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Covariance and Cofactor matrix in GPS

If observations had no errors and the model was perfect 
then the estimations from

  

! 

ˆ x = AT A( )"1
AT
! 
b 

Would be perfect
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Errors, ν, in the original observations b will map into 
errors νx in the estimates of x and this mapping will take 

the same form as the estimation

! x = ATA( )
!1
AT !!

  

! 

ˆ x +"x( ) = AT A( )#1
AT
! 
b + ! " ( )

  

! 

ˆ x = AT A( )"1
AT
! 
b 
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If we have an expected (a priori) value for the error in the 
data, σ, we can compute the expected error in the 

parameters

Consider the covariance matrix

and for this discussion suppose that the observations 
are uncorrelated (covariance matrix is therefore 

diagonal)

! 

Cii = E " i
2( ) =# i

2

C = E ""T( )
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! 

Cii ="  2I

Assume further that we can characterize the error in the 
observations by a single number, σ.

  

! 

Cx = E "x"x
T( ) = E AT A( )#1AT ! " ( ) AT A( )#1AT ! " ( )

T$ 

% 
& 

' 

( 
) 

Cx = E AT A( )#1AT ! " "T A AT A( )#1( )
Cx = AT A( )#1AT E ! " "T( )A AT A( )#1

Cx = AT A( )#1AT* 2IA AT A( )#1

Cx =* 2 AT A( )#1 AT A( ) AT A( )#1

Cx =* 2 AT A( )#1

then



6

    

! 

Cx ="  2 AT A( )#1

! 
$ x = AT A( )#1

AT ! $ 

ˆ x = AT A( )#1
AT
! 
b 

Expected covariance is σ 2 (a number) times cofactor 
matrix, compare to

Covariance or cofactor matrix

! 

AT A( )"1
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Interpretation of covariance

  

! 

Cx ="  2 AT A( )#1

Variance of measurements

We saw before that A is 
dependent on the 

“direction” from antenna to 
satellite – so it is a function 

of the geometry

Measurement errors may 
be independent (our 
assumption – why we 

could factor out constant 
σ 2 )

But total effect, after Least Squares, can be non-
diagonal.
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! 

AT A( )"1

Since A is function of geometry only, the cofactor matrix 
is also a function of geometry only.

Can use cofactor matrix to quantify the relative strength 
of the geometry.

Also relates measurement errors to expected errors in 
position estimations
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In the old days,

before the full constellation of satellites was flying,

one had to plan – design – the GPS surveying sessions 
based on the (changing) geometry.



A is therefore called the “design” matrix



Don’t have to worry about this anymore

(most of the time).
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Look at full covariance matrix

  

! 

            Cx ="  2 AT A( )#1

Cx ="  2

"x
 2 "xy "xz "x$

"yx "y
 2 "yz "y$

"zx "zy "z
 2  "z$

"$x "$y "$z "$
 2

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

                    "ij =" ji

Off diagonal elements indicate degree of correlation 
between parameters.
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Correlation coefficient

! 

"ij =
# ij

# i
2# j

2

Depends only on cofactor matrix

Independent of observation variance (the σ 2 ’s cancel 
out)

+1 perfect correlation – what does it mean – the two 
parameters behave practically identically (and are not 

independent?!).

0 – no correlation, independent

-1 perfect anti-correlation – practically opposites (and 
not independent?!).
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So far all well and good –

but Cartesian coordinates are not the most useful.



We usually need estimates of horizontal and vertical 
positions and velocities on earth (ellipsoid?).



We also need error estimates on the position and 
velocity.



Since the errors are a function of the geometry only, one 
might expect that the vertical errors are larger than the 

horizontal errors.
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How do we find the covariance / cofactor matrices in the 
local (north, east, up) coordinate system?

Have to transform the matrix

from its representation in one coordinate system

to its representation in another

using the rules of error propagation.
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First how do we transform a small relative vector in 

Cartesian coordinates (u,v,w) 

to local topocentric coordinates (n,e,u)?

    

! 

