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More inversion Pihca”s

Bill and Ted's misadventure.

Bill and Ted are geo-chemists who wish to measure the
number o{: grams o{: each oF ’chree c:li{:f:erent minerals
ADB,C heldina single rock samplc.
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dbe thc number O{: grams in tl"lC SamPIC.

From Todd Will



55? Pencorming complicated exPeriments Bill and Ted are
able to measure four relationships between a,b,c,dwhich
theg record in the matrix below:

(9% 477 10.202 -28.8%2) /3 (34.7177)
1.9% 2816 6244 || |709241

2682 3686 5734+ |77 829071

23234 -863925 4+4.69%) | \-26222,

Ax =b

Now we have more ec]uations than we need

What to do?

From Todd Will



One thing to do is throw out one of the ecluations
(in realitlg onlg a Mathematician is naive eno%gh to think
that three ecluations is sufficient to solve for three

unknowns — but lets try it angwag) )

So throw out one - Icaving

s (different A and b from before)



Remembering some of their linear algebra theg know that
the matrix is not invertible if the determinant is zero, so

theg check that

93477  10.202 -28.8%2
1.9% 32816 62414
26821  36.816 57234

N
I
\®)

OK so far
(or “fat, dumb and happg")

From Todd Will



S50 now we can Compute

4
So nowwe re clone.

From Todd Will



AN '
Or are we”? A \\




Next theg realize that the measurements are rea"g onlg
goocl to O.1

So theg round to O.1and do it again

From Todd Will



Now theg notice a small Problem —
Theg geta very ditferent answer

(and theg don’ t notice thcg have a bigger Phgsical
Problem in that theg have negativc weig ts/amounts!)

(a) (0.5 (a) (-1.68294)
0.8 b 8.92282
\C) \0.7/ \C ) K—3 .50254/

S
[

From Todd Will



So what’ s the Problem?
First find the SVD of A.

\\

|

Since there are three non-zero values on the diagonal A
is invertible

From Todd Will



BUT, one of the singular values is much, much less than

(9%.477
1.9%
\26.82]

the others

10.202 -28.8%2)
52816 62414
36.816 57 .25%

(100 0
0 0

0
100

\ O 0

0.0002/

\(@)

So the matrix is “almost” rank 2

(which would be non-invertible)

From Todd Will



We can also calculate the SVD of A~

From Todd Will



S0 now we can see what haPPened
(whg the two answers were so different)
Let y be the first version of b
Lety’ be the second version of b (to 0.1)

ATy —ATly =‘A'1(y -y | =
(001 0 0 \(h

(@ aa,)| o 00 0 [|(h|(H-Y)
| 0 0 5000/ \h,,

So A stretches vectors parallel to /75 and as bg afactor
ot 5000.

From Todd Will



Retuming to GPS



We have 4 unknowns (x%, y~,25 and 7°)
And 4 (nonlinear) equations
(|ater we will allow more satellites)
So we can solve for the unknowns



Again, we cannot solve this clirectlg

will solve interativelg bﬂ
1) Assuming a location
2) Linearizing the range equations
%) Use least squares to comPute new (better) location

4) Go back to'1 using location from b,

We do this till some convergence criteria 1s met (iF we re

luckg)

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”



linearize

So - for one satellite we have

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”



Linearize ({:irst two terms of Taglor Series)

P
P(x,y,Z,T) 7 P(xoa)’ovZO’rO) i (x I xo)g_
7 (Xo’)’O ’ZO’TO)
9P oP oP
/ (y / yO) dy (%0 Y0 20 %0 ) | (Z [ ZO) 9z (%0020 %) | (T \ TO) JT (x0-Y0 -2 7o)

oP oP oP oP
P(x,y,z,r) ~ Pcom]:)utecl + a—Ax + a—Ay + G_AZ + a—Ar
X y Z T

Blewitt, Basics of GPS in “Geodetic APPlfcations of GPs”



