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(incomplete)


look at





Applications of GPS





in Earth Sciences


carpincho

or 


capybara
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Use the Global Positioning System (GPS) to 
determine accurate positions (order mm) of “high 
stability” geodetic benchmarks over time to determine 
changes in relative positions (order mm/year).
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Principal tenet/Central assumption of


plate tectonics:











plates (interiors) are rigid
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- Observation –


Plates move with respect to one another








- Secondary tenet/assumption –


Interaction limited to (narrow) plate boundary zones


where deformation is allowed
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Plate motions ---  NUVEL vs GPS






NUVEL – geologic




Spreading rate and orientation (Ma ave)

Transform fault orientation (no rate info, Ma ave)

Earthquake Focal mechanism (problem with slip 

partitioning, 30 yr ave - actual)






GPS – non-geologic




Measures relative movement (20 yr ave – actual)

Can’t test (yet) plate stability assumption
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THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions

Richard G. Gordon

Annual Review of Earth and Planetary Sciences 
Vol. 26: 615-642 (Volume publication date May 1998)  
(doi:10.1146/annurev.earth.26.1.615) 


Strain rates in





stable plate interiors -





bounded between





10-12 -10-11 and 10-10 year-1. 
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Unpublished 2003 compilation provided by R.D. Müller 
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Referenced from United States Geological Survey: Convergence 
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the plate across the boundary.

Plate Divergence Vectors - 
Referenced from Digital Tectonic Activity Map: Divergence data are 
shown by double arrows describing direction and speed. 

Seafloor Age - 
Referenced from Muller, R.D., M. Sdrolias, C. Gaina, and W.R. 
Roest 2008. Age, spreading rates and spreading symmetry of the 
world’s ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, 
doi:10.1029/2007GC001743.
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This map builds on the Tectonic Plates map by adding seafloor age data.  Note that the youngest seafloor ages are found at the 
mid-ocean spreading ridges, where new rock is constantly coming up from under the crust to heal the rifts formed as tectonic plates 
move away from one another.  Most new crust forms at these mid-ocean spreading ridges.

The crust ages as it moves away from the spreading ridges, and eventually gets pushed back into the Earth in a subduction zone.  
Because oceanic crust subducts more easily than continental crust, all of the seafloor eventually is recycled by subduction while 
very little continental crust is consumed in subduction.  The result is that the oldest oceanic crust is still much younger than the 
oldest continental crust.

The oldest seafloor in the world is found in the Mediterranean Sea.  The next oldest seafloor ages are found in the northeastern 
Atlantic and the northeastern Pacific, far from any spreading ridges.  The northeastern Pacific also has a long convergent boundary, 
where some of the oldest seafloor is now being subducted back into the interior of the Earth.  In areas where spreading rates are 
slow, seafloor age changes quickly as you move away from the spreading ridge.  Conversely, in areas where spreading rates are 
fast, seafloor age changes more slowly as you move away from the spreading ridge. April 2009
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Produced by 
California Institute of Technology 
Tectonics Observatory
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http://owlnet.rice.edu/~esci101, looks like NUVEL


NUVEL picture


Relative velocities across boundaries
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NUVEL picture


Number of plates missing (e.g. Scotia) because don’t 
have spreading boundaries (only place we can determine velocity).
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NUVEL picture


Number of plates missing (e.g. Scotia) because don’t 
have spreading boundaries (only place we can determine velocity) Stein and Wysession.
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First big contribution of space based geodesy





Motion of plates


(note –


plates 


- have to be “pre-defined”


– are not part of how velocities of sites are computed,


- selected based on “rigidity” at level of GPS precision


Also VLBI, SLR, DORIS – space based, not limited to 
GPS - results)




14


GPS picture – now motion with respect to some 
“absolute reference frame (ITRF), does not know about 

“plates”
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two distinct reference systems:






1.  space-fixed (quasi) inertial system

(Conventional Inertial System CIS)

(Astronomy, VLBI in this system)


ITRF






2. Earth-fixed terrestrial system

(Conventional Terrestrial System CTS)




-----------------


Both systems use center of earth and earth rotation in 
definition and realization




16
Velocities of IGS global tracking GPS sites in ITRF.




17
Small “circles” for European and N. American poles. 




18
Velocities are tangent to small circles (look like windshield wiper streaks).
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Gridded view of plate velocities in ITRF

(approximates NUVEL, but does not “look like” NUVEL because NUVEL shows relative motions)
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Rotation of 
N. America 

about Euler 
pole.
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! 

