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Coordinate sgstems
Simple sPherical

Geodetic — with resPcct to e"il:)soicl normal to surface
does not intersect origin [in gcncral]

ECEF XYZ — earth centered, earth fixed XYZ.
Is what it says.



COD

1C COORDINAT

=5 AT

[ [

Ahbrh

4
[

|
éavy deton
I
I
No
I
I
t

b/

Gei) <# :

/) EahSsufae
Loal qupoenal af a

nnltnli,s\d

\

. 7

(Herring)



[

LONGITUD

/*///r

e



The “Problem" arises because we’ re de{:ining the
“location” (latitude) based on the orientation of the

“surface” of the earth (not the ellipsoicl) at the Point
where we want to determine the location.
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“shaPe" of the surface of the earth - with the variations
greatlg exaggerated. For now we’ re not being very
sPeciFic about what the surface rePresents/ how it is

defined.

Image from: http: //kartoweb.itc.nl/ ‘geometrics/ Reference%20surfaces/refsurf.html



This means that we have to take the “shaPc" of the
surface into account in clcfining our reference frame.

||||||

We are still not even consiclcring the vertical. We’ re still
only discussing the Problem of 2-D location on the
surface of the earth.

Image from: http: //kartoweb.itc.nl/ ‘geometrics/ Reference%20surfaces/refsurf.html



Traditional aPProach was to define |oca|/ regional datums
(ﬁattcning, size, origin — tgPica"g not earth centered,
orientation).

%‘kﬁca Europe
Py |
]\ 3/ /

S.America Africa

(Assume gravitg Pcrpcnclicular to "surface" — which is not rca"g the case - since measurements made with a Icvcl.)



These datums were “best fits” for the regjons that they
covered. Theg could be cluitc bad (uP to 1 km error)
outside those regions however.
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These datums are also not “carth centered” (origin not
center of mass of carth) . Convcrting from one to
another not trivial in Practicc.
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Real shaPe can also have uniclueness Problcm — using
level = more than one spot with same “latitude”!

S.America Africa



“Modern” solution is an earth centered global “best Hit”
c"iPsoicl to the shapc of the earth — the gcoicl.

ELUPSOID

Here we introduce the “thing" that defines the “shaPe"
of the earth — the GEOID.

The geoicl is what defines the local vertical (and where
gravity sneaks in).

Image from: http: //kartoweb.itc.nl/ ‘geometrics/ Reference%20surfaces/refsurf.html



The geoid is a phusical thing (like the topographic
r% 9 A %icrz:l.

surtace)— an equipotcntia of the gravitg

—\

But we may not be able to “locate” it
(can’ tsee it like we can the toPograPhic surFace) :

So we have to make a “model” for the geoicl.

Image from: http: //kartoweb.itc.nl/ ‘geometrics/ Reference%20surfaces/refsurf.html



Here we introduce the concept of “Phgsical" VS
“gcomctric" Position.

The gcoicl (since it chencls on the actual “shaPe “of the
earth, and we will see that it directly effects traditional
measurements of Iatituclc) givcs a P%wgsical definition of

Position.



Here we introduce the concept of “Phgsical" VS
“gcomctric" Position.

The c“iPsoici gjves a zgcometric definition of position

(and we will see that “modern” Positioning — GPS for

examPIe — works in this system — even thoug1 gravitg
and other Phgsic:s effects the sgstcm) \




Here we introduce the concept of “Phgsical" VS
“gcomctric" Position.

The horizontal “datum” is a best fit c"ipsoicl (to a regjon
or the whole earth) to the shaPe (gcoicl) used as a
coordinate sgstem for sPccthing horizontal Position.



WHAT ABOUT HEIGHT

Geocentric coordinates (¢, A, h)

(this is based on standard s

Pherical coordinate sgstcm with

|1=R~RC, heig’ﬂ: IS clearlg defined, simple to understand).

z (North)
z=R, sin ¢
R=R,cos ¢
(JOServer
Equator

From Kelso, Orbital Coordinate Systems, Part], Satellite Times, Scp/ Oct 1995




WHAT ABOUT HEIGHT
For the E"iPsoicl coordinatei‘ (q), &i’: h) - E"ipsoiclal/

Geodetic he

Distance of a POinT from the c”iPsoid mcasnl.:rcd along
the Peraenclicu ar from the e"ipsoicl to this Point.

Por’ch Local Zenith

Observer
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j Equator

From Kelso, Orbital Coordinate Systems, Part i, Satellite Times, Jan/ Feb 1996



What about HEIGHT
~or the Geoid things geta little more interesting.

measured a ongt e cr‘scnclicu ar rrom thc gcoi

The hcight IS fhe distance of a Point Erom the geoicl
(direction E”om gravitg) to this Point.

