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Tutorial

Ellipsoid, geoid, gravity, geodesy, and geophysics

Xiong Li∗ and Hans-Jürgen Götze‡

ABSTRACT

Geophysics uses gravity to learn about the den-
sity variations of the Earth’s interior, whereas classical
geodesy uses gravity to define the geoid. This difference
in purpose has led to some confusion among geophysi-
cists, and this tutorial attempts to clarify two points of
the confusion. First, it is well known now that gravity
anomalies after the “free-air” correction are still located
at their original positions. However, the “free-air” re-
duction was thought historically to relocate gravity from
its observation position to the geoid (mean sea level).
Such an understanding is a geodetic fiction, invalid and
unacceptable in geophysics. Second, in gravity correc-
tions and gravity anomalies, the elevation has been used
routinely. The main reason is that, before the emergence
and widespread use of the Global Positioning System
(GPS), height above the geoid was the only height mea-

surement we could make accurately (i.e., by leveling).
The GPS delivers a measurement of height above the
ellipsoid. In principle, in the geophysical use of gravity,
the ellipsoid height rather than the elevation should be
used throughout because a combination of the latitude
correction estimated by the International Gravity For-
mula and the height correction is designed to remove
the gravity effects due to an ellipsoid of revolution. In
practice, for minerals and petroleum exploration, use of
the elevation rather than the ellipsoid height hardly in-
troduces significant errors across the region of investi-
gation because the geoid is very smooth. Furthermore,
the gravity effects due to an ellipsoid actually can be
calculated by a closed-form expression. However, its ap-
proximation, by the International Gravity Formula and
the height correction including the second-order terms,
is typically accurate enough worldwide.

INTRODUCTION

Geophysics has traditionally borrowed concepts of gravity
corrections and gravity anomalies from geodesy. Their uncrit-
ical use has sometimes had unfortunate results. For example,
the “free-air” reduction was historically interpreted by geode-
sists as reducing gravity from topographic surface to the geoid
(mean sea level). This interpretation is a useful fiction for
geodetic purposes, but is completely inappropriate for geo-
physics. In geophysics, gravity is used to learn about the den-
sity variations of the Earth’s interior. In geodesy, gravity helps
define the figure of the Earth, the geoid. This difference in pur-
pose determines a difference in the way to correct observed
data and to understand resulting anomalies.

Until a global geodetic datum is fully and formally accepted,
used, and implemented worldwide, global geodetic applica-
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tions require three different surfaces to be clearly defined. They
are (Figure 1): the highly irregular topographic surface (the
landmass topography as well as the ocean bathymetry), a geo-
metric or mathematical reference surface called the ellipsoid,
and the geoid, the equipotential surface that mean sea level
follows.

Gravity is closely associated with these three surfaces. Grav-
ity corrections and gravity anomalies have been traditionally
defined with respect to the elevation. Before the emergence
of satellite technologies and, in particular, the widespread
use of the Global Positioning System (GPS), height above
the geoid (i.e., the elevation) was the only height measure-
ment we could make accurately, namely by leveling. The
GPS delivers a measurement of height above the ellipsoid.
Confusion seems to have arisen over which height to use in
geophysics.
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This tutorial explains the concepts of, and relationships
among, the ellipsoid, geoid, gravity, geodesy, and geophysics.
We attempt to clarify the way to best compute gravity correc-
tions given GPS positioning. In short, h, the ellipsoid height
relative to the ellipsoid, is the sum of H , the elevation relative
to the geoid, and N , the geoid height (undulation) relative to
the ellipsoid (Figure 2):

h = H + N . (1)

The geoid undulations, gravity anomalies, and gravity gradient
changes all reflect, but are different measures of, the density
variations of the Earth. The difference between the geophys-
ical use of gravity and the geodetic use of gravity mirrors the
difference between the ellipsoid and the geoid.

ELLIPSOID

As a first approximation, the Earth is a rotating sphere. As a
second approximation, it can be regarded as an equipotential
ellipsoid of revolution.

According to Moritz (1980), the theory of the equipotential
ellipsoid was first given by P. Pizzetti in 1894. It was further
elaborated by C. Somigliana in 1929. This theory served as
the basis for the International Gravity Formula adopted at the
General Assembly of the International Union of Geodesy and
Geophysics (IUGG) in Stockholm in 1930. One particular el-
lipsoid of revolution, also called the “normal Earth,” is the one
having the same angular velocity and the same mass as the ac-
tual Earth, the potential U0 on the ellipsoid surface equal to the
potential W0 on the geoid, and the center coincident with the
center of mass of the Earth. The Geodetic Reference System
1967 (GRS 67), Geodetic Reference System 1980 (GRS 80),

FIG. 1. Cartoon showing the ellipsoid, geoid, and topographic
surface (the landmass topography as well as the ocean
bathymetry).