Residual

Difference bctween observed and calculated
(linearized)

Blewitt, Basics of GPS in “Geodetic APPlications of GPS”



So we have the {:o"owing for one satellite

oP oP oP oP L\
AP =—Ax+—Ay+—Az+—AT+vV
0x dy 07 0T

Which we can recast in matrix form

(9P 9P 9P 9P)|Ay| _

AP =
ox dy dz 0t)|Az

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”



For m satellites (where m=4)

which is usua"g written as
b

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”



Calculate the derivatives

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”



Sowe get

(xo_x Yo~  Zp—Z%
1 1 1 g
P P P
2 2 2
Fomi® Yo TV 2ol TR
P> P> P>
A=|x,-x> y,-y’ z,-2° )
P3 L3 O3
Xo =X Yo=Y  Zp-Z A
\ P P P

Is function of direction to satellite

Note |ast c:olumn Is a constant

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”




Consider some candidate solution x”

Then we can write

b are the observations

* are the residuals

We would like to find the x” that minimizes *

Blewitt, Basics of GPS in “Geodetic APPlfcations of GPs”



So the cluestion now is how to find this x’

One way, and the way we will do it,

|Least Squarcs

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”



Since we have alreadg done this — we’ |l £go fast

Use solution to linearized form of observation ccluations
to write estimated residuals

v=b-AX

Varg value of x to minimize

Blewitt, Basics of GPS in “Geodetic APPlications of GPs”



Normal equations

Solution to normal ecluations



Assumes
Inverse exists

(m greater ’chan or eclual to 4, necessary but not
sufficient condition)

Can have Problcms similar to earthcluakc locatin (two
satellites in “same” direction for examPle — has effect of

reclucing rank l:)g one)



GPS tutorial Signals and Data

Good DOP Intersecting Ranges

An antenna on the roof
would have a good DOP

[’ﬂ?tP://www.unav-micro.com/about_gps.l’ltm

29



GPS tutorial Signals and Data

Soor DOP Intersecting Ranges

208 '5Y,

y c y 30°

An antenma in a window
would have a poor DOP

O
[’ﬂ?tP://www.unav-micro.com/about_gps.l’ltm ?



Elementarg Concel:)ts

Variables:

things that we measure, control, or maniPulate in
researc%:. Theg differ in many respects, most notablg in
the role thcg are gjven in our research and in the tch of
measures that can be applied to them.

From G. Mattioli



Observational vs. cxPerimental research.

Most eml:)irical rcscarch belongs clearlg to one o{: those
two gencral categories.

In observational research we do not (or at least trg not
to) influence any variables but onlg measure them and
|oo‘< for relations (correlations) between some set of
variables.

In experimental research, we maniPulatc some variables
and then measure the effects of this maniPulation on
other variables.

From G. Mattioli



Observational vs. exl:)erimental research.

DePendent VS. inclePenclent variables.

lndependent variables are tl‘tose that are maniPulatccl

whereas clePenden’c variables are only measured or
rcgisterccl.

From G. Mattioli



Variable TgPes and Information Content

Measurement scales.
Variables differ in *how well® theg can be measured.

Measurement error involved in every measurement, which
determines the "amount of information” obtained.

Anothcr Factor IS thc varial:)lle’ S "tch o{: measurement
scale.”

From G. Mattioli



Variable Tgpes and Information Content

Nominal variables
allow for onlg qualitative classification.

That is, they can be measured onlg in terms of whether
the inc:livicluaif items belong to some clistinctivelg different
categories, but we cannot quanthcg or even rank order
those categories.

Tgpical examplcs of nominal variables are gcncler, race,
color, city, etc.

From G. Mattioli



Variable TgPes and Information Content

Ordinal variables
a"ow us to ran|< orclcr the items we measure

in terms of which has less and which has more of the
c]ualitg rePrescntcd bg the variable, but still theg do not
allow us to say "how much more.”

A tgPical cxamplc of an ordinal variable is the
socioeconomic status of families.

