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(incomplete)


look at


Applications of GPS


in Earth Sciences


carpincho

or 


capybara
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Use the Global Positioning System (GPS) to 
determine accurate positions (order mm) of “high 
stability” geodetic benchmarks over time to determine 
changes in relative positions (order mm/year).
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Principal tenet/Central assumption of


plate tectonics:


plate (interiors) are rigid
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- Observation –


Plates move with respect to one another


- Secondary tenet/assumption –


Interaction limited to (narrow) plate boundary zones


where deformation is allowed




6


Plate motions ---  NUVEL vs GPS


NUVEL – geologic


Spreading rate and orientation (Myr ave)

Transform fault orientation (no rate info, Myr ave)


Earthquake Focal mechanism (problem with slip 
partitioning, 30 yr ave - actual)


GPS – non-geologic


Measures relative movement (20 yr ave – actual)

Can’t test (yet) plate stability assumption
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THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions

Richard G. Gordon

Annual Review of Earth and Planetary Sciences 
Vol. 26: 615-642 (Volume publication date May 1998)  
(doi:10.1146/annurev.earth.26.1.615) 


Strain rates in


stable plate interiors -


bounded between


10-12 -10-11 year and 10-10 year. 
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Unpublished 2003 compilation provided by R.D. Müller 
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http://owlnet.rice.edu/~esci101, looks like NUVEL


NUVEL picture


Relative velocities across boundaries
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NUVEL picture


A number of plates missing (e.g. Scotia) because don’t 
have spreading boundaries
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First big contribution of space based geodesy


Motion of plates


(note –


plates 


- have to be “pre-defined”


– are not part of how velocities of sites are computed,


- selected based on “rigidity” at level of GPS precision


Also VLBI, SLR, DORIS – space based, not limited to 
GPS - results)
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GPS picture – now motion with respect to some 
“absolute reference frame (ITRF), does not know about 

“plates”
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two distinct reference systems:


1.  space-fixed (quasi) inertial system

(Conventional Inertial System CIS)

(Astronomy, VLBI in this system)


ITRF


2. Earth-fixed terrestrial system

(Conventional Terrestrial System CTS)


-----------------

Both systems use center of earth and earth rotation in 

definition and realization
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Velocities of IGS global tracking GPS sites in ITRF.
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Small “circles” for European and N. American poles. 
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Velocities are tangent to small circles (look like windshield wiper streaks).
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Gridded view of plate velocities in ITRF

(approximates NUVEL, but does not “look like” NUVEL because NUVEL shows relative motions)
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Rotation of 
N. America 

about Euler 
pole.
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€ 

 
V =
 
R ×
 
X 

Solving for Euler poles


Forward problem


Given rotation pole, R, for movement of spherical shell 
on surface of sphere


We can find the velocity of a point, X, on that shell from


(review)
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€ 

 
V =Ω

 
X 

  

€ 

 
V =
 
R ×
 
X 

€ 

Ω =

0 −rz ry
rz 0 −rx
−ry rx 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

We can write this in matrix form


(in Cartesian coordinates)


as


Where Ω is the rotation matrix


(note – this is for infinitesimal, not finite rotations)
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So – now we solve this


Hopefully with more data than is absolutely necessary 
using Least Squares


  

€ 

 
V =Ω

 
X 

(this is the remark you find in most papers –


Now we solve this by Least Squares)
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€ 

 
V =Ω

 
X 

But


known
 known
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€ 

 
V =Ω

 
X 

And


we want to find


This is how we would set the problem up


if we know V and Ω and wanted to find X
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€ 

Vx

Vy

Vz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0 −rz ry
rz 0 −rx
−ry rx 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

X
Y
Z

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

Vx = −rzY + ryZ
Vy = rzX − rxZ
VZ = −ryX + rxY

So we have to recast the expression to put the knowns 
and unknowns into the correct functional relationship.


Start by multiplying it out
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€ 

Vx = −rzY + ryZ
Vy = rzX − rxZ
VZ = −ryX + rxY

€ 

Vx

Vy

Vz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0 Z −Y
−Z 0 X
Y −X 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Now rearrange into the form


  

€ 

 
b = A x 

Where b and A are known


obtaining the following
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€ 

Vx

Vy

Vz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0 Z −Y
−Z 0 X
Y −X 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

  

€ 

 
V = X

 
R 

So now we have a form that expresses the relationship 
between the two vectors


V and R


With the “funny” matrix X.
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We have


3 equations and

3 unknowns


So we should be able to solve this

(unfortunately not!)


