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Coordinate sgstems
Simplc sPherical

Geodetic — with respect to c"ijasoicl normal to surface
does not intersect orlgin [in gcneral]

ECEF XYZ — earth centered, earth fixed Xyz. Is what it
says.
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The “problem” arises because we’re de{:ining the
“location” (latitude) based on the orientation of the
surface at the point where we want to determine the

| location.

IIIIII

(Assume gravit Perpenclicular

to surface — which is not rea"g

| the case - since measurements
T made with a level.)

“shaPe” of the surface of the earth - with the variations
greatlg exaggerated. For now we’re not being very
sPeci{:ic about what the surface rePresents/ how itis

defined.

Image from: http: //kartoweb.itc.nl/, ‘geometrics/ Reference®%20surfaces/refsurf.html



This means that we have to take the “shape” of the
surface into account in de{:ining our reference frame.

We are still not even considering the vertical. We’re still

onl discussing the oroblem of 2-D location on the
Y Stcp
surFace o{: the earth.

Image from: http: //kartoweb.itc.nl/, ‘geometrics/ Reference®%20surfaces/refsurf.html



Traditional aPProach was to define local/ regional datums
(ﬂattcning, size, origin — tgPica"g not earth centered,
orientation).
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(Assume gravitg Perpcndicular to surface — which is not rea”g the case - since measurements made with a levcl.)



These datums were “best fits” for the regions that theg
covered. Thcg could be quitc bad (uP to1km error)
outside those rcgions however.
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These datums are also not “carth centered” (origin not
center o{: mass o{: carth) X Converting From one to
another not trivial in Practice.
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Can also have uniqucncss Problem — more than one sPot
with same “latitude”!

S.America Africa



“Modern” solution is an earth centered global “best fit”

e"iPsoicl.

Here we introduce the “thing” that defines the “shape”
of the earth — the GEOID.

The gcoicl is the thing that defines the local vertical.

Image from: http: //kartoweb.itc.nl/, ‘geometrics/ Reference®%20surfaces/refsurf.html



The geoid IS a Phgsical thing — an ecluiPotentiaI of the
gravi’cg feld.

ELUPSOID

But we may not be able to “locate” it.

So make “model” for gcoicl.

Image from: http: //kartoweb.itc.nl/, ‘geometrics/ Reference®%20surfaces/refsurf.html



Here we can introduce the concePt of “Pngsical” VS
“geometric” Position.

The geoid (since it dePends on the actual shaPe of the

earth, and we will see that it directly effects traditional

measurements of latitude) gjves a Pii'ngsical definition of
Position.

The e"iPsoicl gjves a geometric definition of position

(and we will see that “modern” Positioning — GPS for

examPlc — works in this system — even thoug‘l gravitg
and other Plﬁgsics effects the sgstcm) !

The horizontal “datum?” is a best fit c"iPsoicl (to a r%gion
or the whole eart ") used as a coordinate sgstem or
S Decitgi ng Position.




WHAT ABOUT HEIGHT

Geocentric coordinates (¢, A, h)
(this is based on standard sphcrical coordinate system with h=R-

R.)
z (North)
z=R,sin ¢
R=R,cos ¢
(Joserver
Equator

From Kc|50, Orbital Coordinate Systems, Part |, Satellite Times, SeP/ Oct 1995



WHAT ABOUT

=or the El iPsoicl COoOrc

Geodetic eight.
Distance of a r!:)oinT {:r?m thic"él:ﬁsoid caslli'recl along
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From Ke|5o, Orbital Coordinate Systems, Part 1ll, Satellite Times, Jan/| Feb 1996
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What about HEIGHT

For the Geoid things geta little more interesting.

The hcight is the distance o{;‘a Pfint from the geoicl
measured a ong the Pirj endicular from the geoicl to
this Pomt.

Notice that —
the height above the geoid
- ) EL
(red line) may not be/is

not the same as the

e"iPsoicl height (blue line)

-
.

UPSOI

and that heigﬂt above the
gcoid may not be uniclue

Image from: http: //kartoweb.itc.nl/, ‘geometrics/ Reference®%20surfaces/refsurfhtml



What about HEIGHT

when we use a level to find the vertical (tradi’ﬁonal

e geoid

surve ing) we are measuring with respectto t
J (what is thes‘gcoicl”? !