FIG. 2. The elevation H above the geoid, the ellipsoid height
h, and the geoid height (undulation) N above the ellipsoid.

and World Geodetic System 1984 (WGS 84) all are “normal
Earth.”

Although the Earth is not an exact ellipsoid, the equipoten-
tial ellipsoid furnishes a simple, consistent and uniform refer-
ence system for all purposes of geodesy as well as geophysics:
a reference surface for geometric use such as map projec-
tions and satellite navigation, and a normal gravity field on
the Earth’s surface and in space, defined in terms of closed
formulas, as a reference for gravimetry and satellite geodesy.
The gravity field of an ellipsoid is of fundamental practical im-
portance because it is easy to handle mathematically, and the
deviations of the actual gravity field from the ellipsoidal “theo-
retical” or “normal” field are small. This splitting of the Earth’s
gravity field into a “normal” and a remaining small “disturb-
ing” or “anomalous” field considerably simplifies many prob-
lems: the determination of the geoid (for geodesists), and the
use of gravity anomalies to understand the Earth’s interior (for
geophysicists).

Although an ellipsoid has many geometric and physical pa-
rameters, it can be fully defined by any four independent pa-
rameters. All the other parameters can be derived from the
four defining parameters. Table 1 lists the two geometric pa-
rameters of several representative ellipsoids. Notice how the
parameters differ, depending on the choice of ellipsoid.

One of the principal purposes of a world geodetic system is
to supersede the local horizontal geodetic datums developed
to satisfy mapping and navigation requirements for specific re-
gions of the Earth. A particular reference ellipsoid was used to
help define a local datum. For example, the Australian National
ellipsoid (Table 1) was used to define the Australian Geodetic
Datum 1966. At present, because of a widespread use of GPS,
many local datums have been updated using the GRS 80 or
WGS 84 ellipsoid.

GRS 80 and WGS 84

Modern satellite technology has greatly improved determi-
nation of the Earth’s ellipsoid. As shown in Table 1, the semi-
major axis of the International 1924 ellipsoid is 251 m larger
than for the GRS 80 or WGS 84 ellipsoid, which represents the
current best global geodetic reference system for the Earth.

WGS 84 was designed for use as the reference system for the
GPS. The WGS 84 Coordinate System is a conventional terres-
trial reference system. When selecting the WGS 84 ellipsoid
and associated parameters, the original WGS 84 Development
Committee decided to adhere closely to the IUGG’s approach
in establishing and adopting GRS 80.

GRS 80 has four defining parameters: the semimajor axis
(a = 6 378 137 m), the geocentric gravitational constant of the

Table 1. Examples of different reference ellipsoids and their
geometric parameters.

Semimajor axis Reciprocal of
Ellipsoid name (a in meters) flattening (1/ f )

Airy 1830 6 377 563.396 299.324 964 6
Helmert 1906 6 378 200 298.3
International 1924 6 378 388 297
Australian National 6 378 160 298.25
GRS 1967 6 378 160 298.247 167 427
GRS 1980 6 378 137 298.257 222 101
WGS 1984 6 378 137 298.257 223 563
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Earth including the atmosphere (G M = 3 986 005 × 108 m3/s2),
the dynamic form factor (J2 = 108 263 × 108) of the Earth ex-
cluding the permanent tidal deformation, and the angular ve-
locity (ω = 7 292 115 × 10−11 rad/s) of the Earth (Moritz, 1980).

Besides the same values of a and ω as GRS 80, the
current WGS 84 (National Imagery and Mapping Agency,
2000) uses both an improved determination of the geocen-
tric gravitational constant (G M = 3 986 004.418 ×108 m3/s2)
and, as one of the four defining parameters, the reciprocal
(1/ f = 298.257 223 563) of flattening instead of J2. This flat-
tening is derived from the normalized second-degree zonal
gravitational coefficient (C2,0) through an accepted, rigorous
expression, and turned out slightly different from the GRS 80
flattening because the C2,0 value is truncated in the normal-
ization process. The small differences between the GRS 80
ellipsoid and the current WGS 84 ellipsoid have virtually no
practical consequence.

APPROXIMATE CALCULATION OF THEORETICAL

GRAVITY DUE TO AN ELLIPSOID

The theoretical or normal gravity, or gravity reference field,
is the gravity effect due to an equipotential ellipsoid of rev-
olution. Approximate formulas are used widely even though
we can calculate the exact theoretical gravity analytically. Ap-
pendix A gives closed-form expressions as well as approximate
ones. In particular, equation (A-2) (see Appendix A) estimates
in a closed form the theoretical gravity at any position on,
above, or below the ellipsoid.