€ 

Vx

Vy

Vz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0 Z −Y
−Z 0 X
Y −X 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

  

€ 

 
V = X

 
R 
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You can see this two ways


1 - The matrix is singular (the determinant is zero)


2 - Geometrically, the velocity vector is tangent to a small 
circle about the rotation pole –


There are an infinite number of small circles (defined by 
a rotation pole) to which a single vector is tangent


€ 

Vx

Vy

Vz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0 Z −Y
−Z 0 X
Y −X 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

  

€ 

 
V = X

 
R 
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So there are an infinite number of solutions to this 
expression.


Can we fix this by adding a second data point?

(another X , where V is known)


€ 

Vx

Vy

Vz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0 Z −Y
−Z 0 X
Y −X 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

  

€ 

 
V = X

 
R 
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Yes – or we would not have asked!
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€ 

 
V = X

 
R 

€ 

Vx1

Vy1

Vz1
Vx2

Vy2

Vz2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

=

0 Z1 −Y1
−Z1 0 X1
Y1 −X1 0
0 Z2 −Y2
−Z2 0 X2

Y2 −X2 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Following the lead from before in terms of the 
relationship between V and R we can write


Where V is now the “funny” thing on the left.
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Geometrically


Given two points we now have


Two tangents to the same small circle


And


(assuming they are not incompatible – i.e contradictory 
resulting in no solution.)


we can find a single (actually there is a 180° ambiguity)


Euler pole
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€ 

 
V = X

 
R 

  

€ 

Vx1

Vy1

Vz1
Vx2

Vy2

Vz2

Vxn

Vyn

Vzn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

=

0 Z1 −Y1
−Z1 0 X1
Y1 −X1 0
0 Z2 −Y2
−Z2 0 X2

Y2 −X2 0


0 Zn −Yn
−Zn 0 Xn

Yn −Xn 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

For n data points we obtain


Which we can solve by Least Squares
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€ 

y1
y2
y3

yN

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

x1 1
x2 1
x3 1
 
xN 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 
m
b
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

        y =Gm

We actually saw this earlier when we developed the Least 
Squares method and wrote y=mx+b as


Where

y is the data vector (known)


m is the model vector (unknown parameters, what we 
want)


G is the “model” (known)
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
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⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
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Y1 −X1 0
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Y2 −X2 0


0 Zn −Yn
−Zn 0 Xn

Yn −Xn 0

⎛ 
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⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
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ry
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⎟ 
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 
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⎛ 
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⎜ 
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⎟ ⎟ 

 
m
b
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

Pretend leftmost thing is “regular” vector and solve same 
way as linear least squares


  

€ 

 m = GTG( )−1GT
 
d 

  

€ 

 y = G  m 

  

€ 

 
R = XT X( )−1XT  V 
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Example: Nazca-South America Euler pole


Data plotted in South America reference frame

(points on South America plate have zero – or near zero 

– velocities.)

Kendrick et al, 2003
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Example: Nazca-South America Euler pole (relative)


Also plotted in

Oblique Mercator projection


about Nazca-South America Euler pole

Kendrick et al, 2003
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Kendrick et al, 2003


Question – is Easter Island on “stable” Nazca Plate


We think not.


Only 4 points total on Nazca 
Plate (no other islands!)


Galapagos and Easter Island 
part of IGS (continuous)


FLIX and RBSN campaign
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Complications to simple model in plate interiors


Horizontal deformations associated with post glacial 
rebound


(problem for N. America and Eurasia)


  

€ 

 
V =Ω

 
X +γ

 
V pgr
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Other effects


Other causes horizontal movement/deformation 
(tectonics, changes in EOP?)


