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Determining


Strain or strain rate from


Displacement or velocity field


Strain (symmetric) and 
Rotation (anti-symmetris) 

tensors


Deformation tensor
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Write it out


Again – this is “wrong way around”




We know

u and x


and want

t and dij.


Deformation tensor is not symmetric, have to keep dxy 
and dyx.
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So rearrange it


Now we have 6 unknowns and 2 equations
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So we need at least 3 data points

That will give us 6 data


And again – the more the merrier – do least squares.
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For strain rate


Take time derivative of all terms.





But be careful





Strain rate tensor


is NOT


time derivative of strain tensor.
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Spatial (Eulerian) and Material (Lagrangian) 
Coordinates


and the 


Material Derivative


Spatial description picks out a particular location in 
space, x.





Material description picks out a particular piece of 
continuum material, X.
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! 

x = x A,t( )                        x A,0( ) = A

  

! 

A = A x, t( )                        A A,0( ) = A

So we can write


x is the position now (at time t) of the section that was 
initially (at time zero) located at A.


or


A was the initial position of the particle now at x


  

! 

x A x, t( ),t[ ] = x                       A x A,t( ),t[ ] = A

This gives by definition
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We can therefore write


  

! 

f x A,t( ),t[ ] = F A,t( )                      f x, t( ) = F A x, t( ),t[ ]
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Next consider the derivative (use chain rule)
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Define Material Derivative
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=
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Example





Consider bar steadily 
moving through a roller 

that thins the bar


Examine velocity as a function of time of cross section A


A
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The velocity will be 
constant until the material 

in A reaches the roller


At which point it will speed 
up (and get a little fatter/
wider, but ignore that as 

second order)


After passing through the 
roller, its velocity will again 

be constant


A(t=t1)
 A(t=t2)
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If one looks at a 
particular position, x, 

however the velocity is 
constant in time.


So for any fixed point 
in space


A(t=t1)
 A(t=t2)


v(x1)
 v(x2)


! 

"v x, t( )
"t

= 0

So the acceleration seems 
to be zero


(which we know it is not)
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The problem is that we 
need to compute the time 

rate of change of the


material


which is moving through 
space


and deforming


(not rigid body)


(we want/need our 
reference frame to be with 
respect to the material, not 

the coordinate system.


A(t=t1)
 A(t=t2)


v(x1)
 v(x2)
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A(t=t1)
 A(t=t2)


v(x1)
 v(x2)


! 

Df A,t( )
Dt

=
"f x,t( )
"t

+ v x,t( ) "f x,t( )
"x

We know acceleration of 
material is not zero.


Term gives acceleration 
as one


follows the material


through space


(have to consider same 
material at t1 and t2)




16


Various names for this derivative





Substantive derivative


Lagrangian derivative


Material derivative


Advective derivative


Total derivative
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GPS and deformation






Now we examine relative movement between sites
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From Rick Allmendinger
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http://www.iris.iris.edu/USArray/EllenMaterial/assets/es_proj_plan_lo.pdf, http://www.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.html


Strain-rate sensitivity thresholds (schematic) as 
functions of period


GPS and INSAR detection thresholds for 10-km 
baselines, assuming 2-mm and 2-cm displacement 

resolution for GPS and INSAR, respectively (horizontal 
only).
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Strain-rate sensitivity thresholds (schematic) as 
functions of period


Post-seismic deformation (triangles),

slow earthquakes (squares),


long-term aseismic deformation (diamonds),

preseismic transients (circles),


and volcanic strain transients (stars).

http://www.iris.iris.edu/USArray/EllenMaterial/assets/es_proj_plan_lo.pdf, http://www.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.html
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Study deformation at two levels

-------------




- Kinematics –


describe motions

(Have to do this first)




----------------




- Dynamics –


 relate motions (kinematics) to forces (physics)

(Do through rheology/constitutive relationship/model.


Phenomenological, no first principle prediction)
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


! 

" = K#

Simple rheological models


elastic


ε (σ) 
ε	



σ	
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


Simple rheological models


σ1


σ2


t


ε2 (t)


t


ε1 (t)


ta
 tb


σ	

 ε	



viscous


! 