The International Gravity Formula

The conventionally used International Gravity Formula is
obtained by substituting the parameters of the relevant ref-
erence ellipsoid into equation (A-3). Helmert’s 1901 Gravity
Formula, and International Gravity Formulas 1930, 1967, and
1980, correspond respectively to the Helmert 1906, Interna-
tional 1924, GRS 67, and GRS 80 ellipsoids. For example, the
1980 International Gravity Formula is (Moritz, 1980)

γ1980 = 978 032.7(1 + 0.005 302 4 sin2
φ

− 0.000 005 8 sin2 2φ) mGal, (2)

where φ is the geodetic latitude.
The resulting difference between the 1980 International

Gravity Formula and the 1930 International Gravity Formula
is

γ1980 − γ1930 = −16.3 + 13.7 sin2
φ mGal,

where the main difference is due to a change from the
Potsdam gravity reference datum used in the 1930 formula to
the International Gravity Standardization Net 1971 (IGSN71)
reference.

The first term of the International Gravity Formula is the
value of gravity at the equator on the ellipsoid surface. Unfor-
tunately, in the 1930s, no one really knew what it was. The most
reliable estimate at that time was based on absolute gravity
measurements made by pendulums at the Geodetic Institute
Potsdam in 1906. The Potsdam gravity value served as an ab-
solute datum for worldwide gravity networks from 1909 until

1971. In the 1960s, new measurements across continents made
by precise absolute and relative gravity meters became the net-
work of IGSN71 still in use today. A mean difference between
the Potsdam datum and the IGSN71 reference has been found
to be 14 mGal (Woollard, 1979).

Similarly, we can compare the 1967 formula to the 1980 for-
mula in use today. The difference between the two is relatively
small:

γ1980 − γ1967 = 0.8316 + 0.0782 sin2
φ mGal.

The height correction

The International Gravity Formula estimates the change
with latitude on the ellipsoid surface of theoretical gravity
due to an ellipsoid. The height correction accounts for the
change of theoretical gravity due to the station’s being located
above or below the ellipsoid at ellipsoid height h. Historically,
this height correction has been called the “free-air” correction
and thought to be associated with the elevation H , not the
ellipsoid height h. In geodesy, the “free-air” correction was
interpreted fictitiously as a reduction to the geoid of gravity
observed on the topographic surface. This has given rise to
confusion in geophysics (e.g., Nettleton, 1976, 88).

As a second approximation, the height correction is given in
equation (A-4). For the GRS 80 ellipsoid, we have

δgh2 = γh − γ = −(0.308 769 1 − 0.000 439 8 sin2
φ)h

+ 7.2125 × 10−8h2 mGal. (3)

However, in exploration geophysics, a first-order formula is
widely used, rather than this second approximation.

The famous 0.3086 correction factor

For the International 1924 ellipsoid, the second approxima-
tion of the height correction is (Heiskanen and Moritz, 1967,
80)

δgh2 = −(0.308 77 − 0.000 45 sin2
φ)h + 0.000 072h2.

Ignoring the second-order term and setting φ = 45◦, we obtain
the first approximation of the height correction

δgh1 = −0.3086h mGal. (4)

This is just the famous, routinely used, approximate height cor-
rection. Again, in exploration geophysics, it is commonly called
the (first-order) “free-air” correction and is used with the ele-
vation H rather than the ellipsoid height h.

Errors of approximate formulas

For the GRS 80 ellipsoid, as a first approximation equa-
tions (2) and (4) are combined to predict the theoretical gravity
at a position above (or below) the ellipsoid. The result is

γ 1
1980 = γ1980 + δgh1. (5)

A second approximation is a combination of equations (2) and
(3):

γ 2
1980 = γ1980 + δgh2. (6)



Correctly Understanding Gravity 1663

These two approximate formulas can be compared to the value
given by the closed-form formula (A-2). The two differences
are denoted as

1g1 = γ 1
1980 − γ (7)

and

1g2 = γ 2
1980 − γ. (8)

For an ellipsoid height of 3000 m, differences versus latitudes
are given in Table 2. Table 3 shows differences versus ellipsoid
heights at 45◦ latitude.

Because the differences 1g2 shown in Tables 2 and 3 are
smaller than typical exploration survey errors, equation (A-4),
together with the International Gravity Formula, produces a
sufficiently accurate approximation of the exact theoretical
gravity value worldwide. This equation includes the second-
order ellipsoid height terms. For the GRS 80 ellipsoid, equa-
tion (A-4) becomes equation (3).

GEOID

The geoid is a surface of constant potential energy that co-
incides with mean sea level over the oceans. This definition is
not very rigorous. First, mean sea level is not quite a surface of
constant potential due to dynamic processes within the ocean.
Second, the actual equipotential surface under continents is
warped by the gravitational attraction of the overlying mass.
But geodesists define the geoid as though that mass were always
underneath the geoid instead of above it. The main function
of the geoid in geodesy is to serve as a reference surface for
leveling. The elevation measured by leveling is relative to the
geoid.

