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WAAS




It provides enhanced integrity, accuracy, availability, and 

continuity over and above GPS SPS.




The differential correction function provides improved 
accuracy required for "precision" instrument approaches 

for aircraft. 



SBAS





Satellite-based augmentation systems





use satellites and networks of ground stations to provide 
improved accuracy for received GPS satellite signals.




SBAS





Internationally, many countries are working with the 
International Civil Aviation Organization (ICAO) to 
standardize satellite-based augmentation systems 

(SBAS) globally. 





WAAS is an SBAS currently being implemented in the 
United States




How WAAS provides improved accuracy.





The Wide Area Augmentation System (WAAS) uses a 
network of ground stations to provide necessary 

corrections to received GPS SPS navigation signals.


Precisely surveyed ground reference stations are 
strategically positioned across the country, including in 
Alaska, Hawaii, and Puerto Rico, to collect GPS satellite 

data. 




How WAAS provides improved accuracy.





Using this information, a message is developed to correct 
any signal errors.





These correction messages are then broadcast on the 
same frequency as GPS signals by communications 

satellites to GPS receivers (on board aircraft, but really 
most new GPS receivers). 




How WAAS provides improved accuracy.





WAAS is designed to provide the additional accuracy, 
availability, and integrity necessary to enable users to 

rely on GPS for all phases of flight, from enroute 
through approach for all qualified airports within the 

WAAS coverage area. 




How WAAS provides improved accuracy.




WAAS supplies two different sets of corrections:




How WAAS provides improved accuracy.




1: corrected GPS parameters (position, clock, etc.)




How WAAS provides improved accuracy.




2: Ionospheric parameters. The second set of 

corrections is user position independent (i.e., they apply 
to all users located within the WAAS service area). 




How WAAS provides improved accuracy.




The second set of corrections is area specific. WAAS 

supplies correction parameters for a number of points 
(organized in a grid pattern) across the WAAS service 

area.

The user receiver computes ionospheric corrections for 
the received GPS signals based on algorithms which use 

appropriate grid points for the user location. 




How WAAS provides improved accuracy.




Furthermore, the appropriate grid points may differ for 
each GPS satellite signal received and processed by the 
user receiver, since GPS satellites are located at various 

positions in the sky relative to the user.




The combination of these two sets of corrections allows 
for significantly increased user position accuracy and 

confidence anywhere in the WAAS service area.




http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/waas/howitworks/ 
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LPV minimums 
available 98%+ of 

time in 
continental NA


www.nstb.tc.faa.gov/RT_VerticalProtectionLevel.htm




Web site updates every 3 minutes




Other SBAS systems 




EGNOS





European Geostationary Navigation Overlay Service 




MSAS





Multi-Functional Satellite Augmentation System


(Japan)




Miraculously they are all (supposed to be)


compatible!


(only WAAS functional)





WAAS not much help for high-precision, dual frequency, 
GPS.


(gives better starting estimate, but once station is 
processed one time have starting estimate to cm's.)
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A. Ganse, U. Washington , http://staff.washington.edu/aganse/


Carrier Phase Tracking


Used in high-precision survey work




Can generate sub-centimeter accuracy




The ~20 cm carrier is tracked by a reference receiver and 
a remote (user) receiver




The carrier is not subject to S/A and is a much more 

precise measurement than pseudoranges.
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A. Ganse, U. Washington , http://staff.washington.edu/aganse/


Carrier Phase Tracking


Requires bookeeping of cycles:  subject to “slips”

(loss of “lock” by the phase locked loop tracking each 

satellite)




Ionospheric delay differences must be small enough to 
prevent full slips




Requires remote receiver be within ~30km of base (for 

single frequency, short occupations)




Usually used in post-processed mode, but RealTime 
Kinematic (RTK) method is developing
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A. Ganse, U. Washington , http://staff.washington.edu/aganse/