Notice that —
the height above the geoicl "

(I"CCl inc) maH not be/is =LUPSON
not the same as the

e"iPsoicl height (blue line)

and that height above the
gcoicl may not be uniquc

Image from: http: //kartoweb.itc.nl/ ‘geometrics/ Reference%20surfaces/refsurf.html




What about HEIGHT

when we use a level to find the yertical (tradi ional
survcging) we are casuringwit respect to the gcoicl
(what is the geoid ?).

Image from: ht‘tp: //kartoweb.itc.nl/ ‘geometrics/ Reference%20surfaces/refsurf.html



This brings us to a fundamental Problem in Geodesy ~---

"‘Height" Is a common, orclinarg evergclag word and
everyone knows what it means.

Or, more Iikelg, everyone has an idea of what it means,
but nai|ing own an exact definition is surPrisinglg

trickg. ‘

Thomas Meyer, University of Connecticut



The C?e id is the “actual” shaPe of the earth. Where the
word “attual” is in quotes for a reason!
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The geoicl IS a rePresentation of the surface the earth
woulcl have if the sea covered the earth.

This is not the surface one would get if one Pourecl more
water on the earth until there is no more clrg land!

It is the shape a fuid Earth (o{: the correct volume)
would have if that fluid Earth had cxactlg the same
gravitg field as the actual Earth.

Where did this reference to the gravitg field sneak in?



Since water is a Huid, it cannot support shear stresses.

This means that the surface of the sea (or of a lalce, or
of water in a bucket, etc.) will be

e Per:)cnclicular to the force of gravitg

-~ an cc!uiPotential surface

(or else it will How until the surface of the boclg of water
IS cvergwherc in this state).

So the definition of the “shaPc" of the earth, the gcoid,
IS intimatelg and inseparably tied to the earth’ s gravity

 field.




This is goocl

gravity is one of the most well understood branches of
Phgsics.

This is bad

the gravitg field of the earth depcnds on the details of
the mass distribution within the earth (whic:h do not

clePcncl on the first Fprinciples of Phgsics — the mass
distribution of the earth is as we find it).



The geoicl IS a rePresentation of the surface the earth
would have if a sea covered an earth with the same

gravitg field.

It is the shape a Huid Earth would have if it had exactlg
the same gravitg field as the actual Earth.




The definition is clear concise, and well defined

Phgsica"g.

Problems arise when trging to find where this surface
ac:tua"g Phgsica”g resides due to things like

-~ currents, winds, tides c#ecting “sea level”
-~ where is this ima%inar surface located on land?
(genera"g below the land surface - excePt where the
land surface is below sea Icvel, e.g Death Va"eg, Dead
Sea - it is the level of Huid in channels cut through the

land [aPProximatclgl .



So — what
does this
surface — the
gpoki~
actua"g look
ike?

(greatl y
exa ggeratecl

in the
vertical)




Shaded, color coded “topographic" representation of
the gcoicl




E)adjoke for the clag

“What's uP?"

f PerPenclicular to the geoicl."



2. Gcoclesg
ShaPc of the earth / gravity, gcoic] (Phgsical)

reference frames, ellipsoids (geometric)

The Direction of Gravity

From Mulcare or http: 1/ www.ordnancesurv&&co. uk/oswebsite/ gps/ inFormation/coordinatcsystemsin{-o/ ‘guidecontents/guide2.html

30



2. Gcoclesg

How gravity makes it “interesting"

which way is “uP"? thow does water How?)

The Direction of Gravity
/ What about measurements with |ight?

level
e,

31

From Mulcare



What is the Geoid?

Since the geoic is a complicated Phlrjsical entitg that is
>ractical y indescri

a—

Find a “best fit” e"il:)soicl
(ancl look at variations with resPec:t to this e"iPsoicD i

Current NGS definition

The ecluipotential surface of the Earth’ s ravity field
which best fits, in aleast slclualres sense, glo al mean sea
evel.

From Mulcare
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One can (some People do) make a career of mocleling
the “actual geoicl 133 using sPhcrical harmonic
cxPansions of the geoi with resPect to the e"iPsoiclaI

best fit gcoid.

There are “40,000 terms in
the “best” cxPansions.

Famous “Pear" shaPe of
carth.