GEODESY: CONVERSION OF GRAVITY TO GEOID

Originally, geodesy was a science solely concerned with
global surveying, with the objective of tying local survey nets to-
gether by doing careful surveying over long distances. Geode-
sists tell local surveyors where their positions are with respect
to the rest of the world. That includes determining the elevation
above sea level.

Why should gravity enter into geodesy?

Many geodetic instruments use gravity as reference. Clearly,
mean sea level serves as a reference surface for leveling, and
the elevation is relative to mean sea level. In theory, mean sea

Table 2. Differences ∆g1 in equation (7) and ∆g2 in equation (8) of theoretical gravity in equation (A-2) and the two approxi-
mations in equations (5) and (6) at an ellipsoid height of 3000 m and different geodetic latitudes.

latitude 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

1g1 (mGal) −0.114 −0.192 −0.411 −0.728 −1.079 −1.363 −1.474
1g2 (mGal) 0.028 0.038 0.061 0.073 0.052 0.009 −0.013

Table 3. Differences ∆g1 in equation (7) and ∆g2 in equation (8) of theoretical gravity in equation (A-2) and the two approxi-
mations in equations (5) and (6) at geodetic latitude of 45◦◦ and different ellipsoid heights.

height (m) 10 100 500 1000 2000 3000 4000 5000 6000

1g1 (mGal) 0.044 0.040 0.006 −0.068 −0.326 −0.728 −1.276 −1.968 −2.805
1g2 (mGal) 0.045 0.046 0.050 0.055 0.064 0.073 0.081 0.089 0.096

level could be determined by regular observations at perma-
nent tidal gauge stations. However, one can not very accurately
determine the elevation at a location far away from and not
tightly tied to an elevation datum defining mean sea level. In
practice, the geoid replaces mean sea level as a reference sur-
face for leveling. When we level, what we really measure are
the elevations above (or below) the geoid. When geodesists or
surveyors say a surface is horizontal, they really mean that it
is a surface of constant gravitational potential. So, geodesists
have always had to measure gravity—in addition to relative
positions—which is why gravity historically was regarded as
part of geodesy.

The very early gravity work with pendulum equipment was
for geodetic purposes alone. Pierre Bouguer was probably the
first to make this kind of observation when he led the expedi-
tions of the French Academy of Sciences to Peru in 1735–1743.
Geophysical use of gravity observations started much later.
The first use for geological investigation may have been when
Hugo de Boeckh, who was at that time the Director of the
Geological Survey of Hungary, asked Baron Roland von
Eötvös to do a torsion balance survey over the then one-well
oil field of Egbell (Gbely) in Slovakia. This survey was carried
out in 1915–1916 and showed a clear maximum over the known
anticline (Eckhardt, 1940).

Geodesists determine the Earth’s figure (i.e., the geoid) in
two steps. First, they reduce to the geoid the gravity, observed
on the actual Earth’s surface. Second, from the reduced gravity,
they calculate the geoid undulations (i.e., the deviations from
the ellipsoid surface).

The free-air reduction: An historical concept and requirement

of classical geodesy

Gravity is measured on the actual surface of the Earth. In
order to determine the geoid, the masses outside the geoid
must be completely removed or moved inside the geoid by the
various gravity corrections, and gravity must be reduced onto
the geoid. Geodesists need the elevation H relative to the geoid
when they derive the geoid from gravity.

For a reduction of gravity to the geoid, they need the vertical
gradient of gravity, ∂g/∂ H . Note that H ¿ a, the semimajor
axis of the ellipsoid. If gs is the observed value on the surface
of the Earth, then the value gg on the geoid may be obtained
as a Taylor series expansion. Neglecting all but the linear term,
geodesists obtain

gg = gs + F,
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where

F = −
∂g

∂ H
H ≈ −0.3086H mGal. (9)

Equation (9) continues to be called the “free-air” effect.
Geodesists have assumed that there are no masses above the
geoid, or that such masses have been removed beforehand, so
that this reduction is as though it were done in “free air”. It
is so called because, after removal of the topography by the
complete Bouguer reduction, the gravity station is left hanging
in “free air” (Heiskanen and Moritz, 1967, 131).

In classical geodesy, geodesists employed the fiction that the
“free-air” reduction condensed the topographic masses and
lowered the station onto the geoid, whereby the geoid became
a bounding surface of the terrestrial masses, and gravity gg was
on the geoid (Heiskanen and Moritz, 1967, 145). Therefore,
Stokes’ formula can be used to calculate geoid undulations
from gravity. Unfortunately, geophysicists have often misun-
derstood and misused this geodetic philosophy.

Calculating geoid undulations from gravity

After estimating gg, gravity on the geoid, geodesists can
then derive the geoid. For a simplification, we take as example
the spherically symmetric, rotating Earth. The derivation from
gravity to the geoid consists of three substeps (Wahr, 1997, 104–
108). First, calculate δg, the angular-dependent component of
gg , by the following relation:

gg ≈
G M

a2
−

2

3
ω2a + δg.