Most vertical movements – tidal, atmospheric, etc. , as in 
case of PGR - have some “cross talk” to horizontal


    

€ 

 
V =Ω

 
X +

 
V i

geologic effects

i
∑
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Predicted horizontal velocities in northern Eurasia from 
PGR


(No velocity scale! Largest are order 3 mm/yr away from center of ice load, figure does not seem to agree 

with discussion in paper)

http://www.epncb.oma.be/papers/euref02/platerotation.pdf International Association of Geodesy / Section I – Positioning; Subcommission for Europe (EUREF) , 
Publication No. 12 , Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Ponta Delgada 5-8 June 2002. 
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Results for Eurasia


Site velocities plotted in oblique Mercator projection


(should be horizontal)


http://www.epncb.oma.be/papers/euref02/platerotation.pdf International Association of Geodesy / Section I – Positioning; Subcommission for Europe (EUREF) , 
Publication No. 12 , Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Ponta Delgada 5-8 June 2002. 




44


For North America


Stable North America Reference Frame (SNARF)


Over 300 continuous GPS sites available in Central and 
Eastern US (and N. America)


(unfortunately most are garbage)
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Gan and Prescott, GRL, 2001


Analysis of CORS plus other continuous GPS data for 
intraplate deformation
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Gan and Prescott, GRL, 2001


Contoured (interpolated) velocity field

(ready for tectonic interpretation!)
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•  What are PBO reference frame needs?

•  How can we meet those needs?


PBO Needs
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NUVEL-1A & GPS differences


Rotation rates of


- India, Arabian and Nubian plates wrt Eurasia are


30, 13 and 50% slower


- Nazca-South America 17% slower


- Caribbean-North America 76% faster


than NUVEL-1A

Kreemer, 2003
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GPS picture – Scotia Plate missing (also missing from 
NUVEL-1, “included, but not constrained in NUVEL-1A)
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More things to do with GPS


Deformation in plate boundary zones




51


( other main assumption of plate tectonics) 


Narrowness of plate boundaries


contradicted by many observations,


in both continents and oceans.


Some diffuse plate boundaries exceed dimensions of 
1000 km on a side.


Diffuse plate boundaries cover  15% of Earth's surface.


THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions

Richard G. Gordon

Annual Review of Earth and Planetary Sciences 
Vol. 26: 615-642 (Volume publication date May 1998)  
(doi:10.1146/annurev.earth.26.1.615) 
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Diffuse plate boundaries


Maximum speed (relative) across diffuse plate 
boundaries 


2 to  15 mm/year


Strain rates in diffuse plate boundaries 

as high as  10-8 year


25 times higher than upper bound on strain rates of 
stable plate interiors


600 times lower than lowest strain rates across typical 
narrow plate boundaries. 


THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions

Richard G. Gordon

Annual Review of Earth and Planetary Sciences, Vol. 26: 615-642 (Volume publication date May 1998) (doi:10.1146/annurev.earth.26.1.615) 
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“Color topographic” plot of second invariant of strain 
rate tensor. Quantified version of previous figure.


Shows how fast the deforming regions are straining. 
(Red fastest, blue slowest)
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56
€ 

ui = ti +
∂ui
∂X j

X j = ti +DijX j = ti + Eij +Wij( )X j

Eij =
1
2
Dij +Dji( )

Wij =
1
2
Dij −Dji( )

Determining


Strain or strain rate from


Displacement or velocity field


Strain (symmetric) and 
Rotation (anti-symmetris) 

tensors


Deformation tensor
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€ 

ui = ti +DijX j

ux
uy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

tx
ty

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ +

dxx dxy
dyx dyy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
x
y
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

Write it out


Again – this is “wrong way around”


We know

u and x


and want

t and dij.


Deformation tensor not symmetric, have to keep dxy and 
dyx.
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€ 

ui = ti +DijX j

ux
uy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

tx
ty

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ +

dxx dxy
dyx dyy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
x
y
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

ux
uy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1 0 x y 0 0
0 1 0 0 x y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

tx
ty
dxx
dxy
dyx
dyy

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

So rearrange it


Now we have 6 unknowns and 2 equations
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€ 

ux1
uy1
ux2
uy2
ux3
uy3

uxn
uyn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

=

1 0 x1 y1 0 0
0 1 0 0 x1 y1
1 0 x2 y2 0 0
0 1 0 0 x2 y2
1 0 x3 y3 0 0
0 1 0 0 x3 y3
     
1 0 xn yn 0 0
0 1 0 0 xn yn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

tx
ty
dxx
dxy
dyx
dyy

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

So we need at least 3 data points

That will give us 6 data


And again – the more the merrier – do least squares.
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For strain rate


Take time derivative of all terms.