From G. Mattioli



Variable Tgpes and Information Content

Interval variables

allow us not onlg to ran|< order the items that are
measurecl,

but also to a:uanti{:g and compare the sizes of
differences between them.

For example, temperature, as measured in clcgrees
Fahrenhert or Celsius, constitutes an interval scale.

From G. Mattioli



Variable TgPes and Information Content

Ratio variables

are very similar to interval variables;

in addition to all the Propcrties of interval variables,

theg feature an identifiable absolute zero Point, thus
they allow for statements such as x is two times more

than y.

Tgpical cxamples of ratio scales are measures of time or
space.

From G. Mattioli



Sgstematic and Random Errors

Error:

Dc{:ined as thc cligercnce ]:)ctwccn a calculatcd or
observed value and the “true” value

From G. Mattioli



Sgstematic and Random Errors

Blunders:
USuang aPParent

either as obviouslg incorrect data Points or results that
are not reasonablg close to the exPected value.

Easg to detect
Easy to fix (throw out data).

From G. Mattioli



Sgstematic and Random Errors

Sgs’cematic Errors:

Errors that occur reProduciblg from Faultg calibration of
ecluiPment or observer bias.

Statistical analgsis In gcncra"g not useful,

but rather corrections must be made bascc on
cxPerimcntaI conditions.

From G. Mattioli



Sgstematic and Random Errors

Random Errors:
Errors that result from the fluctuations in observations.

Recluircs that exPeriments be rePeatccl a sufficient
number of time to establish the Prccision of
measurement.

(statistics useful here)

From G. Mattioli



Accuracg vs. Precision

From G. Mattioli



Accuracg vs. Precision

Accuracy: A measure of how close an exPerimentaI result
is to the true value.

Precision: A measure of how exactly the result is
determined. Itis also a measure of how reproducible the
result is.

PRECISION ACCURACY

From G. Mattioli



Accuracg vs. Precision

Absolute Precision:

indicates the unccrtaintg in the same units as the
observation

Relative Precision:

indicates the unccrtaintg in terms of a fraction of the
value of the result

From G. Mattioli



Uncertainties

In most cases,

cannot know what the “true” value is unless there is an
inclel:)cnclent determination

(J.e. ditferent measurement technic]ue) !

From G. Mattioli



Uncertainties

Onlg can consider estimates of the error-.

Discre[:)ancg is the difference between two or more
observations. This gives rise to uncertaintg.

Probable Error:
Indicates the magnitucle of the error we estimate to have
made in the measurements.
Means that if we make a measurement that we will be
wrong bg that amount “on average” .

From G. Mattioli



Parent vs. Sample PoPulations

Parent Population:

HgPothctical Probabilitg distribution if we were to make
an infinite number of measurements of some variable or
set of variables.

From G. Mattioli



Parent vs. Sample PoPulations

Sample Population:
Actual set of exPcrimcntal observations or
measurements of some variable or set of variables.
In General:

(Parent Parameter) = limit (Sample Parameter)

When the number of observations, N, goes to imcinitg.

From G. Mattioli



some univariate statistical terms:

mode:
value that occurs most Frec]uentlg in a distribution
(usua“g the highest point of curve)
may have more than one mode

(eg. Bimodal - examplc later)
in a dataset

From G. Mattioli



some univariate statistical terms:

value miclwaﬂ in the {:reclucncg di

(L .hahc thc area un

arithmetic avera
...sum of all observations divided

median:

stribution

er the curve is to rg

left

mean:

Nt ancl othcr to

e
Eg # of observations

the mean is a poor measure of central tenclency in
skewed distributions

From G. Mattioli



Average, mean or exPectecl value for random variable
1 n
E(x)=u-= lim—zxi
PTG B

(more generab if have Probabilitg for each X

E(x)=u=1lim Y px,
T i=1



some univariate statistical terms:

range: measure of clisl:)ersion about mean

(maximum minus minimum)

when max and min are unusual values, range may be
a mislcacling measure of disl:)crsion

From G. Mattioli



Histogram
useful graPhic rel:)resentation of information content of
sample or Parcnt PoPulation

Histograms of Symmetric and Skewed Distributions

g e % i many statistical tests
/\ //f,\ assume

| e bl
. Normal ]iistrib tion 0 Negatively Sk('lawed ]:)isiribution Va I UCS a re n Orma l Iy

£ o distributed

| not a/ways the case!