16. Relation of Geoid to Ellipsoid (After King-Hele, 1963)



Geodetic Reference

r Surfaces
;ph! A beachball globe
‘ Mathematical best fit to Earth’ s
surface: used for cle{:ining
Latitude and Longitucle

Ellipsoid

(Oblate Sphere)

Modeled best fit to “sea surface
cquzpotcntia/ avity field used
for clcfining Elevation

The real deal

Fig from NGS: file:///C: /Documents%lOand%ZOSettings/ Bob/| My%ZODocuments/ geoc]esg /noaa/! geoO}_\cingc.html



Heights and Vertical Datums
Define location 139 triplet - (latitude, longituclc, hcight)

Fom Local Zenith
Observer
R’\ h
: fooa/
b | Yoy,
p i Zf O/)
|
|
] |
¢ L Equator
i /




Heights and Vertical Datums

More Precisc:l? - Geodetic latitude and longituclc ~
referred to oblate ellipsoid.

Heigh’c referred to Perpendicular to oblate c"ipsoicl.
(geometric.al, is “accessible” bﬂ GPS for example) .

Fom Local Zenith
Observer
, , (11 ’ ’ » ,
#R&\% I—, Thls 1S ca"ecl C"lPSOIClaI helght, hP
i 00‘9/;/
|
¥ ¢ i Equator
; J




In traditional
surveging — hei%bt
is measured wit
resPcct to mean sea

level, which serves

as the vertical
datum (and is

accessible at the

origin Point) :

FlI’
E

i II:J-II'I i L=

Heightis m_casurcd
as%istance along
the “plumb” line

(which is not

| actua 13 straight)

and is called
orthometric height
(H,)

Ll dmlmin |

Fipwre | Ellipssdal beghe voram arfhomeine beight with mespeet 0 vertical datmm,

Jekeli, 2002: http: // www.Fgg.uniJj.si/ ~/mkuhar/zalozba/ Hcights_Jclceli.Pch
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Line follows gradient of level surfaces.

Www

H (Orthometric Height) = Distance from P to P,

Little Problem — geoid defined by equiPotcntiaI surface,
-an’ t measure where this is on continents (sometimes even
have Problems in oceans), can onlg measure direction of
perpenclicular to this surface and force of gravity.




Ellipsoid, Geoid, and Orthometric Heights

11 »” v g
h=H+ A
%&&%@
P
Ellipsoid Plumb Line
\ h k\

/ Q %
Mean

Sea + “Geoid”

Leve

Ocean . | (Ellipsoid Height) = Distance along ellipsoid normal (Q to P)

H (Orthometric Height) = Distance along plumb line (P, to P)

David B. Zilkoski
168.25.217.17/jwi|bur/stuclcnt_ﬁles/ SPatia|%20Rc{:erencc%205¢minar/ dzi"coslci.PPt



Two questions —
]

Given clensitg distribution, can we calculate the
gravitational field?

Yes — Newton’ s law of universal gravitation

2

Given volume V, bounded bg a surface S, and some
information about gravity on S, can you find gravity
inside V (where V may or may not contain mass)?

Qualified yes (need g or normal gradient to Potential
everywhere on su ace)



Potential Fields

As was mentioned earlier, the geoicl/ mean sea level is
defined with resPec’c to an equiPotential surface.

So how do we connect what we need (the cc]ucirotential
surFace) with what we have/ can measure (direction

and magnitucle of the force of gravitg)

Use Potential field theorg

So, first what are Fields?

A field is a function of space ancl/ or time.



Examples of scalar felds

temPerature

toPograPhg

Contours
_F-ﬂ':,, - _‘-’."'-'I'-}'q"'h
ﬂd:_:_::':;i_ﬂ- - _-»,\ B .-z-"f‘ll:?:'} &Y :l' fj‘?f%?‘\l}}k&
i o Flyy=const _ =TT ) EETUN

: .-.:rl,l, 1 1] P

B
Grey (color)
e .
scale .

el

Jvogt —~ ]’ﬂrtp:/ /' www.{:acultg.iwbremcn.de/jvogt/ edu/ springO}/ NatScilLab2-GeoAstro/i nslgal-lccturel Pd{:
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Jvogt —- ht‘tpz/ '/ www.{:acu|t3.iu-bremen.cle/jvogt/ edu/ springO}/ NatSciLab2-GeoAstro/ nslga2~lecturc2. Pch

Examples of vector fields

Homegeneous veolor fie]dl
ALl
AR
AL E

F AT

ALSAALSSAST

ALLLLLSSSSS

AR ASS AT

PPl o

APLERLSS ST

ALSASS TS

P P

streamlines

SLDFMSS

Vector map

Radial vector flield F=r
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Examples of vector fields

streamlines

SlOPCS

Plot streamlines e NS I

1.5 ¢ ey _-I‘ 3
- e I
?:. i |
0 15 L0 1.0

Quadrupoli 8
1 !
by
A & : 4 ¥
i .
d3t T H]
-1 =
—=
2.5 - o
] II
SR
33
S0 o ] FO0 23 A0

Jvogt —- ]'lt‘tpz/ '/ www.{:acu|t3.iu-bremen.cle/jvogt/ edu/ springO}/ NatSciLab2-GeoAstro/ nslgal~lecturc2. Pch



We are interested in
Force fields

describe forces acting at each Point of space ata given
time

Examples:
gravitg field

magnetic field
electrostatic field

Fields can be scalar, vector or tensor



We know that work is the Procluct of a force appliccl
through a distance.