Image from: http: //kartoweb.itc.nl/, ‘geometrics/ Reference®%20surfaces/refsurfhtml




This brings us to a fundamental Problem in Geodesg ALALLY

"'Hciglwt" IS a common, orclinarg cvcrgclay word and
everyone knows what it means.

Or, more |i|<c|3, everyone has an idea of what it means,
but nailing down an exact definition is surPrisinglg trickg.‘

Thomas Meyer, University of Connecticut



The dge id is the “actual” shaPc of the earth. Where the

word “adtual” is in quotes for a reason!

N.America

S~

S.America Africa




The geoid IS a rcPrescntation of the surface the earth
woulc:l have if the sea covered the earth.

This is not the surface one would get if one pours more
water on the earth until there is no more drg land!

ltis the shaPe a fluid Earth (of the correct volume)
would have if that fuid Earth had exactly the same
gravitg field as the actual Earth.

Where did this reference to the gravity field sneak in?



Since wateris a ﬂuicl, it cannot support shear stresses.

This means that the surface of the sea (or of a Iakc, or
of water in a bucket, etc.) will be

—— Pcroenclicular to the force of gravitg

-- an equipoten‘tial surface

(or else it will How until the surface of the l’)oclg of water
is evcrgwhere in this state).

So the definition of the “shaPc” of the earth, the geoicl,
IS intimatclg and inseparably tied to the earth’s gravitg

- field.




This is good

gravitg is one of the most well understood branches of
Phgsics.

This is bad

the gravitg field of the earth dePends on the details of
the mass distribution within the earth (which do not
clePend on the first rinciplcs of Phgsics — the mass
distribution oﬁzhe earth is as we find ith).



The gcoicl Is a rePrcscntation of the surface the earth
would have if the sea covered the earth.

Or - itis the shaPe a Huid Earth would have if it had
exactlg the same gravi’cg field as the actual Earth.

The definition is clear and concise.

Problems arise when t(rfing to find where this surface
actua"9 resides due to things like

-~ currents, winds, tides emq:ecting “sea level”

-~ where is this imaginarg surface located on land? (must
be below the land surface - cxcePt where the land
surface is below sea level, e.g. Death Va”cg - itis the
level of Huid in channels cut through the land

[aPProximatelg] )



So — what
does this
surface — the
gpoki~
actua"g look
like?

(greatlg
exaggerated

in the
vertical)




Shadecl, color coded “toPograPI‘nic” rePrcscntation of
the gcoicl




E)acljoke for the clag

“What's uP?“

“Pcrpcnclicular to the geoicl."



2. Geodesg

ShaPe of the earth / gravity, gcoicl (Phgsical)

reference frames, ellipsoids (geometric)

The Direction of Gravity

From Mulcare or ]'ﬂrtP:/ / www.orclnanccsurvcy.oo.ulc/ oswebsite/, gps/ information/ coordinatesystemsinto/guidecontents/guide2.html 27



2. Geodesg

How gravitg makes it “intcresting”

which way is “uP”? (how does water flow?)

The Direction of Gravity

What about measurements with Iight?

28
From Mulcare



What is the Geoid?

Since the geoic is a complicated Ph?sical entitg thatis
>ractical y indescri

am——

Find a “best fit” e"iPsoicl
(and look at variations with resPect to this e"iPsoicl) i

Current NGS definition

The ecluil:)otential surface of the Earth’s %;avity field
which best fits, in a least squares sense, glo al mean sea
level.

From Mulcare



n background‘




One can (some People do) make a career of modcling
the “actual “geoicl b using spherical harmonic
expansions of the gf:oid9 with resPect to the e"ipsoiclal
best fit geoicl.

There are “40,000 terms in
the “best” exPansions.

Famous “Pear” shaPe of
carth.

16. Relation of Geoid to Ellipsoid (After King-Hele, 1963)



Geodetic Reference
Surfaces

A beachball g|obe

Mathematical best fit to Earth’s
surface: used for clc{:ining
| atitude and Longitucle

Ellipsoid

(Oblate Sphere)

Modeled best fit to “sea surface®
cquéootcntlia/ vity field used
for cle{:ining Elevation

The real deal

W T;\:.\.\z‘\: - .e ;‘\ RNy
The Grand Canyon, Arizona

32
Fig from NGS: file:///C:/Documents%20and%20Settings/Bob/! My%20Documents/geodesy/noaa/ ‘geo0?_figure.html



Heights and Vertical Datums
Define location ]:)9 triplet - (latitude, Iongitucle, hcight)

vk Local Zenith
Observer
R’\ h
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Heights and Vertical Datums

More Preciselg - Geodetic latitude and longitucle —
referred to oblate ellipsoid.