Then solve
∂δV

∂r
+

2

a
δV = −δg

to find δV , the angular-dependent component of the gravita-
tional potential. Finally, the geoid shape is given by the Bruns
formula

FIG. 3. The 15′ × 15′ global geoid undulations produced by EGM96 (Lemoine et al., 1998). The undulations range from −107 m to
85 m. Black lines indicate coast lines.

δr =
δV

γ
,

where γ is the theoretical gravity on the surface of the spherical
earth and δr is the departure of the geoid from a sphere.

In general and in practice, the geoid undulations are denoted
by N . They are the departure from an ellipsoid and can be
calculated using Stokes’ formula. Details can be found in books
on physical geodesy (e.g., Heiskanen and Moritz, 1967; Wahr,
1997).

Geoid model

Equation (1) connects h (the ellipsoid height relative to the
ellipsoid), N (the geoid undulation relative to the ellipsoid),
and H (the elevation relative to the geoid) (Figure 2).

The geoid undulations range worldwide from −107 m to
85 m relative to the WGS 84 ellipsoid. The primary goal of
geodesy is to develop a geoid model, which is then used to
connect the three values. Given N , we can compute H or h
from the other. For example, when we use GPS as a posi-
tioning tool, we measure the ellipsoid height h. The eleva-
tion H can be estimated by equation (1) if we have a geoid
model.

In general, the global or large-scale features of the geoid
are expressed by a spherical harmonic expansion of the grav-
itational potential. Its higher terms are well defined by the
ground gravity data, and the lower terms by the satellite track-
ing data. The Earth Gravitational Model 1996 (EGM96) is one
of the latest global models. It is complete through degree and
order 360. The EGM96 global geoid undulations are shown in
Figure 3, and have an error range of ±0.5 to ±1.0 m worldwide
(Lemoine et al., 1998). The U.S. National Imagery and Mapping
Agency recommends that it be used together with the WGS 84
reference ellipsoid (National Imagery and Mapping Agency,
2000).
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Short-wavelength geoid undulations

The relation between spherical harmonic degree n and wave-
length λ of geoid undulations is:

λ =
2π R

n
≈

40 000 000

n
, (10)

where R = 6 371 000 m is the average radius of the Earth.
EGM96 extends to degree and order 360 and thus has the short-
est spatial wavelength of 111 km.

At present, there exists no published truly global geoid
model that extends beyond degree 360 (i.e., contains a wave-
length of shorter than 111 km). Several empirical relations have
been established to estimate how the expected power of global
gravity and geoid signals drops off with an increase in degree
of the spherical harmonic model (Kaula, 1966; Tscherning and
Rapp, 1974; Jekeli, 1978). All these relations estimate that the
global rms geoid undulation signals are less than 2 cm and
20 cm, when the wavelengths of undulations are 10 km and
100 km, respectively.

In a local area or nationwide, a high-resolution and accu-
rate geoid model may be derived. The GEOID99 model is the
latest one for the United States. The geoid grid with a cell
size of 1 arcminute (about 2 km) is known as a hybrid geoid
model, combining many millions of gravity and elevation points
with thousands of control points (i.e., GPS ellipsoid heights
on leveled bench marks). For the conterminous United States,
when comparing the GEOID99 model back to the same control
points, the rms difference is 4.6 cm. Its resolution may be be-
tween 10 and 20 km (Smith and Roman, 2001). For most of geo-
physical exploration purposes, simple height conversions with
GEOID99 in the conterminous United States can be sufficient.

CORRECTLY INTERPRETING THE FREE-AIR REDUCTION

Heiskanen and Moritz (1967, chapter 8) defined physical
geodesy to be “classical” or “conventional” before M. S. Molo-
densky proposed his famous theory in the 1940s, and “modern”
thereafter. Distinguished from Stokes’ formula, Molodensky’s
theory says that the physical surface of the Earth can be deter-
mined without using the density required, for example, by the
Bouguer correction. Heiskanen and Moritz (1967, section 8.3
“Molodensky’s Problem”, 293) clearly wrote:

The normal gravity on the telluroid [a variant of the

geoid–authors] is computed from the normal gravity
at the ellipsoid by the normal free-air reduction, but
now applied upward . . . Therefore the new free-air
anomalies have nothing in common with a free-air
reduction of actual gravity to sea level, except the
name. This distinction should be carefully kept in
mind.

And on page 241,

If, as is usually done, the normal free-air gradient
∂γ /∂h ≈ 0.3086 mGal/m is used for the free-air re-
duction, then the free-air anomalies refer, strictly
speaking, to the Earth’s physical surface (to ground
level) rather than to the geoid (to sea level) . . .How-
ever, this distinction is insignificant and can be ig-
nored in most cases, so that we may consider 1g as
sea-level anomalies.