1 1
Multimodal Distribution Positively Skewed Distribution

|

|
I
o n | |

- .

= Median = B
=

!

examine data Prior
to Proccssing
© !

(]
Uniform Distribution,
no mode exists

from: Jensen, 1996
From G. Mattioli



Distribution vs. Sample Size

£ Sample Size of 2 5T06G: Histegram

X8 | SAMPLING DISTRIBUTION
OF THE MEAN
B FOR SAMPLE SIZF 2

122 §
160 §

128 ¢

Number of Observations

¥ R 8

: .

e=7 (715] (1522] 2230) B037) (3744) (4452) 5259] 598686) >68
Sample Means (n=2)

F=—rre——rre—

o

ht‘tpz/ /dhm.mstu.edu.ru/ e_|ibrar3/statistica/textbool</ graphics/



Deviations

The deviation, 0, of any measurement x; from the mean u
of the parent distribution is defined as the difference
between x,ancl U

From G. Mattioli



Deviations

Average deviation, a,

is defined as the average of the magnituclcs
of the deviations,

Magnitucles given bg the absolute value of the
deviations.

0{=1iml

xi_ﬂ‘

From G. Mattioli



Root mean square

1 n
RMS = lim ,[— ) x’

Of deviations or residuals — standard deviation

1 n
o=lim.l— ) 6°
im 53




SamPle Mean and Standard Deviation

For a series of n obscrvations, the most Probable
estimate of the mean p is the average of the
observations.

We refer to this as the sample mean to clistinguish it from
the Parent mean .

M“JT:%ixi

i=1

From G. Mattioli



SamPle Mean and Standard Deviation

Our best estimate of the Etandard deviation o would be
roms:

| |
0’ = lim- 3 (x, ) =D (x~u)
i=1

n i=1

But we cannot know the true parent mean U SO the best
estimate of the samplc variance and standard deviation
would be:

O =5 = 112(36,-—)_6)2 SampleVariance

i=1

From G. Mattioli



Some other forms to write variance

I have Probabilitg for each X,

o = VAR pr—



The standard deviation

1| sl g
o= \/VAR(x) = J(n i) Zéxi

(Normalization decreased from Nto (N~ 1) for the
“sample" variance, as p is used in the calculation)

For a scalar random variable or measurement with a
Normal (Gaussian) clistribution,

the Probabilitg of being within one o of the mean is 68.3%



sma” std dev:

observations are clustered tightlg about the mean

|arge std dev:

observations are scattered wiclely about the mean



Distributions

Binomial Distribution: Allows us to define the
Probabilit » P> of observingx a sPcchcic combination of n
items, whiﬁ', is derived from the fundamental formulas for

the Permutations and combinations.

Permutations: Enumerate the number of Pcrmutations,
Pm(n,x), of coin ﬂips, when we Pick up the coins one at a
time from a collection of n coins and put X of them into

the “heads” box.

n!

m

Balnx) =075

From G. Mattioli



Combinations:

Relates to the number oF ways we can combine ’che
various Permutations enumerated above from our coin
ﬂiP exPeriment.

Thus the number of combinations is cclual to the number
of Permutations divided l:)g the de eneracy factor x! of
the Permutations (number in%istinguishable
Pcrmutations) .

C(n,x)=Pm(n’x)= n! =(n)

X! x!(n - x)!