Height referred to Pcrpcnclicular to oblate c“ipsoicl.

(geometrical, is “accessible” ]:)9 GPS for examplc) )
vk Local Zenith
Observer

—— \ hf This is called “e"iPsoiclal” height, hP
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ln traditional / \ﬁ"hn@whr surface
surveying — hcigltlt p_ Heig tis.measured

is measured wit E.. as distanc along
respect to mean sea ', the “Plumb” ine
level, \I:thh 5,6'”\165 "i (which is not
as the vertical | | o actua"g straight)
datum (andis | | and is called
/i " ‘ , ,
accessible at ;:he o || orthometric helght
origin point). / |
anp / | (HP)
Pof_' ‘____,,----——*"" py "”-----_-)g..'_i\w"(-f'
:;icaldatum _ -.._.--‘ T
il dan

ellipsoid -

Figure 1: Ellipsoidal height versus orthometric height with respect to vertical datum, |.

Jekeli, 2002: httl:): // www.mcgg.uni-ﬁ.si/ ~/mkuhar/zalozba/ Heig,hts_Jelceli.Pch
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Level Surfaces(are not Para"el) ?/'&i(\aoe
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ergjadesp|an.org/ pm /recover/ recover_docs/mrt/ f‘t_lauderdale.PPt
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Line follows gradient of level surfaces.

WWwW.

H (Orthometric Height) = Distance from P to P,

| ittle Problcm — geoicl defined ]:)3 equipotential surface,

can’t measure where this is on continents (sometimes even

have Problems in oceans), can onlg measure direction of
Pcr:enclicular to this surface and force of gravity.




Ellipsoid, Geoid, and Orthometric Heights

“h — 9 N
h H + %ﬁ&@@e
P
Ellipsoid Plumb Line
\ ————————————— A“
/, 1 1 —Q agr—=—=—---=
Mean
Sea (13 * 399
FTeve Jyl“l Geoid
Po

-

Ocean .~ | (Ellipsoid Height) = Distance along ellipsoid normal (Q to P)

H (Orthometric Height) = Distance along plumb line (P to P)

David B. Zilkoski
158.25.217.17/jwilbur/ student_files/ SPatial%ZORc{:crcncc%ZOScminar/ dzi"(oslci.PPt



Two questions —~
]

Given densitg distribution, can we calculate the
gravita‘cional field?

Yes — Newton’s law of universal gravitation

2

Given volume V, bounded 139 a surface S, and some
information about gravity on S, can you find gravity
inside V (where V may or may not contain mass)?

Qualified yes (need g or normal g[aclicnt to Potential
everywhere on surrace)




Potential Fields

As was mentioned earlier, the geoicl/ mean sea level is
defined with respect to an equiPotcntial surface.

So how do we connect what we need (tlﬂe cc]ucirotcntial
surface) with what we have/can measure (direction
and magnitudc of the force of gravitg)

Use Potential field thcorg

So, first what are Fields?

A teld is a function of space and/or time.



E:xamples of scalar fields
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: 40
Jvogt —- http: / /" WVWV.Facultg. iu-—bremernclc/jvogt/ edu/ spri ng03/! NatScil.ab2-GeoAstro/ nslgaz-lccturcz. PCH:



E:xamples of vector fields

Homogeneous veclor field
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E:xamples of vector fields

streamlines
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We are interested in
Force fields

describe forces acting at each Poin’c of space at a given
time

F_‘xamples:
gravitg field

magnctic field
electrostatic field

Fields can be scalar, vector or tensor



We know that work is the Procluct of a force appliecl
through a distance.

Iif the work done is inchenclent of the Path taken from
Xo o X, the work done dePcncls onlg on the starting
and cncling Positions.

WBluczWO

/

ﬁ =Wo

)
WISIack,Z stcpzWO

A force with this tgPe of
SPecial Propertg is said to be
a “conservative” force.




If we move around in a conservative force field and return
to the startin Point — bg using the blue Pa’m to go from
Ato B and then return to A using the red Pat for
example — the work is zero.