1

If the work done is indepenclent of the Path taken from
X to X, the work done clePcnds onlg on the starting
and encling Positions.

A force with this tch of
sPecial ProPcrty is said to be
a “conservative” force.

»
Wblaclc,?. stcpzwo



If we move around in a conservative force field and return
to the startin Point — bg using the blue Pa’m to go from
A to B and then return to A using the red Pat for
example — the work is zero.

We can write this as

PF e dl=0

»
Wblack,?. stcpzwo



l mPortant imPIication of conservative force field

gﬁlj" o dl = f (V X 17“) e dS Stoke's theorem

closed path S

if gﬁlj" e dI =0 for all closed paths, then

closed path

f f (V x F ) * dS =0 for all surfaces means
S

V x F =0 everywhere (curl free vector field)

and since V x VU =0 for all scalar functions U, then

we can write F = VU

A conservative force field is the derivative (graclient In 3~
D) of a scalar field (Function)!



This means our work inte%ra is the solution to the
differential equation

dU(x)

dx

Where we can define a scalar “Potential" function U(x)
that is a function of Position onlg and

F(x)=-

U(x) = - [ F(x)dx + U(x,)

Where we have now included an arbitrarg constant of
integration. The Potcntial function, UX), 1s onlg defined
within a constant — this means we can Put the position
where Ux)=0 where we want. It also makes it E,arc‘ to
determine its “absolute”, as oPPosed to “relative” value.



So now we have the Pair of ecluations

dU(x)
dx

U(x) = —jg(x)dx +U(x,)

g(x) =-

It you know U (%), you can comPutc g(x) ) where | have
changccl the letter “F for force to “ g for gravity.

if l2ou know the force g(x) and that it is conservative,
then you can comPutcr Ux) -to within a constant.



X

U(x) = —fg(x)dx +U(x,)

X0

U is Potential, the negative of the work done to get to
that Point



So to Put this to use we now have to ---

) Show that gravitg is a conservative force and therefore
has an associated Potential energy function.

2) Determine the gravit Potential and gravitg force
Fielcls or the earth

(first a DProximation 1 sPherica!
next aPProximation —e gpsoiclal shaPe due to rotation
and then a just for rotation)

) Compare with real earth



Newton’ s Universal Law of Gravitation

m.m
171521 Z,
>
r

F=G

where F is the force

m, and m, are the masses

r 1s the distance between them

r is the unit vector seperating them

and G 1s the universal gravitational constant



In geophgsics one of the masses is usua"g the earth so

4 M m .
F=G——r A
r A
r
. r
using D
F =ma

we can define

M

ad=G—r =-g the acceleration due to gravity

r
(the minus sign 1s to make the force

attractive, with 7 pointing outwards)

Figure from Ahern, ]'ﬂ:tp: // gcophgsics.ou.edu /gravmagy/| Potential / gravity_Potential.html#newton



Is gravity conservative?

for a mass distribution the acceleration becomes
P(x\y.,z)

/4 pdV .

a=0G r

check (only works r > r;, since using M )

45 o dF 45 Mereir- ) 6Meas

closed path closed path closed path
1 1 . 114!
use d| - |=-—, and throwing out "-" sign now
r r
b
M 1 1"
G—<dr=GM, d|=|=GM ~| =0
r r ri,
0
closed path closed path

SO graVIty IS d COIlSGl‘VatiVe fOI‘ C€C (in general any central force field which depends only on r is conservative)

Figure from Ahern, ]'ﬂ:tp: // gcophgsics.ou.edu /gravmagy/| Potential / gravity_Potential.html#ncwton



Now we can define the Potcntial as the work done to
l:)ringa unit mass from irncinitg to a distance r (set the
work at irncinitg to zero)

r rl., A

for infintesimal mass
Gdm

r

work =U =




So we can write the force field as the derivative of a
scalar Potential fieldini-D

dU(x)
dx
goingto 3-D, it becomes a vector ecluation and we have

g(x) =-VU(x)
which in spherical coordinates is

Jd. 1 d » 1 0

g(r,0,0) =-VU(r,0,0) = —(Er + ;EQ + rsinf 06 ¢)U(r,0,¢)