But be careful


Strain rate tensor


is NOT


time derivative of strain tensor.
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Spatial (Eulerian) and Material (Lagrangian) 
Coordinates


and the 


Material Derivative


Spatial description picks out a particular location in 
space, x.


Material description picks out a particular piece of 
continuum material, X.
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€ 

x = x A,t( )                        x A,0( ) = A

  

€ 

A = A x, t( )                        A A,0( ) = A

So we can write


x is the position now (at time t) of the section that was 
initially (at time zero) located at A.


A was the initial position of the particle now at x


  

€ 

x A x, t( ),t[ ] = x                       A x A,t( ),t[ ] = A

This gives by definition
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We can therefore write


  

€ 

f x A,t( ),t[ ] = F A,t( )                      f x, t( ) = F A x, t( ),t[ ]

€ 

∂
∂A

F A,t( ) = f x A,t( ),t[ ] =
∂f
∂x A

∂x
∂A

∂
∂t
F A,t( ) = f x A,t( ),t[ ] =

∂f
∂x A

∂x
∂t

+
∂f
∂t A

Next consider the derivative (use chain rule)
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Define Material Derivative


  

€ 

∂
∂t

F A,t( ) = f x A,t( ),t[ ] =
∂f
∂x A

∂x
∂t

+
∂f
∂t A

DF A,t( )
Dt

=
∂F A,t( )
∂t A =A x,t( )

Df A,t( )
Dt

=
∂f x,t( )
∂t

+ v x,t( ) ∂f x,t( )
∂x

D
 
f 

Dt
=
∂
 
f x,t( )
∂t

+
 v x,t( ) •∇

 
f x,t( )

Vector version
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Example


Consider bar steadily 
moving through a roller 

that thins it


Examine velocity as a function of time of cross section A


A
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Velocity will be 
constant until it 

reaches the roller


At which point it will 
speed up (and get a 

little fatter, but ignore 
that as second order)


After passing through 
the roller, its velocity 
will again be constant


A(t=t1)
 A(t=t2)
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If one looks at a 
particular position, x, 

however the velocity is 
constant in time.


So for any fixed point 
in space


A(t=t1)
 A(t=t2)


v(x1)
 v(x2)


€ 

∂v x, t( )
∂t

= 0

So the acceleration seems 
to be zero


(which we know it is not)
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The problem is that we 
need to compute the 

time rate of change of 
the


material


which is moving 
through space


and deforming


(not rigid body)


A(t=t1)
 A(t=t2)


v(x1)
 v(x2)
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A(t=t1)
 A(t=t2)


v(x1)
 v(x2)


€ 

Df A,t( )
Dt

=
∂f x,t( )
∂t

+ v x,t( ) ∂f x,t( )
∂x

We know acceleration is 
not zero.


Term gives acceleration 
as one


follows the material


through space


(have to consider same 
material at t1 and t2)
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Various names for this derivative


Substantive derivative


Lagrangian derivative


Material derivative


Advective derivative


Total derivative
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GPS and deformation


Now we examine relative movement between sites
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From Rick Allmendinger
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http://www.iris.iris.edu/USArray/EllenMaterial/assets/es_proj_plan_lo.pdf, http://www.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.html


Strain-rate sensitivity thresholds (schematic) as 
functions of period


GPS and INSAR detection thresholds for 10-km 
baselines, assuming 2-mm and 2-cm displacement 

resolution for GPS and INSAR, respectively (horizontal 
only).




74


Strain-rate sensitivity thresholds (schematic) as 
functions of period


Post-seismic deformation (triangles),

slow earthquakes (squares),


long-term aseismic deformation (diamonds),

preseismic transients (circles),


and volcanic strain transients (stars).

http://www.iris.iris.edu/USArray/EllenMaterial/assets/es_proj_plan_lo.pdf, http://www.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.html




75


Study deformation at two levels

-------------


- Kinematics –

describe motions


(Have to do this first)


----------------


- Dynamics –

 relate motions (kinematics) to forces (physics)


(Do through rheology/constitutive relationship/model.