                            " 
! 
L = G" 

! 
X 

" n
" e
" u

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=

)sin*cos+ )sin*sin+ cos*
)sin+ cos+ 0

cos*cos+ cos*sin+ sin*

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
 
" x
" y
" z

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

Where φ and λ are the lat and long of the location 
(usually on the surface of the earth) respectively
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Errors (small magnitude vectors) transform the same way

    

! 

! 
" L =G ! " x

Why?

!
!
L =G!

!
X

G(!
!
X +
!
! x ) =G!

!
X +G

!
! x = !

!
L +G

!
! x = !

!
L +
!
!L

Using linearity
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Errors (small magnitude vectors) transform the same way

    

! 

! 
" L =G ! " x

Now – how does the covariance

  

! 

C = E ! " 
! 
" T( )

Transform?

Plug in – get

“law of propagation of errors”
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CL = E
!
!L
!
!L
T( )

CL = E G
!
! x G

!
! x( )T( )

CL = E G
!
! x
!
! x
TGT( )

CL =GE
!
! x
!
! x
T( )GT

CL =GCxG
T

law of propagation of errors

(does this look familiar?)
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! 

CL = E ! " L
! 
" L
T( )

CL = E G ! " x G
! 
" x( )T( )

CL = E G ! " x
! 
" x
TGT( )

CL =GE ! " x
! 
" x
T( )GT

CL =GCxG
T

law of propagation of errors

This is a general result for affine transformations 
(multiplication of a column vector by any rectangular 

matrix)

(does this look familiar?)

(it better -- transforming tensors!!)
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An affine transformation is any transformation that 
preserves 


collinearity

(i.e., all points lying on a line initially still lie on a line after 
transformation)


and ratios of distances

(e.g., the midpoint of a line segment remains the midpoint 
after transformation). 

http://mathworld.wolfram.com/AffineTransformation.html



20http://mathworld.wolfram.com/AffineTransformation.html

Geometric contraction, expansion, dilation, reflection, 
rotation, shear, similarity transformations, spiral 

similarities, and translation


are all affine transformations, 
as are their combinations.





In general, an affine transformation is a composition of


rotations, translations, dilations, and shears.


While an affine transformation preserves proportions on 
lines, it does not necessarily preserve angles or lengths. 
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Look at full covariance matrix

(actually only the spatial part)

  

! 

       Cx ="  2 AT A( )#1

CL ="  2
"n

 2 "ne "nh

"en "e
 2 "eh

"hn "he "h
 2

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

Can use this to plot error ellipses on a map (horizontal 
plane).
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Error estimators –



Remember the expression for the RMS in 2-D from 
before

  

! 

DRMS = "x
 2 +"y

 2( )
1
2

We can now apply this to the covariance matrix
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Error estimates called “dilution of Precision” – DOP – 
are defined in terms of the diagonal elements of the 

covariance matrix

  

! 

GDOP = "n
 2 +"e

 2 +"h
 2 +"#

 2( )
1
2

PDOP = "n
 2 +"e

 2 +"h
 2( )

1
2

HDOP = "n
 2 +"e

 2( )
1
2

VDOP ="h

TDOP ="#

G – geometric, P – position, H – horizontal, V – vertical,

T - time
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The DOPs map the errors of the observations
(represented/quantified statistically by the 

standard deviations)

Into the parameter estimate errors

  

! 

" GDOP =" "n
 2 +"e

 2 +"h
 2 +"#

 2( )
1
2

" PDOP =" "n
 2 +"e

 2 +"h
 2( )

1
2

" HDOP =" "n
 2 +"e

 2( )
1
2

" VDOP =" "h

" TDOP =" "#
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So for a σ of 1 m and an χ-DOP of 5, for example,

errors in the position χ	


(where χ is one of G, P, H, V, T)

Would be 5σ=5 m



“Good” geometry gives ‘small’ DOP

“Bad” geometry gives ‘large’ DOP

(it is relative, but PDOP>5 is considered poor)



27www.eng.auburn.edu/department/an/Teaching/BSEN_6220/GPS/Lecture%20Notes/Carrier_Phase_GPS.pdf
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In 2-D



There is a 40% chance of being inside the 1-σ error 
ellipse (compared to 68% in 1-D)





Normally show 95% confidence ellipses, is 2.54 σ in 2-D


(is only 2σ in 1-D)
Can extend to 3-D
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Another method of estimating location



Phase comparison/Interferometer



- VLBI

- GPS-Carrier Phase Observable
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VLBI 

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

Uses techniques/physics similar to GPS but with natural 
sources

(in same frequency band and suffers from similar errors)



31

Correlate signal at two (or more) sites to find time shift



Need more than 1 receiver.