! 
V =
! 
R "
! 
X 

Solving for Euler poles


Forward problem





Given rotation pole, R, for movement of spherical shell 
on surface of sphere


We can find the velocity of a point, X, on that shell from


(review)
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! 

! 
V ="

! 
X 

  

! 

! 
V =
! 
R "
! 
X 

! 

" =

0 #rz ry
rz 0 #rx
#ry rx 0

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

We can write this in matrix form


(in Cartesian coordinates)


as


Where Ω is the rotation matrix


(note – this is for infinitesimal, not finite rotations)
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So – now we solve this











Hopefully with more data than is absolutely necessary 
using Least Squares


  

! 

! 
V ="

! 
X 

(this is the remark you find in most papers –


Now we solve this by Least Squares)
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! 

! 
V ="

! 
X 

But


known
 known
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! 

! 
V ="

! 
X 

And


we want to find


This is how we would set the problem up


if we know V and Ω and wanted to find X
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! 

Vx

Vy

Vz

" 

# 

$ 
$ 
$ 
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& 

' 
' 
' 

=

0 (rz ry
rz 0 (rx
(ry rx 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

X
Y
Z

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

! 

Vx = "rzY + ryZ
Vy = rzX " rxZ
VZ = "ryX + rxY

So we have to recast the expression to put the knowns 
and unknowns into the correct functional relationship.


Start by multiplying it out
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! 

Vx = "rzY + ryZ
Vy = rzX " rxZ
VZ = "ryX + rxY

! 

Vx

Vy

Vz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

0 Z (Y
(Z 0 X
Y (X 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

rx
ry
rz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Now rearrange into the form


  

! 

! 
b = A! x 

Where b and A are known


obtaining the following
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! 

Vx

Vy

Vz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

0 Z (Y
(Z 0 X
Y (X 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

rx
ry
rz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  

! 

! 
V = X

! 
R 

So now we have a form that expresses the relationship 
between the two vectors


V and R


With the “funny” matrix X.
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We have




3 equations and

3 unknowns




So we should be able to solve this


(unfortunately not!)


! 

Vx

Vy

Vz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

0 Z (Y
(Z 0 X
Y (X 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

rx
ry
rz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  

! 

! 
V = X

! 
R 
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You can see this two ways




1 - The matrix is singular (the determinant is zero)




2 - Geometrically, the velocity vector is tangent to a small 
circle about the rotation pole –


There are an infinite number of small circles (defined by 
a rotation pole) to which a single vector is tangent


! 

Vx

Vy

Vz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

0 Z (Y
(Z 0 X
Y (X 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

rx
ry
rz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  

! 

! 
V = X

! 
R 
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So there are an infinite number of solutions to this 
expression.







Can we fix this by adding a second data point?

(another X , where V is known)


! 

Vx

Vy

Vz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

0 Z (Y
(Z 0 X
Y (X 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

rx
ry
rz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  

! 

! 
V = X

! 
R 
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Yes – or we would not have asked!
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! 

! 
V = X

! 
R 

! 

Vx1

Vy1

Vz1
Vx2

Vy2

Vz2

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

=

0 Z1 (Y1
(Z1 0 X1
Y1 (X1 0
0 Z2 (Y2
(Z2 0 X2

Y2 (X2 0

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

rx
ry
rz

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Following the lead from before in terms of the 
relationship between V and R we can write


Where V is now the “funny” thing on the left.
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Geometrically


Given two points we now have


Two tangents to the same small circle


And


(assuming they are not incompatible – i.e contradictory 
resulting in no solution.)





we can find a single (actually there is a 180° ambiguity)


Euler pole
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! 

! 
V = X

! 
R 

  

! 

Vx1

Vy1

Vz1
Vx2
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!
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# 
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$ 

% 

& 

' 
' 
' 

For n data points we obtain


Which we can solve by Least Squares
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! 

y1
y2
y3
!
yN

" 

# 

$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' ' 

=

x1 1
x2 1
x3 1
! !
xN 1

" 

# 

$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' ' 

 
m
b
" 

# 
$ 
% 

& 
' 

        y =Gm

We actually saw this earlier when we developed the Least 
Squares method and wrote y=mx+b as


Where

y is the data vector (known)


m is the model vector (unknown parameters, what we 
want)


G is known
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! 

! 
V = X

! 
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Pretend leftmost thing is “regular” vector and solve same 
way as linear least squares


  

! 

! m = GTG( )"1GT
! 
d 

  

! 

! y = G ! m 

  

! 

! 
R = XT X( )"1XT ! V 
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Example: Nazca-South America Euler pole


Data plotted in South America reference frame

(points on South America plate have zero – or near zero 

– velocities.)