Phenomenological, no first principle prediction)
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


€ 

σ = Kε

Simple rheological models


elastic


ε (σ) 
ε	



σ	
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


Simple rheological models


σ1


σ2


t


ε2 (t)


t


ε1 (t)


ta
 tb


σ	

 ε	



viscous


€ 

σ = µ
dε
dt

= µ ˙ ε 

Apply constant stress, σ, to a viscoelastic material

recorded deformation (strain, ε) as a function of time.


ε increases with time.
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


Simple rheological models


viscous


€ 

σ = µ
dε
dt

= µ ˙ ε 

Maintain constant strain, record load stress needed.

Decreases with time.


Called relaxation.


ε2


t


σ2 (t)


t

σ1 (t)


ta
 tb


ε1


ε	

 σ	





79
http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


Kelvin rheology


€ 

σ =σ1 +σ2

ε = ε1 = ε 2

σ = Kε + µ ˙ ε 

Handles creep and recovery 
fairly well


Does not account for relaxation


viscoelastic
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


€ 

σ =σ1 =σ2

ε = ε1 +ε 2

˙ ε = σ
µ

+
˙ σ 
k

Maxwell rheology


Handles creep badly 
(unbounded)


Handles recovery badly (elastic 
only, instantaneous)


Accounts for relaxation fairly 
well


viscoelastic
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 


Standard linear/Zener

(not unique)


Stress – equal among components in series


Total strain – sum all components in series


Strain – equal among components in parallel


Total stress – total of all components in parallel


viscoelastic


Spring in series 
with Kelvin


Spring in parallel 
with Maxwell
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 


Standard linear/Zener

viscoelastic


Instantaneous elastic strain when stress applied

Strain creeps towards limit under constant stress

Stress relaxes towards limit under constant strain


Instantaneous elastic recovery when strain removed

Followed by gradual recovery to zero strain
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 


Standard linear/Zener

viscoelastic


Two time constants


- Creep/recovery under 
constant stress


- Relaxation under constant 
strain
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http://www.dow.com/styron/design/guide/modeling.htm


Can make arbitrarily 
complicated to match 

many deformation/
strain/time


relationships
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Three types faults and plate boundaries

-----------------------


- Faults  -


Strike-slip

Thrust

Normal


---------------------------


- Plate Boundary -


Strike-slip

Convergent

Divergent
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How to model


-------------------


Elastic


Viscoelastic


----------------------


Half space


Layers


Inhomogeneous
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2-D model for strain across strike-slip fault in elastic half 
space.


 Fault is locked from surface to depth D, then free to 
infinity. 


Far-field displacement, V, applied. 
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w(x) is the equilibrium displacement parallel to y at 
position x.


|w| is 50% max at x/D=.93; 63% at x/D=1.47 & 90% at x/
D=6.3
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Effect of fault dip.


The fault is locked 
from the surface to 

a depth D (not a 
down dip length of 

D). 


The fault is free 
from this depth to 

infinity.
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Surface 
deformation pattern 

is SAME as for 
vertical fault, but 

centered over down 
dip end of dipping 

fault.


Dip estimation from 
center of 

deformation pattern 
to surface trace and 

locking depth.
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92




93
Meade and Hager, 2005


Interseismic velocities in southern California from GPS
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Fault parallel velocities for northern and southern 
“swaths”.


Total change in velocity ~42mm/yr on both.

Meade and Hager, 2005
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Meade and Hager, 2005


Residual (observed-model) velocities for block fault 
model (faults in grey)
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Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.


  

€ 

 
V  r ( ) =Ω

 r ( ) ×  r + G • sf
f =1

F

∑

Ω  is the angular velocity vector


effect of interseismic strain accumulation is given by an 
elastic Green's function G


response to backslip distribution, s, on each of, f, faults.


Modeling velocities in California
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Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.


In general, the model can accommodate zones of 
distributed horizontal deformation if Ω varies within the 

zones


latter terms can account both for the Earth's sphericity 
and viscoelastic response of the lower crust and upper 

mantle.


  

€ 

 
V  r ( ) =Ω

 r ( ) ×  r + G • sf
f =1

F

∑
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Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.


€ 

G • sf
f =1

F

∑ →−
a
π

Δω f sinφ f
f =1

F

∑ tan−1
d f

a φ − φ f( )
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

Where

a is the Earth radius


distance from each fault located at φf is a(φ-φf).


Each fault has deep-slip rate

aΔωfsinφf, 


where Δωf is the difference in angular velocity rates on 
either side of the fault. 