In geodesy, this distinction is insignificant and can be ig-
nored in most cases because the reduction (downward contin-
uation) to sea level affects relatively short-wavelength anoma-
lies, which are less significant in determination of the geoid. The
geoid reflects very-long-wavelength density variations. This is
particularly true in a determination of regional or global geoid
undulations. But in exploration geophysics, we are interested
just in short-wavelength anomalies. The distinction is impor-
tant for us. Furthermore, it has led to an astonishing level of
confusion among geophysicists.

In exploration geophysics, Naudy and Neumann (1965) ex-
plicitly noted that the free-air and Bouguer gravity anoma-
lies refer to the observation station. Many algorithms [e.g., the
equivalent source technique of Dampney (1969)] have been
developed to continue gravity from an undulating observation
surface to a horizontal plane. Regardless, even in the 1980s,
some publications still referred the free-air anomaly to sea level
and incorrectly suggested that the measured vertical gravity
gradient should be better used to reduce observed gravity to
sea level. For example, Gumert (1985) wrote, “The free-air fac-
tor varies significantly with horizontal position and can affect
the reduction of observed gravity data. Land gravity measure-
ments made at varying elevation in an area of rugged topog-
raphy, processed using the standard accepted free-air factor,
can produce highly erroneous maps.” Again, “Airborne grav-
ity gives the ability to fly multi-level lines in a survey area to
compute the free-air factor to apply to the data.”

The height (or improperly, “free-air”) correction should be
made using a consistent, worldwide theoretical standard, that
is, one defined by an ellipsoid. The use of local or measured
value is inconsistent with the objective of looking for anomalies
relative to a universal model of the earth’s gravity and is unable
to continue observed gravity to any common level.

SATELLITE ALTIMETER GRAVITY: AN EXAMPLE

OF CONVERTING GEOID INTO GRAVITY

The primary task of geodesy is to determine the geoid from
the observed gravity. However, we can go in the other direc-
tion, as well: we can convert the observed geoid into a grav-
ity anomaly. Satellite altimeter gravity (also called satellite-
derived gravity) is such a process.

In satellite altimetry, two very precise distance measure-
ments are made so that the topography of the ocean surface
(i.e., the geoid) is derived. First, the ellipsoid height h is mea-
sured by tracking the satellite from a globally distributed net-
work of lasers and/or Doppler stations. Second, the height of
the satellite above the closest ocean surface (i.e., the eleva-
tion H) is measured with a microwave radar altimeter. As
demonstrated in equation (1), the difference between these
two heights is just the geoid undulation N . In practice, altimeter
data, collected by different satellites over many years, are com-
bined to achieve a high data density and to average out sea sur-
face disturbing factors such as waves, winds, tides, and currents.

The geoid relatively reflects deeply buried density variations.
In order to enhance small-scale features, the high-precision
geoid is converted into gravity anomaly. The gravity anomaly
can be computed by using inverse Stokes’ formula (the geoid-
to-gravity method) or by taking the derivatives of the geoid and
using Laplace’s equation (the slope-to-gravity method; e.g., see
Sandwell and Smith, 1997). In the real world, the conversion
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algorithms are sophisticated, based on laws of physics, geome-
try, and statistics.

Anyway, there is a simple relationship between gravity
anomaly and geoid undulation. For two-dimensional anoma-
lies, an anomaly in geoid with a wavelength λ and amplitude
N , the associated gravity anomaly 1g is given by

1g =
2πγ N

λ
, (11)

where γ = 980 000 mGal, the average gravity of the Earth. This
formula can be derived in the Fourier domain by following
the work of a determination of gravity anomalies from a grid
of geoid undulations (Haxby et al., 1983). Equation (11) says
that the bump in the geoid associated with a 10-mGal gravity
anomaly and a wavelength of 10 km is just 16 mm. This indi-
cates how precise the geoid must be in order to derive gravity
anomalies useful for exploration geophysics. A number of in-
dependent studies (Green et al., 1998; Yale et al., 1998) show
that satellite altimeter gravity has an accuracy of about 5 mGal
and resolution of about 20 km.

GEOPHYSICS: STATION GRAVITY ANOMALY RELATIVE

TO THE ELLIPSOID

Equations (4) and (9) appear to be the same. Actually, they
have two important differences. First, h in equation (4) is the
ellipsoid height, but H in equation (9) the elevation. Second,
equation (4) accounts for the change of theoretical gravity
due to the ellipsoid with the ellipsoid height, whereas equa-
tion (9) represents an historical endeavor of reducing gravity
from the Earth’s surface to the geoid. These two differences [i.e.,

equations (4) and (9)] distinguish geophysics from (classical)
geodesy. In geophysics, we should follow equation (4) and its
implications.