Kendrick et al, 2003
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Example: Nazca-South America Euler pole (relative)


Also plotted in

Oblique Mercator projection


about Nazca-South America Euler pole

Kendrick et al, 2003
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REcent VELocities – from GPS


(note holes – Scotia Plate for example)


Sella et al, 2002
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ITRF-2008
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GPS picture – Scotia Plate still missing (also missing from 
NUVEL-1, “included, but not constrained in NUVEL-1A)
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Combine GPS and Geology to define motion 
Scotia plate.




Scotia plate “missing” from NUVEL-1




(is in NUVEL-1A but estimated from closure)




Get small circles from transform plate boundaries 
(so theoretically can get location of pole) but no 

tie into spreading system for velocity.




Use GPS to get velocity.
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Results for GPS-Geologic combination for Scotia 
Arc.


Use Combination of GPS 
(velocity and azimuth, focal 

mechanisms (azimuth), Scotia-
South Sandwich spreading.
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NUVEL-1A & GPS differences





Rotation rates of





- India, Arabian and Nubian plates wrt Eurasia are


30, 13 and 50% slower


- Nazca-South America 17% slower


- Caribbean-North America 76% faster





than NUVEL-1A

Kreemer, 2003
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Kendrick et al, 2003


Question – is Easter Island on “stable” Nazca Plate


We think not.


Only 4 points total on Nazca 
Plate (no other islands!)


Galapagos and Easter Island 
part of IGS (continuous)


FLIX and RBSN campaign
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Latest results - Combine Geology (3 Myr average) and 
GPS for places geology does not work




MORVEL
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Complications to simple model in plate interiors








Horizontal deformations associated with post glacial 
rebound









(problem for N. America and Eurasia)




  

! 

! 
V ="

! 
X +#

! 
V pgr
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Other effects








Other causes horizontal movement/deformation 
(tectonics, changes in EOP?)







Most vertical movements – tidal, atmospheric, etc. , as in 
case of PGR - have some “cross talk” to horizontal


    

! 

! 
V ="

! 
X +

! 
V i

geologic effects

i
#
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Predicted horizontal velocities in northern Eurasia from 
PGR


(No velocity scale! Largest are order 3 mm/yr away from center of ice load, figure does not seem to agree 

with discussion in paper)

http://www.epncb.oma.be/papers/euref02/platerotation.pdf International Association of Geodesy / Section I – Positioning; Subcommission for Europe (EUREF) , 
Publication No. 12 , Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Ponta Delgada 5-8 June 2002. 
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Results for Eurasia


Site velocities plotted in oblique Mercator projection


(should be horizontal)


http://www.epncb.oma.be/papers/euref02/platerotation.pdf International Association of Geodesy / Section I – Positioning; Subcommission for Europe (EUREF) , 
Publication No. 12 , Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Ponta Delgada 5-8 June 2002. 
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For North America


Stable North America Reference Frame (SNARF)


Over 300 continuous GPS sites available in Central and 
Eastern US (and N. America)


(unfortunately most are garbage)
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Gan and Prescott, GRL, 2001


Analysis of CORS plus other continuous GPS data for 
intraplate deformation
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Gan and Prescott, GRL, 2001


Contoured (interpolated) velocity field

(ready for tectonic interpretation!)
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•  What are PBO reference frame needs?

•  How can we meet those needs?


PBO Needs
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More things to do with GPS


Deformation in plate boundary zones
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( other main assumption of plate tectonics) 


Narrowness of plate boundaries





contradicted by many observations,


in both continents and oceans.





Some diffuse plate boundaries exceed dimensions of 
1000 km on a side.


Diffuse plate boundaries cover  15% of Earth's surface.


THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions

Richard G. Gordon

Annual Review of Earth and Planetary Sciences 
Vol. 26: 615-642 (Volume publication date May 1998)  
(doi:10.1146/annurev.earth.26.1.615) 
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Diffuse plate boundaries




Maximum speed (relative) across diffuse plate 
boundaries 


2 to  15 mm/year




Strain rates in diffuse plate boundaries 

as high as  10-8 year




25 times higher than upper bound on strain rates of 

stable plate interiors




600 times lower than lowest strain rates across typical 
narrow plate boundaries. 


THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions

Richard G. Gordon

Annual Review of Earth and Planetary Sciences, Vol. 26: 615-642 (Volume publication date May 1998) (doi:10.1146/annurev.earth.26.1.615) 
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“Color topographic” plot of second invariant of strain 
rate tensor. Quantified version of previous figure.


Shows how fast the deforming regions are straining. 
(Red fastest, blue slowest)
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