Differential (difference) method



(similar to PRN correlation with GPS codes

or

Aligning two seismograms that are almost same but have 
time shift)
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Assume you are receiving a plane wave from a distant 
quasar 

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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Two radio antennas observe signal from quasar 
simultaneously. 

The signal arrives at the two antennae at different times
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The distance or baseline length b between the two 
antennas can be defined as: 

b * cos (θ) = c * ΔT 
where θ is the angle between the baseline and the quasar 

θ	


http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

ΔT
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Baseline length

Massachusetts to Germany

What is this variation?
Seasonal variation, geophysical phenomena, modeling 

problems?
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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Short period (hours/days) variations in LOD

Mostly from ocean tides and currents

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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Correlation of Atmospheric Angular Momentum with 
(longer period – weeks/months) variations in LOD.

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

(longer term – months/years/…) changes in LOD and 
EOP

Exchange angular momentum between large earth 
structures (eg. core!) and Moon, Sun.
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Plate velocities

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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VLBI

Not the most portable or inexpensive system –

But best definition of inertial reference frame external to 
earth.

Use to measure changes in LOD and EOP due to 
gravitational forces and redistribution of angular 

momentum.
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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vertical cut - spectral decomposition LOD at that 
instant.

horizontal cut - how strength of component varies with 
time.

Combining both – 2-D view dynamic nature of LOD.
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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dominant features 

monthly and half-monthly lunar tides, the ~800-day 
quasi-biennial oscillation, and the ~1600-day El Nino 

(dark red structure in 1983). Yearly and half-yearly 
seasonal excitations caused by meteorological variations 

have been removed for clarity.
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

dark red – 
peaks



dark blue -  
troughs.
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Factors affecting EOP

lambeck-verheijen
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Great book –


Longitude, by Dava Sobel,


describes one of the first great scientific competitions--
to provide ship captains with their position at sea.


This was after the loss of two thousand men in 1707, 

when British warships ran aground entering the English 
Channel.


The competition was between the Astronomers Royal 

(fat cats), using distance to the moon and its angle with 
the stars, and a man named John Harrison (unknown 

commoner), who made clocks. 
Strang, http://www.siam.org/siamnews/general/gps.htm
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The accuracy demanded in the 18th century was a 
modest 1/2 degree in longitude.


The earth rotates that much in two minutes.


For a six-week voyage this allows a clock error of three 

seconds per day.


Newton recommended the moon, and a German named 
Mayer won 3000 English pounds for his lunar tables. 
Even Euler got 300 for providing the right equations.


But lunar angles had to be measured, on a rolling ship at 

sea, within 1.5 minutes of arc. 
Strang, http://www.siam.org/siamnews/general/gps.htm
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The big prize was practically in sight for the lunar 
method, when Harrison came from nowhere and built 

clocks that could do better.


(You can see the clocks at Greenwich


 Competing in the long trip to Jamaica, Harrison’s clock 
lost only five seconds and eventually (the fat cats fought 

it) won the prize.

Strang, http://www.siam.org/siamnews/general/gps.htm
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The modern version of this same competition was 
between VLBI and GPS.


Very Long Baseline Interferometry uses “God’s 

satellites,” the distant quasars.


The clock at the receiver has to be very accurate and 
expensive.


The equipment can be moved (on a flatbed truck), but it 

is certainly not handheld.

Strang, http://www.siam.org/siamnews/general/gps.htm
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There are valuable applications of VLBI, but it is GPS 
that will appears everywhere.





GPS is perhaps the second most important military 
contribution to civilian science, after the Internet.