Receivers


Basic 12 channel receivers start at $100




Usually includes track & waypoint entry




With built-in maps start at $150




Combination GPS receiver/cell phone ~$350




"Outdoor" have barometric altimeter and 
electronic (flux gate) compass (hiking, 
camping, bicycling, flying w/o aviation 

database, GPS fieldwork, …)

~$100 to $500
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A. Ganse, U. Washington , http://staff.washington.edu/aganse/


Receivers


Survey-quality:  $1000 and up




Carrier tracking




FM receiver for differential corrections (old – out of 
date)




WAAS




RS232 port to PC for realtime or post-processing (old – 

out of date)




Internet/web page interface/USB/bluetooth.
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Point positioning with Psuedorange from code
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25

From J. HOW, MIT, GPS-RJH5.pdf
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Where:


Pi = Measured PseudoRange to the ith SV


Xi , Yi , Zi = Position of the ith SV, Cartesian Coordinates


X , Y , Z = User position, Cartesian Coordinates, to be 
solved-for


b = User clock bias (in distance units), to be solved-for


The above nonlinear equations are solved iteratively 
using an initial estimate of the user position, XYZ, and b


! 

P1 = (X " X1)
2 + (Y "Y1)

2 + (Z " Z1)
2 + b

P2 = (X " X2)
2 + (Y "Y2)

2 + (Z " Z2)
2 + b

P3 = (X " X3)
2 + (Y "Y3)

2 + (Z " Z3)
2 + b

P4 = (X " X4 )
2 + (Y "Y4 )

2 + (Z " Z4 )
2 + b

Position Equations
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From J. HOW, MIT, GPS-RJH5.pdf
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From J. HOW, MIT, GPS-RJH5.pdf
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From J. HOW, MIT, GPS-RJH5.pdf
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Blewitt, Basics of GPS in “Geodetic Applications of GPS”


  

! 

            TR = t R +"R                         TS = t S +" S

PRS = t R +"R( ) # t S +" S( )( ) c = t R # t S( ) c + "R #" S( ) c = $RS tR ,t S( ) + "R #" S( ) c
Pseudo range – measure time, not range.


Calculate range from r=ct
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! 

"RS tR ,t S( ) = xS t S( ) # xR tR( )( )
2

+ yS t S( ) # yR tR( )( )
2

+ zS t S( ) # zR tR( )( )
2

(xS,yS,zS) and τS known from satellite navigation message


From Pathagoras


(xR,yR,zR) and τR are 4 unknowns


Assume c constant along path, ignore relativity.


Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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Complicating detail, satellite position has to be 
calculated at transmission time.





Satellite range can change by up to 60 m during the 
approximately 0.07 sec travel time from satellite to 

receiver.





Using receive time can result in 10’s m error in range.


Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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Calculating satellite transmit time


  

! 

t S 0( ) = t R = TR "#R( )

t S 1( ) = t R "
$SR tR ,t S 0( )( )

c

tS 2( ) = t R "
$SR tR ,t S 1( )( )

c
!

Start w/ receiver time, need receiver clock bias


(once receiver is operating clock bias is kept to less than 
a few milliseconds) 


Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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! 

PR1 t R ,t1( ) = x1 t1( ) " xR tR( )( )
2

+ y1 t1( ) " yR tR( )( )
2

+ z1 t1( ) " zR tR( )( )
2

+ #R "#1( ) c

PR 2 t R ,t 2( ) = x 2 t 2( ) " xR tR( )( )
2

+ y 2 t 2( ) " yR tR( )( )
2

+ z2 t 2( ) " zR tR( )( )
2

+ #R "# 2( ) c

PR 3 t R ,t 3( ) = x 3 t 3( ) " xR tR( )( )
2

+ y 3 t 3( ) " yR tR( )( )
2

+ z3 t 3( ) " zR tR( )( )
2

+ #R "# 3( ) c

PR 4 t R ,t 4( ) = x 4 t 4( ) " xR tR( )( )
2

+ y 4 t 4( ) " yR tR( )( )
2

+ z4 t 4( ) " zR tR( )( )
2

+ #R "# 4( ) c

Note, have to keep track of which superscript is 
exponent and which is satellite or receiver (later we will 

have multiple receivers also) identification.