3. 19~ 1 a(i))(de)

g(r,0,9)=—| —r+—0+—;
8(r-0.9) (8rr rdo rsinf d¢

g(x) =-

r

/

! Gdm . 5
§(r) = =57 S

Figure from Ahern, ]'ﬂ:tp: // gcophgsics.ou.edu /gravmagy/| Potential / gravity_Potential.html#ncwton




Applg to our exl:)ression for the gravitg Potential

d A LIRRRRLEANS

g(r,0,0) =-VU(r,0,0) = —(Er + ;8_08 + rsind 99 gb)U(r,H,qb)

Gdm

r

0 1 0 - 1 0 ~) Gdm
0,0)=—-|—r+—-0
8(r:0.9) (ar +r89 +rsin8 8¢¢)( r )

U =

(a scalar)

4 Gdm .
g(l") 7 7”2 7"

which agrees with what we know

Figure from Ahern, ]'ﬂ:tp: // gcophgsics.ou.edu /gravmagy/| Potential / gravity_Potential.html#newton



To find the total potential of gravitg we have to i ntegrate
over all the Point masses in a volume.

P(X.,y.z))
\

(X,Y,2)

Gd Gd
U(x',y',2) = —— = ik

q \/(x—x’)2+(y —y’)2+(z—z’)2

Figure from Ahern, http: // gcophgsics.ou.cdu /gravmagy/| Potential / gravity_Potcntial.html#ncwton



To find the total potential of gravitg we have to i ntegrate
over all the Point masses in a volume.

P(x\y.z)

.\

;‘ dm =p(x,y,z)dxdydz

Ry |

Gdm dm
r’ r, N — _d s d d d
il f{f q | Gf{f \/(x 4 x’)2 + (y H y’)2 +(z - z')2 i

Figure from Ahern, ]'ﬂ:tp: // gcophgsics.ou.edu /gravmagy/| Potential / gravity_Potential.html#ncwton



ings are spherically symmetric it is easier to work in
it thing pherically tric it to work
sphcrica coordinates

Ex: uniform clensitg sphere

z
4 Rsin8
cgaem e Q
¢ “3 P < .
———————————— Lo P A 8 R
y R38
R/.//
.-//
[ 8 A
?/
-y
¢

U(P) = fff%(rz sin drd6d¢), with constant p
V

U(P) =Gp}}71r2 sinf drd6d¢
0 0 O q

Figures from: rig]'xt - Ahern, http://eeoph html#newton, left - http:/ Jwww.siu.edu/~cafs/surface/filet3.html




Grincling thorugh

R

U(P)=Gp [ }zf— sin6 drd0d¢
0 0 O q

use/substitute g~ =r>+s" —2rscos6

U(P) =2aGp f f : r?sin6 drd®
\/r +5° —2rscosf

1
U(P) =2aGp f f iy _Mur drdu (use u = cos6)




Grincling thorugh
1

U(P) =2aGp f f r? drdu,u = cos 0
Vr+12—2mu
2+/a + bx
use f
Va+bx b
Vr+w —2rs
U(P) = 27Gp | [ r2dr
S 0 r
R —— —
U(P)=27TGPI‘(S+F) (s ”)‘rzdr
ST r
R 3
(P = 47Gp [ rar _GARp G(Vp) _GM
S % S S S
oU GM
SET 11



So for a uniform clensi’ty sPhere

The Potential and force of gravity at a point P, a distance
s>R from the center of the s ere, are

GM
e T ITR

v P 1 oU GM .
g(P)=_ =5 3
0S S

Figure after Ahern, |11:tP: // gcophgsics.ou.edu/ gravmag/ Potcntial/ g’avitg_l:)otential.html#ncmn



Note that in seismologg the vector displacement feld
solution for P waves is also cur] free.

This means it is the graclient of a scalar field — call it the
P wave Potential.

So one can work with a scalar wave cquai:ion for P waves,
which is easier than a vector wave cc]uation, and take the
graclient at the end to get the Ph sical P wave
clisPIacement vector field.

(This is howitis Prcsentccl In many introductorg
Seismologg books such as Stein and Wgsession.)

Un{:ortunatelg, unlike with gravity, there is no Phgsical
interpretation of the P wave potential function.



Next ex:

Fy

. — Force of gravitl? from sPherical
shell
dV =2xtr'sin@d6, Dm=pdV
mdM sinf do
dF = G—5—cosa =2m Gmp tr’ ———cosa
x X

R —rcos6

from geometry coso =
X
R*+7r’ —x?

law of cosines x* = R +r> —2Rrcosf gives rcosf = 33

2xdx = 2Rsin6d6 so sinfdo = Ridx
r

7 Gt R* -1’
combine dF = R[Z & 2r +1|dx
£

After Ha”iclag and Resnick, Fundamentals of Phgsics



. = Force of gravit[? from sPhcrical
shell

FIGURE 14-4 Gravitational attraction of a section dS of a spherical shell of matter on a particle
of mass m.