Gravity anomaly is a station anomaly

The geophysical use of gravity is to learn about the Earth’s
interior. We need to remove the effects of the Earth’s irregular
(nonellipsoidal) surface. In principle, this means that we should
compare the observed gravity to that of ellipsoidally-produced
theoretical gravity values at each observation station. Their
difference is just the gravity anomaly. The free-air anomaly is
the difference between the observed gravity, without terrain-
related corrections, and the theoretical gravity. The complete
Bouguer anomaly is the difference between the observed grav-
ity with the complete Bouguer correction (the Bouguer slab,
curvature, and terrain corrections) and the theoretical gravity.
Both the free-air and Bouguer gravity anomalies are located at
the gravity station. We must conduct a continuation process in
order to obtain the gravity responses on the geoid or another
surface/level. As an example, in a continuation to sea level of
the ground Bouguer gravity anomaly in the Central Andes, the
correction value can reach 30% of the maximum magnitude of
the station anomalies (Li and Götze, 1996).

The ellipsoid height, or the elevation plus the geoid

In geophysics, the gravity anomaly is the difference be-
tween the observed gravity and the theoretical gravity pro-
duced by the ellipsoid. The geophysical gravity anomaly can
be calculated simply by using the ellipsoid height h instead
of the elevation H in positioning and in all necessary correc-

tions/reductions. In particular, it is not appropriate to estimate
the elevation from the ellipsoid height determined by GPS and
then use the elevation for corrections/reductions. The extra
step produces less reasonable and less significant results.

Traditionally, geophysicists use the elevation as the vertical
position of the gravity station and the topographic model. The
elevation is used in all the corrections including the height cor-
rection and the complete Bouguer correction (the Bouguer
slab, curvature, and terrain corrections). Rigorously speaking,
in addition we should correct observed gravity for the geoid
shape. The gravity effects due to the geoid undulations are
called the indirect effects (Chapman and Bordine, 1979). Li
and Götze (1996) explained the details of estimating the indi-
rect effects. For example, the indirect effect δgih caused by the
routine height correction is

δgih = −0.3086N mGal. (12)

Thus, the indirect effect on the free-air gravity anomaly can be
up to 30 mGal worldwide.

However, the amplitude of geoid undulations with a wave-
length below 10 km is usually smaller than 10 cm, and the
amplitude for a wavelength of 100 km is widely smaller than
1 m. Approximately, an elevation change of 10 cm results in a
change in computed Bouguer anomaly value of 0.02 mGal, and
1 m results in a change of 0.2 mGal. In practice, at short wave-
lengths (say, less than 100 km), we don’t need to correct for the
geoid undulations because the geoid is very smooth, with little
power at those wavelengths. In petroleum exploration and in
particular in minerals exploration, by ignoring the geoid cor-
rections (i.e., the indirect effects) one is unlikely to introduce
any important relative errors across the region of investigation.

Use of geoid, gravity, and gravity gradient

The geoid undulations, gravity anomalies, and gravity gradi-
ent changes all are due to the density variations of the Earth’s
interior, and are transformable from one to another. The wave-
lengths that the gravity gradient, gravity, and geoid dominate
or concentrate range gradually from short (tens of meters) to
long (thousands of kilometers). The geoid undulations are used
to study the global or very regional problems such as the man-
tle convection. On the contrary, the gravity gradient is better
used to investigate short wavelength effects for engineering,
environmental, or mining problems.

SUMMARY

Geodesy uses gravity to determine the geoid. Geodesists
must reduce the observed gravity from the actual surface of
the Earth to the geoid (mean sea level). In the gravity cor-
rections/reductions, geodesists use the elevation instead of the
ellipsoid height.

Geophysics uses gravity to study the Earth’s interior. The
gravity anomaly is the difference between the observed gravity
and the theoretical gravity predicted from the ellipsoid. The
gravity anomaly is located at the observation station after the
height correction and other routine corrections/reductions are
applied. In principle, the ellipsoid height should be used in
positioning and in all data corrections/reductions. In practice
and in minerals and petroleum exploration, use of the elevation
rather than the ellipsoid height hardly introduces significant
errors because the geoid is very smooth. However, it should
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not be recommended as a routine procedure to derive the ele-
vation from the ellipsoid height determined by GPS and then
use the elevation for corrections/reductions.

The theoretical gravity on, above, and below the ellipsoid
surface can be calculated by a closed-form formula. Its approx-
imation by the International Gravity Formula and the height
correction including the second-order terms is typically accu-
rate enough worldwide.
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APPENDIX A

THEORETICAL GRAVITY DUE TO AN ELLIPSOID

The theoretical gravity is the gravity effect due to an equipo-
tential ellipsoid of revolution. Approximate formulas are used
widely. In fact, we can calculate the theoretical gravity at any
position on, above, or below the ellipsoid surface using closed-
form expressions.