We have 4 unknowns (xR,yR,zR and τR)

And 4 (nonlinear) equations


(later we will allow more satellites)

So we can solve for the unknowns


Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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GPS geometry


Raypaths (approximately) straight lines.


Really function of travel time (τ) but can change to 
psuedo-range.


(xsat1 , ysat1 ,tsat1 )


(xrx , yrx  , zrx ,trx )


Drx,sat1 = F(τ)
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(xsat1 , ysat1 ,tsat1 )


(xrx , yrx  , zrx ,trx )


Drx,sat1 = F(τ)


Note that GPS location is almost exactly the same as the 
earthquake location problem.


(xeq , yeq , 
zeq ,teq )


deq,1 = F(τ)
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In a homogeneous half space – raypaths are straight 
lines, again function of travel time but can also look at 

distance.


(xs1 , ys1 ,ts1 )


(xeq , yeq , 
zeq ,teq )


deq,1 = F(τ)
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Lets look at more general problem of a layered half 
space.


Raypaths are now not limited to straight lines

(mix of refracted and head waves shown).


Now look at travel time, not distance.


(xeq , yeq , zeq ,teq )


τeq,1


(xs1 , ys1 ,ts1 )
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This view will help us see a number of problems with 
locating earthquakes (some of which will also apply to 

GPS).


(xeq , yeq , zeq ,teq )


τeq,1


(xs1 , ys1 ,ts1 )
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(xeq , yeq , zeq ,teq )

τeq,1


(xs1 , ys1 ,ts1 )


This development will also work for a radially symmetric 
earth.


Here again we will look at travel times (τ) rather than 
distance.
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! 

! 
" = x,y,z,t( )

Let χ be a vector in 4-space giving the location of the 
earthquake


(3 cartesian coodinates plus time)


Let X be a vector in 3-space – location of  the station


  

! 

! 
X k = xk,yk,zk( )

Discussion follows Lee and Stewart
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! 

"k,observed xk,yk,zk( ) = "k,observed

! 
X k( )

What data/information is available to locate an 
earthquake?




Arrival time of seismic waves at a number of known 

locations
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Plus we have a model for how seismic waves travel in the 
earth.





This allows us to calculate the travel time to station k


    

! 

Tk,calculated

! 
X k,
! 
" ( )

  

! 

! 
" = x,y,z,t( )

from an earthquake at (location and time, does not really 
depend on t, but carry it along)


So we can do the forward problem.
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! 

"k,calculated

! 
X k,
! 
# ( ) = Tk,calculated

! 
X k,
" 
# ( ) + t

From the travel time plus the origin time, t


(when the earthquake occurred)


we can calculate the arrival time at the kth station
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We want to estimate the 4 parameters of χ




so we will need 4 data (which gives 4 equations) as a 
minimum


Unless the travel time – distance relationship is linear




 (which it is not in general)




we cannot (easily) solve these 4 equations.


So what do we do?
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One possibility is to do the forward calculation for a 
large number of trial solutions (usually on a grid)







and select the trial solution with the smallest difference 
between the predicted and measured data











This is known as a grid search (inversion!) and is 
expensive


(but sometimes it is the only way)
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Modifications of this method use ways to cut down on 
the number of trial solutions









monte carlo




steepest descent




simulated annealing




other
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Another approach


solve iteratively by


1) Assuming a location


2) Linearizing the travel time equations


3) Use least squares to compute an adjustment to the 
location, which we will use to produce a new (better) 

location


4) Go back to step 1 using location from step 3





We do this till some convergence criteria is met


(if we’re lucky)
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This is basically Newton’s method
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Least squares “minimizes” the difference between 
observed and modeled/calculated data.