2 2
R -r

2
X

JF - JIG;/; mr

integrate over all circular strips (is integral over x)

+ 1)dx

R4+r

J

R-r

2 2
R —-r

P
X

7 Gtp mr

5
LN, +1)dx= 2

F = 7

) ) R+r

R -r 1 } 7 Gtp mr
x —

X

R—-r

M
but M = 4mp > so F =G
R

Uni{:orml? clcnsc sPhcrical shc“ attracts cxtcrnal mass as
if- all its mass were concentrated at its center-.

After Ha”iclag and Resnick, Fundamentals of Phgsics



From inside a shell, the lower limit of integration cl’wanges
to r-R and we get zero.

[
+1)dx=nG€mr
R

= R2 2

X

_xGipmr Rf(Rz e
X

R+r
R —r*
— +x] =0

r-R r-R

R+r R

After Ha”iclag and Resnick, Fundamentals of Phgsics




For a solid sphere — we can make it up of concentric
P P

shells.

Each shell has to have a uniform clcnsitg, although
ditferent shells can have different densities (dcnsity a
function of radius onlg — think “earth™.

From outside — we can
consider all the mass to be
v concentrated at the center-.

\



Now we need to find the Potential and force for our

e”isPsoicl

(note that we are not starting from scratch with a

sPinning, se
equilibrium S

of revolution (a ncarig spherica OQC 9) \

f gravitating fuid bocig and Figuring out its

nape — we' re oing to 1ind the gravitational

Potcntial anc

force for an almost, but not cluitc sPhcrical

body.)

Discussion after Turcotte, Ahern and Nerem



EARTH'S GRAVITY !

i [



Calculate the Potential ata Point P (outsidc) dueto a
nearlg sPhcrical boclg (thc carth) \

Setu tlnc cometry for thc roblcm:
pthe g Y P
For simPlicitg ~ Put the origin at the center of mass of the
bodg and let P be on an axis.

b ¥

dmlx N )




Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.
F

dmlx N )

>
we start with expression for potential
v--c |
r

Volume

use law of cosines > = R* +S* —2RS cos6
d G ¢S it
U=-G & TiTaie 1+—2—2—cosH dm
(R2 + 57 —2RScost9) R R R
Volume Volume



U=

G

R

J

Volume

Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

dm(xyz)
Y,
_\7/\_./
I
S r
=t
e \ _
O(em.) R P z

)2 |
dm




Calculate the Potcntlal ata Pomt Pduetoa ncarly sPhcrica! boclg.
d l K,YZ
J

2 ) 3
v~-Y f {0 —+ L 352 cosZH+0(§) dm
R 2R R 2R R
Volume
Uz—g fdm+lfScosH dm 12 (—Sz+3Szcoszl9)dm
R R 2R
| Volume Volume Volume |

2 g X
use cos"@=1-sin"6

Um-S| | dm+> | Scoso dm+—, (257 -357sin* 6) dm
R R 2R

| Volume Volume Volume




Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

dm(x,vz)

N‘r

Ofem.) R P
( : )
V=-— & dm+— ScosO dm+ G3 (2S2—3stm H)d
R 2R
\ Volume Volume Volume )
where each integral is multiplied by a different order of %, SO rename
U=U,+U,+U,
now

U, = 1 f dm = —GTM same result for sphere with uniform density

Volume

(all mass at point at center)



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrical bocly.

4+ Y
dml(x v,z)

N‘r

( \
IR cos) dim+ -2 (28° -387sin”6)dm
R R 2R
\ Volume )
U =— f . dm=— f dm
Volume Volume

z 1s projection of S on z axis.
This is the equation for the center of mass (first moment), but we have placed
G

R2 Zcenter of mass

the origin at the center of mass, so this integral is zero. U, = =0



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrical bocly.

4+ Y
dml(x v,z)

N‘r

)L/ L
\
G
Py

f2S2dm—f3528in20dm

| Volume Volume

(252 ~35%sin’ H)dm

Volume

use s' = Ssinf (see diagram)

G

U= op

f 28* dm - ~l'3s'2 dm

| Volume Volume




Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrica! boclg.