From G. Mattioli



Probabilitg and the Binomial Distribution

Coin Toss ExPeriment: it p is the Probabilitg of success

(landing head

is not necessarilg eclual to the
failure

S up)
Drolf)abilitg g= ] ~ p for

(Ianding tails uP) because the coins may be |0|:>sidecl!

The Probabilitg for each of the combinations of x coins
heads up and
n -x coins tails up IS eclual to P"q”"x.

The binomial distribution can be used to calculate the

Probabi |it9:

From G. Mattioli



Probabilitg and the Binomial Distribution

The binomial distribution can be used to calculate the
Probabilitg of x “successes
in n tries where the individual Probabliligt IS p:

n n!

)pan—x i pan—x

x!(n = x)!

Bl (x

The coefficients Ps(x,n, P) are closely related to the
binomial theorem for the cxPansion ofa power of asum

(p+q)" = i(i)pxqr‘”

x=0

From G. Mattioli



Mean and Variance: Binomial Distribution

x!(n - x)

L X =

: |
Nl
—0 |

TI"IC average O{: thC numbcr O{: SUCCESSES Wl" aPProach a

mean VBIUC M

given 133 the Probabilitg for success of each item p times

the number of items.

For the coin toss exl:)eriment P:I/Z, half the coins should
land heads up on average.

From G. Mattioli



Mean and Variance: Binomial Distribution

The standard deviation is

(x =) =2 p (1= p) ™" | = np(1 - p)

x!(n - x)!

i the the Probabilit fora siréle success p IS eclual to the
>robabi Iitg for failure P:q:I/Z,

the final distribution is symmetric about the mean,

and mocle ancl median cclual tl"lC mecan.

The variance, 0 = m/2.

From G. Mattioli



Other Probabilitg Distri]

Poisson Distribution: A

D

outions: SPecial Cases

sroximation to binomial

distribution for sPeciaI case when average number of

SUCCCSSCSﬂSVannHKJTSHEB

ler than Possi le number j.e.

b << nbecause p <<1.
Distribution is NOT necessarilg sgmmetric! Data are
usua"y bounded on one side and not the other.
Aclvantage o%=m.

n=1.67
o=129

From G. Mattioli




Gaussian or Normal Error Distribution

Gaussian Distribution: Most important Probabilitg
distribution in the statistical ana 3sis of cxpcrimcntal
data.

Functional form is relativelg simple and the resultant
distribution is reasonable.

—PT < P L.

051-  P.E. = 047456 = 02865 T
T=23540/ 1 7= \¢
| -»> r

! \
/ \
| l/ ! R [
— 20 —0 0 o 20

From G. Mattioli



Gaussian or Normal Error Distribution

Another special |imiting case of binomial distribution
where the number of Possible different observations, n,
becomes in{:initelg |arge 3ie|ding np >> 1.

Most Probable estimate of the mean u from a random
sample of observations is the average of those
observations!

—PT < P L.

051-  P.E. = 047456 = 02865 T
T=23540/ 1 7= \¢
| -»> r

! \
/ \
| l/ ! R [
— 20 —0 0 o 20

From G. Mattioli



Gaussian or Normal Error Distribution

Probable Error (PE.) is defined as the absolute value of
the deviation such that P of the deviation of any
random observation is < %

Tangent along the steePest |:>or’cior101C the Probabilitg
curve intersects at e2 and intersects x axis at the Points
X=ut20

—PT < P L.

051-  P.E. = 047456 = 02865 T
T=23540/ 1 7= \¢
| -»> r

! \
/ \
| l/ ! R [
— 20 —0 0 o 20

From G. Mattioli



For gaussian U normal error distributions:
Total area underneath curve is 1.00 100%)

68.27% of observations lie within + 1 std dev of mean
95% of observations lie within £ 2 std dev of mean
99%  of observations lie within + 3 std dev of mean

Variance, standard cleviation, Probablc error, mean, and
weighted root mean square error are commonly used
statistical terms in geoclcsg.