The key is the atomic clock in the satellite, designed by 
university physicists to confirm Einstein’s prediction of 

the gravitational red shift. 

Strang, http://www.siam.org/siamnews/general/gps.htm
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Using pseudo-range, the receiver solves a nonlinear 
problem in geometry.





What it knows is the the distance dij  between itself and 
the satellites.


What if we know the difference in arrival times of the same 

signal at two or more receivers.

Strang, http://www.siam.org/siamnews/general/gps.htm
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In a plane (2-D), when we know the difference d12 
between the distances to two points, the receiver is 

located on a hyperbola.






In space (3-D) this becomes a hyperboloid.

Strang, http://www.siam.org/siamnews/general/gps.htm GPS Concepts -- 3DSoftware.com_files
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Then the receiver lies at the intersection of three 
hyperboloids, determined by d12, d13, and d14.


Two hyperboloids are likely to intersect in a simple closed 

curve.


The third probably cuts that curve at two points. But 
again, one point is near the earth and the other is far 

away. 

Strang, http://www.siam.org/siamnews/general/gps.htm



52http://www.space.com/scienceastronomy/astronomy/interferometry_101.html

Interferometer


Based on interference of waves



53http://www.space.com/scienceastronomy/astronomy/interferometry_101.html

How to make principle of interference useful?


i.e. how does one get relative phase difference to vary, 
so the interference varies?



54http://badger.physics.wisc.edu/lab/manual2/node17.html

As move across screen get phase difference from 
different lengths of paths through slits

Makes “fringes”
As phase goes through change of 2π	


Interference from single slit



55http://badger.physics.wisc.edu/lab/manual2/node17.html

Similar for multi-slits, but now interference is between the 
waves leaving each slit

Light going through slits has to be “coherent”
(does not work with “white” light)

Interference from double (multiple) slit
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The phase change comes from

the change in geometric length

between the two “rays”





(change in length of 1/2 wavelength causes π change in 
phase – and destructive interference)



57http://www.physics.nmt.edu/~raymond/classes/ph13xbook/node13.html

Michelson Interferometer
Make two paths from same source

(for coherence, can’t do with white light)

Can change geometric path length with movable mirror.
Get interference fringes when recombine.



Definition of vector norms 

Vector Norms

L2 (Euclidean) norm :

  

! 

x 2 = xi
2

i=1

n

"
L1 norm :

∞ or “max” norm :
  

! 

x 1 = xi
i=1

n

"

  

! 

x " =max
i
xi

  

! 

x 2 <1
Unit circle

Unit square

1
1

  

! 

x 1 <1

  

! 

x " <1

From lec3.gps 
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Interferemetry
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The phase change comes from the change in distance 
(#wavelengths) between the two “rays”



(at constant velocity a) change geometric distance 
traveled 





(change in length of 1/2 wavelength causes π change in 
phase – and destructive interference)



61http://www.physics.nmt.edu/~raymond/classes/ph13xbook/node13.html

http://www.physics.uq.edu.au/people/mcintyre/applets/michelson/michelson.html

Michelson Interferometer
Make two paths from same source

(for coherence, can do with white light!)

Can change geometric path length with movable mirror 
(eg mount on speaker).

Get interference “fringes” when recombine.
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Note from animation



Can “integrate” (count continuously) the fringes and 
see how they change,



but there is a certain ambiguity

(each set of fringes looks same as others)

[no “reference” fringe]
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Another way to get phase change



Change the “optical path length” (e.g. by changing 
velocity)



What counts is number of “cycles” (wavelengths),

not geometric distance.
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Change optical path length by changing index of 
refraction along path



(this is what happens to GPS in ionosphere and 
troposphere 

– error for crustal motion,

signal for ionospheric physics, weather, etc.)
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GPS Carrier (beat) phase observable

(The word “beat” is usually not included in the “carrier 
phase observable” name, which can cause some [major] 

confusion)
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The key is to count radio wavelengths between satellites 
and receiver.


This number (the phase) is an integer plus a fraction.

