done, now make gps input data file!

#have to remove segment identifiers and duplicate points from the segments!
#the endpoints between adjacent segements are common, and defnode!
#does not want blocks closed!

Build input control file.

Control file done, now work on input data.

41

if [$TDF_C = 1]!
then!
CRESCL=5!
CRESCL=10!
CRESCL=15!
#CRESCL=45!
#use tdf continuous stations - AUTF and PWMS - in plate boundary deforming zone!
CFILES='tdf_gps_unscerr_c_good.vec'!
for cfile in $CFILES!
do!
echo process cfile $cfile rescale errors $CRESCL!
nawk '{print $1, $2, $3, $4, $5*'$CRESCL', $6*'$CRESCL', $7, $8}' ${DATA}/$cfile >> $EXP.vec!
nawk '{print $1, $2, $3, $4, $5, $6, $7, $8}' ${DATA}/$cfile >> ${EXP}_no_rescerr.vec!
done!
fi!

Build input control file.

Prepare GPS files.

Have to rescale errors for defnode, but want to leave as
are for plotting.

42

defnode ${DEFNINFILE} $EXP!
echo done with defnode - make plots!

Build input control file.

Prepare GPS files.

Finally run defnode.

43

1)   Build control file, this includes definition of blocks
(which can be quite complicated)

2)   Prepare various data sets (slip vectors, transform
azimuths, spreading directions and rates, GPS/VLBI/

SLR/etc.).

(have to keep track of which information goes inside
control file – typically geometry, slip, deformation

(stuff not being modeled) – and which goes into data
files – GPS, slip vectors, etc. (stuff being modeled).

3) Run it

44

45

46

47

48

49

50

51

52

53

54

55
Allmendinger et al., 2009