Wgle=Wo B We can write this as

jf{c =Wo
»

WISIack,Z stcpzwo

PFedl=0




Important implication of conservative force field
P i

gﬁﬁ o dl = f (V X 13) e dS Stoke's theorem

closed path S

if (pF *dl =0 for all closed paths, then

closed path

f f (V x F ) * dS =0 for all surfaces means
S

VxF =0 everywhere (curl free vector field)

and since V x VU =0 for all scalar functions U, then

we can write F = VU

A conservative force field is the derivative (graclient In %~
D) of a scalar field function)!



This means our work inte%ra is the solution to the
differential equation

dU(x)
dx

F(x)=-

Where we can define a scalar “Potential” function U (x)
that is a function of Position onlg and

U(x) = —jF(x)dx +U(x,)

Where we have now included an arbitrarg constant of
integ):ation. The Potential function UX) 1s onlg defined
to within a constant — this means we can Pu’c the Position
where U(x)=0 where we want. It also makes it hard to
determine it’s “absolute”, as oPPosed to “relative” value.



So now we have the Pair of equations

dU(x)
dx

U(x) = —jg(x)dx +U(x,)

8(x) = -

it you know U () , you can comPute g(x) ) where I have
changed the letter for force to “g” for gravitg.

Iif you know the force g(x) and that it is conservative,
then you can coml:)uter U) -to within a constant.



U(x) = —jg(x)dx +U(x,)

U is Potential, the negative of the work done to get to
that Point.



Soto Pu’c this to use we now have to ~--

1 Show that gravitg is a conservative force and therefore
has an associated Potential energy function.

2) Determine the gravi}::g Potential and gravitg force
fields for the earth

(first a
next aPProximatio
and t

DProximation £ spherical
n— e"iPsoiclal shapc due to rotation

hen acljust for rotation)

) Compare with real earth



Newton’s Universal Law of Gravitation

m.m
[71i 12
>
r

F=G

where F is the force

m, and m, are the masses

r 18 the distance between them

r is the unit vector seperating them

and G 1s the universal gravitational constant



In geoplngsics one o{: ’chc masses Is usua"g the earth SO

. M m
F=G 82 r m
7 ;
using . 4
F =mad
we can define
4 M,. _ . .
a = G—r =—g the acceleration due to gravity
r

(the minus sign 1s to make the force

attractive, with 7 pointing outwards)

Figure from Ahern, h’d:P: // gcophgsics.ou.cclu/ ‘gravmag)/| Potcntial/ gravitg_Potcntial.]'\tml#ncwton



Is gravity conservative?

for a mass distribution the acceleration becomes

dV P (X”y’ ,Z))
r T~
check (x,y,2)
L m .
gﬁ gedr = gﬁ G—redr= gﬁ G - dr
closed path closed path r closed path

1 1 : .
use d(—) = ——, and throwing out "-" sigh now
r r

() G ~dr=Gm ¢ () Gm—

closed path closed path

X0

1

r

=0

X0
SO gravity 1s a conservative force (in general any central

force field which depends only on r 1s conservative)

Figure from Ahern, h’d:P: // gcophgsics.ou.cclu/ ‘gravmag)/| Potcntial/ gravitg_Potcntial.]'\tml#ncwton



Now we can define the Potential as the work done to
bringa unit mass from imcinitg to adistancer (set the
work at inﬁnitg to zero)

g0 o A 1r0 G
w0rk=U=f§°d7=fGﬂ2rod”=Gm_ 1\ S
= A

r A

co

for infintesimal mass
Gdm

r

work = U =



So we can write the force field as the derivative of a

scalar Po’tential fieldin1-D
dU(x)

dx
goingto3-D, it becomes a vector ccluation and we have

g(x) =-VU(x)
Which in sPherical coordinates is
d,. 1 0 ~ 1 0

g(r,0,0) =-VU(r,0,0) = —(Er + ;EH + rsind 99 gb)U(r,H,qb)

8(x) = -

§("»9,¢)=—(ai?+lié+ 1o J))(de)

r rado rsinf ¢ r :
3 = 54
g(l")= 7"2 r

Figure from Ahern, h’d:P: // gcophgsics.ou.cclu/ ‘gravmag)/| Potcntial/ gravitg_Potcntial.]'\tml#ncwton




APPI9 to our exPression for the gravitg Potential

d i ok~ 1111\\@

g(r,0,0) =-VU(r,0,0) = —(51’ + ;EH + rsind 99 gb)U(r,H,qb)

HirBHTT
r a0 rsinf 0¢ r

1 0 ~ 1 0 &))(de)

which agrees with what we know

Figure from Ahern, h’d:P: // gcophgsics.ou.cclu/ ‘gravmag)/| Potcntial/ gravitg_Potcntial.]'\tml#ncwton



To find the total potential of gravitg we have to i ntegrate
over all the Point masses in a volume.