Strang, http://www.siam.org/siamnews/general/gps.htm

www.eng.auburn.edu/department/an/Teaching/BSEN_6220/GPS/Lecture%20Notes/
Carrier_Phase_GPS.pdf
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Phase measurements







One can convert phase to distance by multiplying the 
phase by the wavelength



(so phase measurements are another way to measure the 
distance from the satellite to the receiver – another 

"pseudo" distance measurement)
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http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/323.htm

The wavelengths of the carrier waves are very short –



Approximately

19cm for L1 and 

24cm for L2 –


compared to the C/A (length of one "chip" at ~1MHz is 

~300m) and P code chip lengths. 
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Phase measurements





Phase can be measured to about 1% of λ (3.6º)



This gives a precision of



~2 mm for L1

~2.4 mm for L2
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Phase measurements




this means that carrier phase can be measured to


millimeter precision





compared with a few meters for C/A code measurements 
(but to get this you really need WAAS), and several 

decimeters for P code measurements.

http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/323.htm
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Tracking carrier phase signals, however, provides no time 
of transmission information.


The carrier signals, while modulated with time tagged 
binary codes, carry no time-tags that distinguish one 

cycle from another.

Dana, http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html
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The measurements used in carrier phase tracking are 
differences in carrier phase cycles and fractions of 

cycles over time.

Dana, http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html
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http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/323.htm

Unfortunately

phase measurement is "ambiguous" as it cannot 
discriminate one (either L1 or L2) cycle from another

(they all “look” the same).
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http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/323.htm

In other words, time-of-transmission information for the 
signal cannot be imprinted onto the carrier wave as is 

done using PRN codes





(this would be possible only if the PRN code frequency 
was the same as the carrier wave,

rather than 154 or 120 times lower – and longer - in the 
case of the P code,

and 1540 or 1200 times lower – and longer - for the C/A 
code).
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http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/323.htm

The basic phase measurement is therefore in the range





0° to 360°



(or 0 to 2π)
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Phase measurements review:



Phase measurement PRECISE



But AMBIGUOUS
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Another complication -



Phase measurements have to be corrected for



propagation effects



(several to 10’s of meters) to benefit from the increased 
precision
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The key is to count radio wavelengths between satellites 
and receiver.


This number (the phase) is an integer plus a fraction.


--------------------------------------------


The integer part (called the ambiguity) is the tricky 

problem.


It has to be right, because one missing wavelength means 
an error of 19 cm or 24 cm (the satellite transmits on two 

frequencies). 

Strang, http://www.siam.org/siamnews/general/gps.htm
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(stays constant with time and depends on distance [for 
stationary source])



Low frequency
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Reflect ion

Higher frequency.

Phase difference still says something about distance but 
have to know number of cycles?

How to do this?
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Note that the phase is not constant for fixed positions of 
the transmitter and receiver.


The rate of phase change, and therefore the frequency, 

is constant in this case.
(frequency is rate of change of phase [when the rate of 

change of phase is not constant - instantaneous 
frequency is the instantaneous rate of change of 

phase])


Moving transmitters and receivers cause the rate of 
phase change to vary, and therefore the frequency to 

vary --- a Doppler shift.



83From E. Calais

How to use the phase.
We can keep track of phase once we lock onto it.

But can’t tell how many whole cycles/wavelengths there 
are between satellite and receiver – called the (integer) 

ambiguity.
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Determining this integer is like swimming laps in a pool




after an hour, the fractional part is obvious, but it is easy 
to forget the number of laps completed.

Strang, http://www.siam.org/siamnews/general/gps.htm
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You could estimate it by dividing total swim time by 
approximate lap time.




For a short swim, the integer is probably reliable.


But the longer you swim, the greater the variance in the 
ratio.



In GPS, the longer the baseline between receivers, the 
harder it is to find this whole number. 

Strang, http://www.siam.org/siamnews/general/gps.htm



86Blewitt, Basics of GPS in “Geodetic Applications of GPS”

Phase, frequency and Clock time

Phase is angle of rotation

Unit is cycles
Note is ambiguous by whole “rotations”
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Concept of time


(or at least keeping track of it)


based on periodic “motion”


Day – rotation of earth on own axis
Year – rotation of earth around sun

Quartz crystal (or atomic clock ) – oscillations
Etc.