compare (rat/‘)cr than afta;:/‘l si'gﬂi)[icancc to numerical
value)

From G. Mattioli



Iif X is a continuous random variable, then
the Probabilitg clensitg function, PcH:, of X,

is a function f(x) such that for two numbers, a and b with
8513 fix)

'Ill
\
Y

Plasx=<b)= f f(x)dx

/

a 2 N

o

afE

That is, the Probabilitg that X takes on a value in the
interval [a, b] is the area under the density function from
atob.

http: //www.weibull.com/LifeDataWeb/ the_Probabi Iitg_dcnsitg_ancJ_cumulative_clistribution_gunctions. htm




The Probabilitg clensitg function for the Gaussian
distribution is defined as:

1 1(x=-u)
PG(X,M,G) = Gmexp ——

From G. Mattioli



For the Gaussian PDF the Probabilitg for the random
variable x to be found between utzo,
Where z is the dimensionless range z = Ix ~pl/o is:

i | ML
A (x,u,0) = fP (x,u,0)dx ——fexp ——x" |dx
/ U-z0 f \/ﬂ —Z 1 2 5

AG<Z 7 OO) =1

From G. Mattioli



The cumulative distribution function, cdf,
is a function F(x) of a random variable, X, and

is defined for a number x ]39:

F(x)=P(X <x)= if(s)ds

That is, for a gliven value x, F(x) is the Probabilitg that
the observed value of X will be at most x. (note lower limit
shows domain of s, integral goes from O to x<)

http: //www.weibull.com/LifeDataWeb/ the_Probabi Iitg_dcnsitg_ancJ_cumulative_clistribution_gunctions. htm



Relationship between PDF and CDF

Densitg vs. Distribution Functions for Gaussian

<- derivative <-

Density Function: Distribution Function:

Z= LU0

p =50

8
\-

~> intcgral ->



Multiple random variables

E‘.xPcctecl valuc or mean of sum of two ranclom variablcs
is sum of the means.

known as additive law of exPectation.

E(x+y) = E(x)+ E(y)



covariance

n

0,” = COV(xy) =1 i 25— By - E()

=1

(variance is covariance of variable with itself)

(more general with) individual Probabilitics

—COny prylx— ( .—E(y))



Covariance matrix




Covariance matrix defines error e"ipse.

Eigenvalucs are squares of semimajor and semiminor
axes (o, and o,)

E‘.igenvectors give orientation of error e"iPse

(or gjven o, and o, correlation gjves “fatness” and

)
“angle")



Distance Root Mean Scluare (DRMS, 2-D extension of
RMS)

DRMS = (0, +0,')

For a scalar random variable or measurement with a
Normal (Gaussian) distribution,

the Probabilitg of aeing within the 1-o e”iPse about the
mean is 68.3%

Etc for 5-D



Use of variance, covariance — in Weighted | east Squares

common Practice to use thc rccil:)rocal oF thc variance as

the wei ght



variance of the sum of two random variables

VAR(x +y)=VAR(x)+2COV(x, y)+ VAR(y)

The variance of the sum of two random variables is eclual
to the sum of each of their variances onlg when the
random variables are indePenc ent

(The covariance of two inclePenclcnt random variables is
zero, cov(x,g) =Q).

httP: //wWww. l(asPcrcPa.com/ statisticalreview.htm



Multiplginga random variable !:)9 a constant increases
the variance bg the square of the constant.

o’ =E(cx) =c’E(x)

cX

httP: //wWww. l(asPcrcPa.com/ statisticalreview.htm



Correlation

The more tightllg the lioints are clustered togfcther the
thher the correlation between the two variables and the
igher the abilitg to Preclict one variable from another

. - * . A
y=7() i,
r=0.0 r=-0.3
;o 1
. .... : 3 .’.:'c
.. :f : -
» r. L -
.. 3
r=0.5 r=-0.7
L H *
® b
S Lo P
A 4 =mx+
gt i,
- B n‘, 2
r=0.9 r=-0.99