Assume a location (time included)











and consider the difference between the calculated and 
measured values


  

! 

! 
" * = x*,y*,z*,t*( )
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Least squares minimizes the difference between 
observed and modeled/calculated data.


    

! 

"observed = "calculated +#

"observed = "
! 
X ,
! 
$ ( ) +#

noise


for one station we have


Did not write calculated here because I can’t calculate 
this without knowing χ.
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! 

"
! 
X ,
! 
# ( ) $ "calculated

! 
X ,
! 
# *( ) + x % x*( )&"

&x #*

   + y % y*( )&"
&y

#*
+ z % z*( )&"

&z #*
+ t % t*( )&"

&t #*

"
! 
X ,
! 
# ( ) $ "calculated

! 
X ,
! 
# *( ) +

&"
&x
'x +

&"
&y
'y +

&"
&z
'z +

&"
&t
't

First – linearize the expression for the arrival time τ(X,χ)	



Now can put calculated here because can calculate this 
using the known (assumed) χ*, but don’t know these.
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Now consider the difference between the observed and 
linearized τ – the residual Δτ.


    

! 

"# = #observed $#calculated

"# = #
! 
X ,
! 
% *( ) +& $#calculated

"# = #calculated

! 
X ,
! 
% ( ) +

'#
'x
"x +

'#
'y
"y +

'#
'z
"z +

'#
't
"t

( 

) 
* 

+ 

, 
- +&

                                                                 $#calculated

! 
X ,
! 
% *( )

"# =
'#
'x
"x +

'#
'y
"y +

'#
'z
"z +

'#
't
"t +&
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! 

"# =
$#
$x
"x +

$#
$y
"y +

$#
$z
"z +

$#
$t
"t +%

We have the following for one station


  

! 

"# =
$#
$x

$#
$y

$#
$z

$#
$t

% 

& 
' 

( 

) 
*  

"x
"y
"z
"t

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

++

Which we can recast in matrix form
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! 

"#1
"#2
"#3
!

"#m

$ 

% 

& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) ) 

=

*#1
*x

*#1
*y

*#1
*z

*#1
*t

*#2
*x

*#2
*y

*#2
*z

*#2
*t

*#3
*x

*#3
*y

*#3
*z

*#3
*t

! ! ! !
*#m
*x

*#m
*y

*#m
*z

*#m
*t

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

 

"x
"y
"z
"t

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

+

+1
+ 2
+ 3
!
+m

$ 

% 

& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) ) 

For m stations (where m≥4)


ν+= Axb
Which is usually written as
Jacobian 

matrix
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! 

A =

"#1
"x

"#1
"y

"#1
"z

1

"#2
"x

"#2
"y

"#2
"z

1

"#3
"x

"#3
"y

"#3
"z

1

! ! ! !
"#m
"x

"#m
"y

"#m
"z

1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

                             Evaluating the time term


  

! 

"
! 
# = A$! x +%

! 

b = Ax +"
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! 

b = Ax +"

Expresses linear relationship between residual 
observations, Δτ, and unknown corrections, δx.


Plus unknown noise terms.


Linearized observation equations


Blewitt, Basics of GPS in “Geodetic Applications of GPS”


  

! 

"
! 
# = A$! x +%
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! 

"
! 
# = A$! x +%

Blewitt, Basics of GPS in “Geodetic Applications of GPS”


  

! 

AT"
! 
# = AT A$! x 

Previous linear least squares discussion gives us 


Next use least squares to minimize the sum of the squares 
of the residuals for all the stations.


  

! 