P(X,y.z))
\

(X,Y,Z)

Ulxy'.z) = Gdm 1 Gdm
[ q \/(X—X’)2+(y—y’)2+(Z—Z’)2

Figure from Ahern, h’d:P: // gcophgsics.ou.cclu/ ‘gravmag)/| Potcntial/ gravitg_Potcntial.]'\tml#ncwton



To find the total potential of gravitg we have to i ntegrate
over all the Point masses in a volume.

P(.y.z)

.\ q— | dm=p(xy,2)dxdydz |

Gdm dm
/, /, N — _d = d d d
il f{f q [ Gf'vff \/(x —x) + (v - Y’)2 +(z-2) W

Figure from Ahern, h’d:P: // gcophgsics.ou.cclu/ ‘gravmag)/| Potcntial/ gravitg_Potcntial.]'\tml#ncwton



it things are sphericaug s?mmctric it is easier to work in
sPhcrica coordinates

Ex: uniform clensitg sphere

mm————fe e -
-

\\\\
—_—

i
b — -

q
R =m 27'171
UP)=Gp[ [ [=r’sin6 drdodg
0009

Figures from: Fig}'lt - Ahem, http://gecoph

newton, left - http:/ /www.siu.edu/~cafs/surface/fler3 html



Grincling thorugh

U(P) = Gp}}zf— sin O drd0d¢
0 0 O

use/substitute g =r>+s" —2rscos6

1
U(P) = 27Gp f f r?sin@ drd0

0 0 I" +S —2rscosbt
-1
1
U(P) = 27[prf\/r e —2rsur drdu (use u =cos0)




Grincling thorugh

1
U(P) = 27Gp f f Tty _zmr drdu,u = cosd

[l f 2/ a + bx
Va+bx b

\/r +5° =2rs
U(P) = ridr
r
U(P)=2‘77:pr‘S+r)_(s_r)‘r2dr
r
R 3
(P 4Jerfr2dr=G4nR p_ G(Vp) _GM
0 S S S
oU GM
SHT 7117

ds S



So for a uniform clensity sPl‘nere

The Potential and force of gravity at a Eoint P, a distance
s=>R from the center of the s ere, are

GM
e I

v P 1 oU GM .
g(P)=_ T 2 \)
oS )

Figure after Ahern, h’drP // gcophgsics‘ou.edu /gravmag/ Potcntial / gravitg_Potcntial.html#newbon



Note that in seismology the vector clisplaccmcnt field
solution for P waves is also curl free.

This means it is the graclient of a scalar field — call it the
P wave Potcntial.

So one can work with a scalar wave equa’cion for P waves,
which is easier than a vector wave eclua’tion, and take the
graclient at the end to get the Ph sical P wave
clisplacement vector {:iébfd.

(This is how it is Presented in many introcluctorg
Seismologg books such as Stein and Wysession.)

Un{:ortunatcly, unlike with gravity, there is no Physical
interPrctation of the P wave Potcntial function.



Next ex:

" % Force of gravitl? ﬂ”om spherical
she

FIGURE 14-4 Gravitational attraction of a section dS of a spherical shell of matter on a particle
of mass m.

dV =2mtr’sin0d0, Dm=pdV

dM In6 do
dF =G s—cosa =2m Gmp trzsm—zcosa
X g

R —rcosf

from geometry coso =
X

2 2 2
R +r —-x

2R

. 2 P 2 ;
law of cosines x“ = R” +r” —2Rrcosf gives rcosO =

Dxdx = 2Rsin@d6 so sinfd6 = Ridx
r

t R -7’
combine dF =EG’O mr( /| +1)dx

2 2
R X

After Halliclag and Rcsnick, Fundamentals of Physics



- = Force of gravitﬁ from sPherical
shell

FIGURE 14-4 Gravitational attraction of a section dS of a spherical shell of matter on a particle
of mass m.