L+ Y

dm(x iz )

N‘r

now what are

[282am

Volume

f 3s"*dm

Volume



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

L+ Y

dml(x iz )

N‘r

start with

2
3 f s'“dm
Volume

notice from figure that this is just the moment of intertia about an

axis from the origin to the point P

2 : . : L :
I, = f r“dm, where r 1s perpendicular distance from rotation axis.

Volume



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

L+ Y

dml(x iz )

N‘r

GM G G

L 31, + 252dm)
R 2R Y 2R’ V,fm

now for the last term, it too is an integral of

U=~ -

distances from the origin to all points in a body.
Can we massage this into something that looks like

moments of 1nertia?

(yes, or we would not be asking!)



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

L+ Y

dml(x iz )

N‘r

G
2R’

S 1s the distance to a point in the body, which 1s invarient under

U’=

f 282 dm

Volume

coordinate rotations, SO

SZ £ X2 +y2 +Z2 =x/2 +yr2 +Z12

where the primed values are in the principal coordinate
system for the moments of intertia (same idea as principal

coordinate system for stress and strain).



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

L+ Y

dml(x iz )

N‘r

U3/ / 2;33 Vo;{m%Sde I ZCI;3 Vo{m%(x’z | y,z | Z,Z)dm
U, = 2(;3 Vo;{m(ex'z +y) +(x" + z’z) +(y"” +2°)dm

where each of the terms is the principal moment of inertia

about the 7/, y’ and x’ axes respectively.

G
L@=2RJ4+5+QLSO

G
l@=2RJA+Q+Q—3QJ




Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

R4

dm(xyz)
/
___*?/\_./
s/ '
=t
(c.m.) R P

A

putting it all together

dm GM G
U=-G [ AV e -2R3(11+12+13-310P)

Volume

Potential for sPI‘)ere Plus acljustmcn’cs for Principal
moments of inertia and moment of inertia along axis
from origjn to Point of interest, P.

This is MacCu"agh’ s formula for the Potential of a
ncarlg sphcrical boclg



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

Fora sphere | =l,=],= and

3 op
GM
R

LiL

(which we knew alreadg)



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

R4

dm(xyz)
/
.
s/ '
=t

So here’ s our semi-final result for the Potcntial of an

aPProximatelg spherical bodg

dm GM G
U=-G [ “==U+U, =- : _2R3(11+12+I3_3IOP)

Volume

Now let’ s look at a Particular aPProximatelg sPhcrical

boclg — the culpsoicl



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.
3

dm GM G
U=-G [ “Z=U,+U,=- F _2R3(11+12+I3_310P)

for an ellipsoid I, =1, = I,

1,, =1 cos’ 0 +I,sin” 0, where 0 is latitude (rotate into prin. coord. sys.)

I, = 11(1 —sin’ 6) +1,sin’0 =1 + (13 — Il)sin2 0
so (I +1,+1,-31,,) = (211 +1,-3 (11 + (1 —Il)sinzﬁ))

(L+0,+1,-31,,)=(I, - 1) (1 - 3sin” )



Calculate the Potcntial ata Point Pduetoa ncarly sPhcrica! boclg.

dm GM G
U=—-G f —=U+Uy == _2R3(11+12+I3_310P)

Volume

so for an ellipsoid this becomes

GM G
R 2R
GM

U=-"2"|1- [ _I;)(3sin26 -1)
R QMR

(£, - 1) (3sin* 0 -1)

Thisis MacCu"agh’ s formula for the Potential of an an
e"iPsoicl



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrica! boclg.
GM = .
=——"1- ( : ;)(3sm26 —1)
R 2MR

the term (3sin2 0 - 1) is the Legendre Polynomial
P(x)=3x>-1, P,(cosf)=3cos’0 -1

(13 _Il)

letting J, = =1.08263 107
g/ MRez
J, has various names including "dynamic form factor" and " ellipticity coefficient
GM(, R’
—T 1- 2R2 ]2P2(COSH))

So the final result for the Potcntial has two Parts —

the rcsult for thc uniform sr nere
|

blus a correction for the ellipse




Now we can find the force of gravitg

R2

G ]-— J2P2(cost9))

URB) = -——

2R’

now to find g(r), we take the derivative

g(r96)=_ T

oU(r,0). (GM 3GMR~ \
7, )r— — - —J,P,(cos ) |7
or r 2r

This is MacCu"agh’ s formula for the gravity of an
c"iPsoicl.



Differential form of Newton’ s law -

So far we’ ve looked at the “integral" form for Newton’ s
gravitational force law.

11 (X') dx"”
§®=-G[F 3
\%4

But we also have

8(x) =VU(x)

Which is a ditferential ccluation for the Potcntial .
Can we relate U to the clensitg without the integral?