F "*( ) = #$ k "
*( )[ ]

 2

k=1

m

%
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–In GPS processing we call the matrix A the design matrix 
(it goes by other names in other fields)




Coefficients 


Partial derivatives of each observation

With respect to each parameter


Evaluated at provisional parameter values




A has 4 columns (for the 4 parameters)

and


As many rows as satellites (need at least 4)




Can calculate derivatives from the model for the 
observations


Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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This is called Geiger’s method





Published 1910











Not used till ~1960s!


(when geophysicists first got hold of a computer)
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So far




Have not specified type of arrival.




Can do with P only, S only (?!), P and S together, or S-P.




Need velocity model to calculate travel times and travel 
time derivatives


(so earthquakes are located with respect to the assumed 
velocity model, not real earth.


Errors are “formal”, i.e. with respect to model.) 




Velocity models usually laterally homogeneous.
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(xeq, yeq , zeq , teq )


tteq,1


(xs1, ys1,t1)
   

! 

A =

"#1
"x

"#1
"y

"#1
"z

1

"#2
"x

"#2
"y

"#2
"z

1

"#3
"x

"#3
"y

"#3
"z

1

! ! ! !
"#m
"x

"#m
"y

"#m
"z

1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

Problems:

Column of 1’s – if one of the other 
columns is constant the matrix is 
singular and can’t be inverted. 
Mathematical problem.
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(xeq, yeq , zeq , teq )


tteq,1


(xs1, ys1,t1)
   

! 

A =

"#1
"x

"#1
"y

"#1
"z

1

"#2
"x

"#2
"y

"#2
"z

1

"#3
"x

"#3
"y

"#3
"z

1

! ! ! !
"#m
"x

"#m
"y

"#m
"z

1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

Problems:

if any of the columns are approximately 
constant the matrix is "ill-conditioned"

(looks singular in computer math) and 
can’t be inverted by computer.
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(xeq, yeq , zeq , teq )


tteq,1


(xs1, ys1,t1)
   

! 

A =

"#1
"x

"#1
"y

"#1
"z

1

"#2
"x

"#2
"y

"#2
"z

1

"#3
"x

"#3
"y

"#3
"z

1

! ! ! !
"#m
"x

"#m
"y

"#m
"z

1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

How can this happen:

- All first arrivals are head waves from 
same refractor 

- Earthquake outside the network
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! 

A =

"#1
"x

"#1
"y

"#1
"z

1

"#2
"x

"#2
"y

"#2
"z

1

"#3
"x

"#3
"y

"#3
"z

1

! ! ! !
"#m
"x

"#m
"y

"#m
"z

1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

=

"#1
"x

"#1
"y

c 1

"#2
"x

"#2
"y

c 1

"#3
"x

"#3
"y

c 1

! ! ! !
"#m
"x

"#m
"y

c 1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

  

! 

"#k
"z

= constant $ k

All first arrivals are head waves from same refractor


In this case we 
cannot find the 

depth and origin time 
independently.
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! 

A =

"#1
"x

"#1
"y

"#1
"z

1

"#2
"x

"#2
"y

"#2
"z

1

"#3
"x

"#3
"y

"#3
"z

1

! ! ! !
"#m
"x

"#m
"y

"#m
"z

1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) ) 

=

c1 c2
"#1
"z

1

c1 c2
"#2
"z

1

c1 c2
"#3
"z

1

! ! ! !

c1 c2
"#m
"z

1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) 

  

! 

"#k
"x

$ constant % k

"#k
"y

$ constant % k

Earthquake outside the network


In this case only the azimuth is constrained.




If using  both P and S, can also get range, but S “noisier” 
than P so is marginal improvement.


Probably also suffering from depth-origin time coupling 
since all first arrivals could be head waves.
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Problem gets worse with addition of noise (changes 
length of red lines – intersection point moves left/

right – change of distance - much more than in 
perpendicular direction – change of azimuth.) 
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Similar problems with depth. 

 

d/dz column ~equal, so almost linearly dependent on 
last column 

and 

gets worse with addition of noise (changes length of 
red lines – intersection point moves left/right [depth, 

up/down {drawn sideways}] much more than in 
perpendicular direction [position].) 