R2_ 2
dF=”G’pmr( / +1)dx

RZ 2

X
integrate over all circular strips (is integral over x)

Gto mr X~ R? = 12 Gt RR-r2 1" xct
F=.7T [Zmrf 21" +1dx=ﬂ: [Zmr 1 r Ay =.7T ,(Zml’4r
R SN R X 1] R

Mm

R2

but M =4n0r° so F=G

Unhcorml? dense sPI‘nerical shell attracts external mass as
ift all its mass were concentrated at its center.

After Halliclag and Rcsnick, Fundamentals of Physics



From inside a she", the lower limit of integration changes
to r-R and we get zero.

R+r

J

r-R

2 2
R -r

5
=Jermr ; +1)dx=

R2

7w Gtp mr
R2

lli

After Halliclag and Rcsnick, Fundamentals of Physics

F

X

R2 _r2 R+r
— + X =0
X

r-R




For a solid 5|:>here — we can make it up of concentric

shells.

Each shell has to have a uniform densitg, although
ditferent shells can have different densities (clensitg a
function of radius onlg — think “earth?).

From outside — we can
consider all the mass to be
v concentrated at the center.

\



Now we need to find the Potcn’cial and force for our

e"isPsoid of revolution (a nearlg sPherica

(note that we are not starting from scratc

Od

y).

N wit

1 a

sPinning, self gravitating Auid bocl% and Figuring out its
cc]uilibrium shaPe —we're oing to Find the gravitational
Potential and force for an almost, but not c]uite sl:)hcrical

body)

Discussion after Turcotte, Ahern and Nerem
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Calculate the Potcntial ata Point P (outsicle) dueto a
ncarlg spherical boclg (the earth).

Set up the gcometrg for the Problem:
For simPIicitg ~ Put the origin at the center of mass of the
bodg and let P be on an axis.

b Y

(‘lr,n(x,y,z)




Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

AY

dm (ix,}',z)

/s

>
we start with expression for potential
d

u=--G [ =~

Volume r
use law of cosines 7> = R* + S* —=2RScos6

dm G 2 8 i

U=-G f Ty = —— f 1+ —-2—cosO| dm

Volume (R2 + S2 = 2RS COS 9) R Volume R R



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

Ay

(11}1(&,}‘,7)

U=—% l (1




Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical bocly.

Ay
(lm(‘x,}.',ﬂ
/

NS

Ogc.nn.'l R I z
.

G i 35° :
U=-— f 1 - Sz+§cos¢9+ Szcoszﬁ+0(§) dm

R, |\" 2R R 2R R

G 1 1 : M
U=-— fdm+— fScostm+ : f(—S + 357 cos H)dm

R Volume Volume 2R Volume

2 s D
use cos“0 =1-smn"06

G
U=~-——
R

fdm+l fScostm+ 2;2 f(ZS2 —3S200828)dm]

Volume Volume Volume



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical bocly.

Ay

(lm(‘x,}.',ﬂ
/

Ny

G G G
V=—— fdm+—2 fScostm+ R f(252 3 3Szcoszﬂ)dm
Volume Volume Volume
1
where each integral 1s multiplied by a different order of o’ SO rename
U=U,+U +U,
now
G GM
Uy=-—— f dm = 1151 same result for sphere with uniform density
Volume

(all mass at point at center)



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

dr/n(x,}’])

Ny

[ (25> - 357 cos’ H)dm)

Volume

G G
Ul:? I’H=F dem

Volume Volume

z 18 projection of § on z axis.
This 1s the equation for the center of mass (first moment), but we have placed
G

the origin at the center of mass, so this integral 1s zero. U, = 2 Zeenter fmass = 0



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

I’ (191(‘.\,}_‘,7)
w/\/
/ E SM
O(i.m.lﬁ R P :
.
GM G
U= - e f(252—35200826)dm
R 2R Volume

3

G

17/ E [ [28%dm - [ 3Szcoszt9dm}

2
Volume Volume

use s’ = ScosO (see diagram)

U, = 2(;3 [ fZSzdm - f3s’2dm]

Volume Volume



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

Ay

(lr/n(x,}‘,z)

Ny

now what are

[28%am

Volume

f 3s'*dm

Volume



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

Ay
(11}1(.\,}‘,7)

Ny

start with

P
3 f s dm
Volume

notice from figure that this 1s just the moment of intertia about an

axis from the origin to the point P

= f r’dm, where r is perpendicular distance from rotation axis.

Volume

IOP



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical bocly.