Closed-form expression: Gravity on the surface of the ellipsoid

The theoretical gravity on the surface of the ellipsoid is given
bytheformulaofSomigliana(HeiskanenandMoritz,1967,76):

γ = γe
1 + k sin2

φ
√

1 − e2 sin2
φ

, (A-1)

where

k =
bγp

aγe
− 1;

e =

√

a2 − b2

a2
is the first eccentricity;

and a and b are the semimajor and semiminor axes of the ellip-
soid, respectively; γe and γp are the theoretical gravity at the
equator and poles, respectively; and φ is the geodetic latitude.

Closed-form formula: Gravity above and below the surface of

the ellipsoid

The theoretical gravity at any ellipsoid height h and
any geodetic latitude φ (Figure A-1) can also be given by a
closed-form formula. Starting from the general formula of
Heiskanen and Moritz (1967, 67–71), Lakshmanan (1991) de-
rived the formula and published a result containing typo-
graphic errors. Li and Götze (1996) repeated the derivation
and corrected the errors, obtaining

γ =
1

W

{

G M

b′2 + E2
+

ω2a2 Eq ′

(b′2 + E2)q0

(

1

2
sin2

β ′ −
1

6

)

− ω2b′ cos2 β ′

}

, (A-2)
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where

E =
√

a2 − b2 is linear eccentricity,

W =

√

b′2 + E2 sin2
β ′

b′2 + E2
,

q ′ = 3

(

1 +
b′2

E2

)(

1 −
b′

E
tan−1 E

b′

)

− 1,

q0 =
1

2

[(

1 +
3b2

E2

)

tan−1 E

b
−

3b

E

]

,

b′ =
√

r ′′2 − E2 cos2 β ′,

cos β ′ =

√

1

2
+

R

2
−

√

1

4
+

R2

4
−

D

2
,

FIG. A-1. A station above an ellipsoid surface. The ellipsoid
has the semimajor axis a and semiminor axis b. The position of
station P relative to the ellipsoid is defined by ellipsoid height
h and geodetic latitude φ. The angle β is called the reduced
latitude.

and R = r ′′2/E2, D = d ′′2/E2, r ′′2 = r ′2 + z′2, d ′′2 = r ′2 − z′2, r ′ =

a cos β + h cos φ, z′ = b sin β + h sin φ, and tan β = b/a tan φ.

Approximate formula for the latitude correction

The conventional latitude correction is a second-order series
expansion of equation (A-1) (Heiskanen and Moritz, 1967, 77):

γ = γe

(

1 + f ∗ sin2
φ −

1

4
f4 sin2 2φ

)

, (A-3)

with

f ∗ =
γp − γe

γe
(gravity flattening),

f4 = −
1

2
f 2 +

5

2
f m,

f =
a − b

a
(flattening of the ellipsoid),

and

m =
ω2a2b

G M
.

Approximate formula for the height correction

The height correction accounts for the change of theoret-
ical gravity due to the station being located above or below
the ellipsoid at ellipsoid height h. As a second approximation
(Heiskanen and Moritz, 1967, 79), a Taylor series expansion
for the theoretical gravity above the ellipsoid with a positive
direction downward along the geodetic normal to the reference
ellipsoid is

γh = γ

[

1 −
2

a
(1 + f + m − 2 f sin2

φ) h +
3

a2
h2

]

.

The difference γh − γ (i.e., the height correction) is

γh −γ = −
2γe

a

[

1+ f +m +

(

5

2
m −3 f

)

sin2
φ

]

h +
3γe

a2
h2.

(A-4)

See ERRATA for this  Figure



Errata 997

To: “Ellipsoid, geoid, gravity, geodesy, and geophysics,” X. Li and H. -J. Götze (Geophysics, 66, 1660-1668).

The authors thank Dr. Nico Sneeuw of the University of

Calgary for pointing out a graphical error. The reduced lati-

tude β was incorrectly defined in Figure A-1, which should

be replaced by the figure shown below. However, this

graphical error was not introduced into the derivation of the

closed-form expression for the theoretical gravity due to an

ellipsoid. All the formulae given in Appendix A are correct.

There is also a typographic error in the dynamic form

factor J2, in the first paragraph on page 1662.

J2 = 108 263 x 10-8 not 108 263 x 108.

Figure A-1. A station above a reference ellipsoid surface. The reference ellipsoid has a semi-major axis a and a semi-minor

axis b. The position of station P relative to the reference ellipsoid is defined by ellipsoid height h and geodetic latitude φ. The

ellipsoid through point P has the same linear eccentricity as the reference ellipsoid. The reduced latitude β is a geocentric lat-

itude of point Q, which is the vertically projected point, on a sphere of radius a, of station P’s normal projection on the refer-

ence ellipsoid surface.
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