Phase is “%” of period.
But does not count whole periods.


Need way to convert phase to time units.

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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! 

T t( ) = k " t( ) #"0( )

write

Where

T(t) is time according to our clock at (some “absolute” 
time) t

φ0 =φ(t=0) is the time origin (our clock reads 0 at φ0 )

k is the calibration constant converting cycles to 
seconds


Blewitt, Basics of GPS in “Geodetic Applications of GPS”



89Blewitt, Basics of GPS in “Geodetic Applications of GPS”

Frequency


Expressed as cycles-per-second
(SI unit is Hertz)


Assumes rotation rate is constant


Better definition – rate of change of phase with respect 

to time (this also covers instantaneous phase)

! 

f =
d" t( )
dt



90Blewitt, Basics of GPS in “Geodetic Applications of GPS”

  

! 

f =
d" t( )
dt

= constant pure sine/cosine

Phase changes linearly with time



91Blewitt, Basics of GPS in “Geodetic Applications of GPS”

We will treat

-- Phase as the fundamental quantity

-- Frequency as the derived quantity or dependent 
variable



Basis for “ideal” clock

Constant frequency

!ideal = f0t +!0

Tideal = k  f0t



92Blewitt, Basics of GPS in “Geodetic Applications of GPS”

T t( ) =
! t( )!!0( )

f0

!ideal = f0t +!0

Tideal = k  f0t

This suggests that



k=1/f0

so
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So we can describe the signal below as

A t( ) = A0 sin 2!" t( )( )

If one measures A(t) one can determine φ(t)
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! 

Aideal t( ) = A0 sin 2"#ideal t( )( )
Aideal t( ) = A0 sin 2" f0t + #0( )( )
Aideal t( ) = A0 cos 2"#0( )sin 2"f0t ( ) + A0 sin 2"#0( )cos 2"f0t ( )
Aideal t( ) = A0

S sin $ 0t ( ) + A0
C cos $ 0t ( )

Areal T( ) = A0
S sin $ 0T ( ) + A0

C cos $ 0T ( )

Signal for ideal clock

Signal for real clock

GPS signal of this form PLUS “modulation” by + or – 1.
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To “receive” a GPS signal the

received signal (whose frequency has been shifted by 
the Doppler effect – more later) is mixed with a receiver 

generated copy of the signal

producing a beat due to the difference in frequency
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When two sound waves of different frequency approach 
your ear, the alternating constructive and destructive 
interference causes the sound to be alternatively soft 

and loud

- a phenomenon which is called "beating" or producing 
beats.

- The beat frequency is equal to the absolute value of the 
difference in frequency of the two waves. 

http://hyperphysics.phy-astr.gsu.edu/hbase/sound/
beat.html
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Beat Frequencies in Sound


The sound of a beat frequency or beat wave is a 
fluctuating volume caused when you add two sound 

waves of slightly different frequencies together.


If the frequencies of the sound waves are close enough 
together, you can hear a relatively slow variation in the 

volume of the sound.


A good example of this can be heard using two tuning 
forks that are a few Hz apart. (or in a twin engine 

airplane or boat when the engines are not “synched” = 
you hear a “wa-wa-wa-wa-… noise)

http://www.school-for-champions.com/science/sound_beat.htm
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Beats are caused by the interference of two waves at the 
same point in space. 

! 

cos 2"f1( ) + cos 2"f2( ) = 2Acos 2" f1 # f2
2

$ 

% 
& 

' 

( 
) cos 2"

f1 + f2
2

$ 

% 
& 

' 

( 
) 

Beat -- Frequency 
of minimia, which 

happens twice per 
cycle.

! 

fbeat =
f1 " f2
2
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Note the frequencies are

half the difference and

the average of the original frequencies. 

! 

cos 2"f1( ) + cos 2"f2( ) = 2Acos 2" f1 # f2
2

$ 

% 
& 

' 

( 
) cos 2"

f1 + f2
2

$ 

% 
& 

' 

( 
) 

Different than 
multiplying (mixing) 

the two frequencies.