Poisson’ s and Laplace’ S equations

Start with Gauss’ s/ Divergcnce theorem for vector felds

[Fedi=[VeFav
S %

“éi\\& Which says
f'ﬁ\ the flux out of
a volume
((« »))» ecluals the
\,% clivergence o
%ﬁ\\t@.}' throughout \’V

tl'nc volume.

(x)



Examine field at Point M.

Point M inside Point M outside
volume volume

Gauss's/Divergence Theorem: f geda= f Veg dV

GM?, i °*da= dQ

2

fg°da——fGMd£2 —4n@ -4::
goda=—4ﬂ@fV°g A%
1%

Ahern: http:/ / geop]’:gsics.ou.eclu/solid_earth/ notes/| laplace/ |aplacc.|1tm|

work on left hand side: g =-—




Examine field at Point M.

Point M inside Point M outside
volume volume

Gauss's/Divergence Theorem : f geda= f VeodV
S

Vv

-4 G f pdV = f Ve ¢ dV since this holds for arbitrary
V V

volumes, the integrands of the two integrals have to be equal

Veg=-A4dnGp for M inside volume
Vegog=0 for M outside volume

(does not work ON surface where there 1s a density discontinuity)

Ahern: http:/ / geop]’:gsics.ou.edu/solid_earth/ notes/| laplace/ |aplacc.|1tm|



A
‘%;

Point M inside
volume

Examine field at Point M. %@

Point M outside
volume

Veg=-A4gGp for M inside volume

for M outside volume

for M 1nside volume - Poisson's Eq.

Veg=0

now use g = -VU
VU = -4 Gp
VU =0

for M outside volume - Laplace's Eq.

Ahern: http:/ '/ geophgsics.ou.eclu/ solid_earth/notes/| |aplace/ |aplace.|1tn



Point M inside
volume

Examine field at Point M.

VU = -4 Gp
VU =0

Point M outside
volume

for M 1nside volume - Poisson's Eq.

for M outside volume - Laplace's Eq.

So the ccluation for the Potential, a scalar field (easier to
work with than a vector field) satisfies Poisson’ s
ec]uation (Lal:)alcc’ s equationis a sPccial case of

Poisson’ s ec]uatlon) . Poisson’ s ecluation is linear, so we

can suPcrimPosc sol ns — iimPortantisimo!

Ahern: http:/ '/ geophgsics.ou.eclu/ solid_earth/notes/| |aplace/ |aplace.|1tn
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In the sPherical shell example we used
the fact that gravitg IS

“I, »”
inear

.e.we get final result bg aclding uP
Partial results (’chis is what integratlon
does!)

So e"ipsoiclal earth can be rePresentecl
as a solid spherc Plus a hollow &l iPosicl.

Result for the gravit Potentia and
force for an c"iPosicl ad two Parts —

that for a sPhcrc Plus an additional term
which is due to the mass in the

e"ipsoiclal shell.



GRAVITY POTENTIAL

A”Fgravitg fields satis{g L aplace’ s equation
N Tree space or material o densitg 0. FVis
the gravitational Potential then

VV =0
V*V = 47Gp

(Herring)



LINEAR

SUPerPosition: break
ig Problems into Pieces

Smooth, Preclictable
motions

RCSEOHSC Proportional
to stimulus

Find detailed

trajec’tories of individual
Par’cicles

NON-LINEAR

No suPerPosi’tion: solve
whole Problem at once

Erratic, aperioclic
motion

Response need not be
Proportional to stimulus

Find global, qualitative
clesc:ription of all
Possible trajectories



Linearitg and SuPerPosition

L(x)+ L(y) = L(x + y)

Says order you do the “combination” does not matter-.
Verg imPortant concePt.
it system is linear you can break it down into little parts,

solve scParatelg and combine solutions of Parts into
solution for whole.



Net force of Gravitg on line between Earth and Moon

Solve for force from
Earth and force from
Moon and add them.
Probablg didthis
Procedure without even ™"
thinking about it.
(earthand moonare .
spherical shells, so g
linear inside, O in center) |



Net force of Gravitg for Earth composec of two
sPhcricaI shc"s — thc surFacc ancl a concentric "Core”

Solve for force from

Earth and force
121 Let earth and core be spherical shells (so don't have to deal
From Core and add v;—;t:;rr;l,ilr;(m(s(i)éz t):e::.wml shells (so don't have to dea
h Gravity on surface of earth = 1g,on surface of core=05g
them.

Same Proccclurc as
before (and same =
justi{:ication) — but

Force gravity from Earth to left (blue)

probably had to I
think about it here. | S~ IR SR
(Earth and core are dstanc

Net force from superposition/linearity (green)

a‘%ain Sie herical
shells so g=0 inside)