" = µ
d#
dt

= µ ˙ # 

Apply constant stress, σ, to a viscoelastic material.

Record deformation (strain, ε) as a function of time.


ε increases with time.
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


Simple rheological models


viscous


! 

" = µ
d#
dt

= µ ˙ # 

Maintain constant strain, record load stress needed.

Decreases with time.


Called relaxation.


ε2


t


σ2 (t)


t

σ1 (t)


ta
 tb


ε1


ε	

 σ	
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


Kelvin rheology


! 

" ="1 +"2

# = #1 = # 2

" = K# + µ ˙ # 

Handles creep and recovery 
fairly well


Does not account for relaxation


viscoelastic
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


! 

" ="1 ="2

# = #1 +# 2

˙ # = "
µ

+
˙ " 
k

Maxwell rheology


Handles creep badly 
(unbounded)


Handles recovery badly (elastic 
only, instantaneous)


Accounts for relaxation fairly 
well


viscoelastic
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 


Standard linear/Zener

(not unique)


Stress – equal among components in series


Total strain – sum all components in series


Strain – equal among components in parallel


Total stress – total of all components in parallel


viscoelastic


Spring in series 
with Kelvin


Spring in parallel 
with Maxwell
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 


Standard linear/Zener

viscoelastic


Instantaneous elastic strain when stress applied

Strain creeps towards limit under constant stress

Stress relaxes towards limit under constant strain


Instantaneous elastic recovery when strain removed

Followed by gradual recovery to zero strain
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf


www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 


Standard linear/Zener

viscoelastic


Two time constants


- Creep/recovery under 
constant stress


- Relaxation under constant 
strain
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http://www.dow.com/styron/design/guide/modeling.htm


Can make arbitrarily 
complicated to match 

many deformation/
strain/time


relationships
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Three types faults and plate boundaries

-----------------------




- Faults  -




Strike-slip


Thrust

Normal


---------------------------




- Plate Boundary -




Strike-slip

Convergent

Divergent
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How to model


-------------------


Elastic


Viscoelastic


----------------------





Half space


Layers


Inhomogeneous




33


2-D model for strain across strike-slip fault in elastic half 
space.


 Fault is locked from surface to depth D, then free to 
infinity. 


Far-field displacement, V, applied. 
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w(x) is the equilibrium displacement parallel to y at 
position x.


|w| is 50% max at x/D=.93; 63% at x/D=1.47 & 90% at x/
D=6.3
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Effect of fault dip.





The fault is locked 
from the surface to 

a depth D (not a 
down dip length of 

D). 





The fault is free 
from this depth to 

infinity.
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Surface 
deformation pattern 

is SAME as for 
vertical fault, but 

centered over down 
dip end of dipping 

fault.





Dip estimation from 
center of 

deformation pattern 
to surface trace and 

locking depth.
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39
Meade and Hager, 2005


Interseismic velocities in southern California from GPS
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Fault parallel velocities for northern and southern 
“swaths”.


Total change in velocity ~42mm/yr on both.

Meade and Hager, 2005
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Meade and Hager, 2005


Residual (observed-model) velocities for block fault 
model (faults in grey)
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Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.


Ω  is the angular velocity vector


effect of interseismic strain accumulation is given by an 
elastic Green's function G


response to backslip distribution, s, on each of, f, faults.


Modeling velocities in California


  

! 

! 
V ! r ( ) ="

! r ( ) # ! r + G • sf
f =1

F

$
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Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.


In general, the model can accommodate zones of 
distributed horizontal deformation if Ω varies within the 

zones





latter terms can account both for the Earth's sphericity 
and viscoelastic response of the lower crust and upper 

mantle.


  

! 

! 
V ! r ( ) ="

! r ( ) # ! r + G • sf
f =1

F

$
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Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.


Where

a is the Earth radius


distance from each fault located at φf is a(φ-φf).




Each fault has deep-slip rate

aΔωfsinφf, 


where Δωf is the difference in angular velocity rates on 
either side of the fault. 
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