Ay

(lm(‘x,}.',ﬂ
/

Ny

M
AR LS S f252dm)
2

R 2R3 oP 3

Volume
now for the last term, it too is an integral of

distances from the origin to all points in a body.
Can we massage this into something that looks like

moments of inertia?

(yes, or we would not be asking!)



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical bocly.

Ay
Ar}](.\‘}',?)

ﬁ‘/\—/

Ny

G
Uy =75 J28%dm

Volume

S 1s the distance to a point in body, which is invarient under

coordinate rotations, SO

Sz =x2+y2+z2 =x,2+y,2+z,2

where the primed values are in the principal coordinate
system for the moments of intertia (same i1dea as principal

coordinate system for stress and strain).



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

Ay
dm( x,v.z)

Ny

(x +y°+7 )d

Volume Volume

U, = S f(x’2 $hF O z’z) +(y” +2°)dm

2R’

where each of the terms is the principal moment of inertia

Volume

about the 7/, y" and x’ axes respectively.

G

U, = 2 (11+IZ+I3), SO

G
i L
3 2R3

(n+1,+1,-31,,)



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

putting it all together

dm GM G
U=-G [ —=V,+V, =- T

Volume

(1, +1,+1,-31,,)

Potential for sPhere Plus adjustments for PrinciPal
moments of inertia and moment of inertia along axis
from origin to Point of interest, P,

This is MacCu"agh’s formula for the Potential ofa nearlg
sphcrical boclg



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical bocly.

I’ (191(‘.\,}_',7)
ﬁ‘/\—/
O(i.n Il R P >
-
dm GM G
U=-G —=V +V, =- - I +1 +1, -
VO{me 1 3 R 2R3 ( 1 2 3

For a sPherc | =l,=l.= and

21 op
GM
R

U = —

(which we knew alrcaclg)



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

So here’s our semi~final result for the Potential of an

aPProximate|9 splﬁerical bodg

U=—G [ —=U,+U,=- R _2R3(11+12+I3"310P)

Volume

Now let’s look at a Particular aPProximatelg spherical

boc:ly — the c"iPsoicl



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical bocly.
3

dm GM G
V=G [ el m e =3

for an ellipsoid [, = 1, = L,

1,, =1 cos’ 0 +I,sin” 0, where 6 is latitude (rotate into prin. coord. sys.)

I, = Il(l —sin” 9) +1,sin° 0 = I, + (13 — Il)sin2 0
so (I +1,+1, -3I,,) = (211 +1, =3 (1 + (1, —Il)sinze))

(L+0,+1,-31,,)=(1, - 1) (1-3sin’ )



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.

GM G
U=-G [ —==U+Uy=-—=-——(

Volume

so for an ellipsoid this becomes

L+1,+1,-31,,)

il
r

GM G
— +
R 2R’
A (13 _II)(BsinZH—l)
R 2 MR*

(£, -1,) (3sin’ 6 - 1)

This is MacCu"agh’s formula for the Potential of an an
c“iPsoid



Calculate the Potcntial ata Point Pduetoa ncarlg sPhcrical boclg.
/i G_M 1 - (13 i )
R 2MR®

U = (3sin29—1)

the term (3sin2 0 - 1) is the Legendre Polynomial
P(x)=3x>-1, P,(cosf)=3cos’6 -1

;- 1)

letting J, = =1.08263 10"
gJ, MRez
J, has various names including "dynamic form factor" and " ellipticity coefficient"
GM(. R’
Ti21 1- R J,P,(cos 0))

So the final result for the Potential has two Parl:s —~

the result for the uniform sr nere
slus a correction for the elli

IPSE



Now we can find the force of gravitg

GM(. R’
U(R,0) = —7(1 — 21;2 J,P,(cos 9))

now to find g(r), we take the derivative

/ oU(r,0). (GM 3GMR’ \
g(r,0)=- iE — r

Py b = —J,P,(cos0)

This is MacCu"agh’s formula for the gravitg of an
e”ipsoicl.



Differential form of Newton’s law -

So far we've looked at the “integral” form for Newton’s
gravitational force law.

1 ¥) dx”
g(X) T _Gf IO( d)2
1%

But we also have

8(x) =VU(X)

Which is a differential ecluation for the Potential .
Can we relate U to the clensitg without the integral?



Poisson’s and LaPIace’s ecluations

Start with Gauss’s/ Divergence theorem for vector fields

[Fedi=[VeFav
S %

Which says
the Hux out of

a volume

) cquals the
clivcrgcnce o
throu%hout \W k

the volume.