Ender, ht‘tp: / /www.gseis.ucla.eclu/ courses/ed230bci/notes!/vari.html



Correlation coefficients are between -1 and +1,
+and -1 represent Pechct correlations,

and zero rePresenting no relationshil:), between the

4
va rnables.
. - * < A
9:? ('x> . ‘.s :
r:o_o. |'=-0.?3
;7 1
e ot :.s ":-\.
es S R
B
l. . 3
r=0.5 r=-0.7
. .
= e 3=1mx+b
T =,
'..!.- .t !!
- k"
’ r=0.9 r=-0.99

Ender, ht‘tp: / /www.gseis.ucla.eclu/ courses/ed230bci/notes!/vari.html



Correlations are interPreted bg S

cr:luaring the value of the

ﬂ

correlation coefficient.

The scluarecl value
of one variable t

rePresents the ProPortion of variance
hat is shared with the other variable,

in other words, t

ne Proportion o1c the variance o{: one

variable that can be Prcclictccl from the other variable.

Lwe

rxy =71 rxy = .98
2 2 2
rxy =0 rxy = .50 rxy = .96

Ender, ht‘tp: / /www.gseis.ucla.edu/ courses/ed230bci/notes!/vari.html



Sources of mis eading correlation

(and Problems with least squares inversion)

outliers

Bimodal No
distribution relation



Sources of mis eading correlation

(and Problems with least squares inversion)
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Restriction of ran ge



rule of thumb for interpreting correlation coefticients:

Corr lnterl:)retation
Oto .l trivial
Jto 3 small

Ato .5 moderate
Dto./ |ar]ge
J to .9 very large

Ender, ht‘tp: / /www.gseis.ucla.edu/ courses/ed230bci/notes!/vari.html



Correlations EXPress tl’we inter~clependence between
variables.

For two variables x and yina linear rclationship, the
correlation between them is defined as

http:/ /www.gtnat.unsw.edu.au/snap/ gps/ gps_surveg/ chap7/725.|1tm



High correlation does not mean that the variations of
one are caused ]:)3 the variations of the othcrs, although
it may be the case.

In many cases, external influences maﬂ be aﬂzecting both
variables in a similar fashion.

two tgl:)es of correlation

Physical correlation and mathematical correlation

http:/ /www.gtnat.unsw.edu.au/snap/ gps/ gps_surveg/ chap7/725.|1tm



Phgsical correlation refers to the correlations between
the actual field observations.

It arises from the nature of the observations as well as
their method of collection.

if different observations or sets of observation are
atfected 139 common external imqucnccs, theg are said to

be Phgsicaug correlated.

Hence all observations made at the same time at a site
may be considered Phgsicalgj correlated because similar
atmosPheric conditions and clock errors influence the
measurements.



Mathematical correlation is related to the Paramcters in
the mathematical model.

It can therefore be Partitionecl into two further classes

which corresPoncl to the two comPonents of the
mathematical acljustment model:

Functional correlation

Stochastic correlation



Functional Correlation:

The Physical correlations can be taken into account 59
introduci ng aPProPriatc terms into the functional model
of the observations.

That is, Functiona“g correlated cluantities share the same
parameter in the observation model.

An example is the clock error Parameter in the one-way
GPS observation moclel, used to account for the
Phgsical correlation introduced into the measurements
Yy the receiver clock and Jor satellite clock errors.



Stochastic Correlation:

Stochastic correlation (or statistical correlation) occurs
between observations when non-zero o1cF~diagona|
elements are Present in the variance-covariance (VCV)
matrix of the observations.

Also appears when functions of the observations are
considered (eg, cli{:[:erencing), due to the

| aw of ProPagation of Variances.

However, even if the VCV matrix of the observations is
dliagona/ (no stochastic correlation), the VCV matrix of
the resultant LS estimates of the Paramcters will
gcncra/{g be full matrices, and therefore exhibit
stochastic correlation.