. 
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Other problems: 
 

Earthquake locations tend to “stick-on” layers in 
velocity model. 

 
When earthquake "crosses" a layer boundary (as 

iterate), or the depth change causes the first arrival 
to change from direct to head wave (or vice verse or 

between different head waves), there is a 
discontinuity in the travel time derivative (Newton’s 

method). May move trial location a large distance. 
 

Solution is to “damp” (limit) the size of the 
adjustments – especially in depth. Location tends to 

move horizontally at depth of boundary. 
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Other problems: 
 

Related to earthquake location, but bigger problem 
for focal mechanism determination. 

 
Raypath for first arrival from solution may not be 
actual raypath, especially when first arrival is head 

wave. 
Results in wrong take-off angle. 

 
Since head wave usually very weak, oftentimes don’t 
actually see head wave. Measure P arrival time, but 

location program treats it as Pn. 
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A look at Newton’s method





Want to solve for zero(s) of F(x)





Start with guess, x0.


Calculate F(x0) (probably not zero, unless VERY lucky).


Find intercept          x1 = x0-F(x0)/F’(x0)
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Newton’s method





Want to solve for zero(s) of F(x)





Now calculate F(x1).


See how close to zero.


If close enough – done.
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Newton’s method


If not “close enough”, do again


Find intercept    x2 = x1-F(x1)/F’(x1)


If close enough, done, else – do again.
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Newton’s method





Xn+1 = xn-F(xn)/F’(xn)





What happens when F’(xn)=0?





Geometrically, you get sent off to infinity – method fails.


(Mathematically can’t divide by zero – method fails.)
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Newton’s method





How does convergence depend on starting value?


Some starting values iterate through xn=0 and therefore 
do no converge (limited calculation to 35 iterations).
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Newton’s method





Other problems


Point is “stationary” (gives back itself xn -> xn…).


Iteration enters loop/cycle: xn -> xn+1 -> xn+2  -> or = xn …


Derivative problems (does not exist, eg. absolute value 
at 0).


Discontinuous derivative.
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Newton’s method applied to solution of non-linear, 
complex valued, equations


Consider


Z3-1=0.
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Newton’s method applied to solution of non-linear, 
complex valued, equations


Consider


Z3-1=0.


Solutions


Three of them


1 e (i2πn/3)


n=0, 1, 2


Distance = 1


Every 120 degrees
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Newton’s method applied to solution of non-linear, 
complex valued, equations


Consider


Z3-1=0


Solutions


Three of them


1 e (i2πn/3)


n=0, 1, 2


Distance = 1


Every 120 degrees
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Take each point in the complex plane as a starting guess 
and apply Newton’s method.


Now


Color the starting 
points to identify 
which of the three 
roots each starting 
point converges to 

using Newton’s 
method.


eg. all the red points 
converge to the root 

at 1.
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Let the intensity of 
each starting point’s 

color be related to 
the number of steps 
to converge to that 

root


(brighter - converges 
faster, darker – 

converges slower)
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Notice that any 
starting point on the 
real line converges to 

the root at 1


Similarly points on 
line sloping 60 

degrees converge to 
the other 2 roots.
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Notice that in the 
~third of the plane 
that contains each 

root things are pretty 
well behaved.
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Notice that where any 
two domains of 

convergence meet, it 
looks a little 
complicated.
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Basically – the 
division between any 
two colors is always 

separated by the 
third color.





AT ALL SCALES!
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Zoom in
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Zoom in again
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If you keep doing this (zoom in) the “triple” junctions 
start to look like


Mandlebrot sets!


and you will find points that either never converge or 
converge very slowly.





Quick implication –


linear iteration to solve non-linear inversion problems


(Newton’s method, non-linear least squares, etc.)


may be unstable and not work.