=N
2 A

SN
N

(x)



Examine field at Point M.

Point M inside Point M outside
volume volume

Gauss's/Divergence Theorem: f geda= f VegdV
V

M - 1 . g
work on left hand side: ¢ = - § —re*da=

r, 2
f g di- f GMdQ - —4nGM@4nG

—4JrGfpdV=fV°ng
Vv Vv

Ahern: httP: // gcophysics.ou.eclu/ solid_earth/notes/ laplace/ laplace.html



Examine field at Point M.

Point M inside Point M outside
volume volume

Gauss's/Divergence Theorem : f geda= f VegdV
S %

-4 G f pdV = f Ve g dV since this holds for arbitrary
V V

volumes, the integrands of the two integrals have to be equal

Veg=-AdrnGp for M inside volume
Vegog=0 for M outside volume

(does not work ON surface where there 1s a density discontinuity)

Ahern: httP: // gcophysics.ou.eclu/ solid_earth/notes/ laplace/ laplace.html



A
4%;

Point M inside
volume

Examine field at Point M. :>> %%?

Point M outside
volume

Veg=-4dnGp for M inside volume

Vez=0

for M outside volume

now use g = -VU

VU = -47x Gp
VU =0

for M 1nside volume - Poisson's Eq.

for M outside volume - Laplace's Eq.

Ahern: http:/ / geophysics.ou.cclu/solicl_earth/ notes/| |a|:>lacc/ laplace.html



Point M inside
volume

Examine field at Point M.

VU = -47 Gp
VU =0

Point M outside
volume

for M 1nside volume - Poisson's Eq.

for M outside volume - Laplace's Eq.

So the ccluation for the Fotential, a scalar field (easier to

work with than a vector

ield) satisties Poisson’s ecluation

(Lal:)alce’s ecluation IS a sPecial case of Poisson’s
equation) . Poisson’s ecluation is linear, so we can
suPerimPose sol’ns — iimPortan’cisimo!

Ahern: http:/ / geophysics.ou.cclu/solicl_earth/ notes/| |a|:>lacc/ laplace.html



-
4

-
4
N

aw W

J

In the spherical shell example we used
the fact that gravity IS

“linear”

.e.we get final result bg adding up
Partial results (this is what integratlon
does!)

So e"iPsoidaI earth can be rePrcscntecl
as a solid spherc Plus a hollow el iPosicl.

Result for the gravit Potentia and
force for an e“iposicl ad two Parts —_

that for a sPhcrc Plus an additional term
which is due to the mass in the

c"iPsoiclal shell.



GRAVITY POTENTIAL

All eravity Helds satistu Laplace’s equation in
gravity ST LaPiata B CEaa
free space or material of dcns:ty 0. I Vis the

gravitational Potential then

V¥V =0
V*V = 4aGp

(Herring)



LINEAR NON-LINEAR,

SuPerPosition; break No superposition: solve

big Problems into Pieces whole Problc—:m at once
quoth, Preclictable « FErratic. aperiodic
motions 1tH

motion

Response Proportional
to stimulus

Response need not be
Proportional to stimulus

Find detailed / 11
trau’ectories of individual ° Find 5101?81) quahtatxve
Partic es clescrll:)txon o1c a”

Possible trajectories



Linearitg and SuPerPosition

L(x) + L(y) = L(x + y)

Sags order you do the “combination” does not matter-.
Vcry imPortant concel:)’c.
if system is linear you can break it down into little parts,

solve seParatelg and combine solutions of Parl:s into
solution for whole.



Net force of Gravitg on line between Earth and Moon

Solve for force from
Earth and force from
Moon and add them.
Probably ddthis _
Proceclure without ™.
even thinking about it.
(earth and moon are
5Pherica| shells, so g=0

inside)

Net force from superposition/linearity (green)



Net force of Gravitg for Earth with a Core

Solve for force from

Earth and force
121 Let earth and core be spherical shells (so don't have to deal
From Core an& add “i:t:;rral,;;(m(;é:::e::_wm‘ shells (so don't have to dea
h Gravity on surface of earth = 1g,on surface of core = 0.5 g.
them.

Same Proccclure as
before (and same =
justi{:ication) - but il A
Probably had to
think about it here. == ]

Force gravity from Earth to left (blue)

(Earth and core are s e
al%aiﬂ SPherical -
shells so g=0 inside)



