
1)  Get physics under control!

Magnitude of force of gravity.!
Notice from symmetry is 1-D problem.!

€

g = −
GMe

r2
, r ≥ Re

g = −GM r()r, r ≤ Re

2) Get MATLAB under control!

g is a vector!
 in this case we will only need 2-d vectors!

(from symmetry)!
 so we need a way to represent vectors!

For the case of 2-d vectors MATLAB has two
ways to represent vectors!

1)  Use regular MATLAB vectors [a], [b], or
[a,b]!

2)  Use complex numbers a+ib !

It turns out that MATLAB does some interesting
things with complex numbers and it is easier to
use the complex number method when you can. !

MATLAB (usually, sometimes?) treats a vector of
complex numbers as a vector of [x,y] pairs.!

For instance!

>> x=[0:5]!
x =!
 0 1 2 3 4 5!
>> z=x+i*x.^2!
z =!
 Columns 1 through 5!
 0 1.0000 + 1.0000i 2.0000 + 4.0000i 3.0000 + 9.0000i 4.0000 +16.0000i!
 Column 6!
 5.0000 +25.0000i!
>> plot(z)!

To calculate the force of gravity on the surface
of a homogeneous earth we will need to

calculate gravity on a set of points on a circle
with the radius of the earth.!

Consider the following line of code!

c = exp((0:N)*pi*2i/(N-1));!

What does this do?!

(notice that I don’t need 2*i!
MATLAB does not allow variables that start with

numbers so it can figure this out.	

To see what it does, plot the result c.!

plot(c)	

So now we have a MATLAB vector of complex
numbers that defines a circle centered on the

origin.!

and!

Let’s call each of the [x,y] pairs represented by
the complex number x+iy a Physics vector.!

I’ll use the term MATLAB vectors (“matrices”)
for collections of things into

“vectors” (“matrices”) that do not represent
things in the physics but make the organization

and calculations of the program easier!

and!

I’ll use the term Physics vectors for things that
represent components of the physics and

geometry.!

Applying our definitions to the results of the line
of code!

c = exp((0:N)*pi*2i/(N-1));!

We get a MATLAB vector c that is a collection of
Physical vectors (the vectors from the origin to

the points of a circle about the origin).	

We have to calculate gravity (a Physics vector -
magnitude and direction) at each of these points.!

How do we get the direction of gravity?!

For the homogeneous earth, the force of gravity
is directed radially inward.	

We can calculate the angle θ, which is the normal
to the circle, from tan-1(y/x).	

But we really want a Physics vector [gx, gy] at
the point [x,y] (another Physics vector), not

the angle θ.!

Consider the line of code!

vc=c./abs(c);!

What does this do?!

The MATLAB vector vc contains the unit
(Physics) vectors (for a vector from the origin
to a point on the circle) at each of the points

in c.!

€

x + iy = x 2 + y 2 x + iy
x 2 + y 2

= d ˆ d

Lets plot it up to see what we have!

Use quiver to plot vector field.!
Quiver needs the positions (which we have in the
vector c) of Physics vectors and the components

of the Physics vectors (which we have in the
vector vc of unit vectors)!

quiver(x,y,u,v).!

Unfortunately quiver does not work with the
complex number to [x,y] vector trick, so you

need to pass it MATLAB vectors of x, y, u and v.!

Lets plot it up to see what we have!

(don’t plot all of them – use estep to decimate,!
do vectors twice, once times -1 to get both

outward and inward normals)!

Have to pull out real and imag parts for quiver.!

%linespec of "." gets rid of arrow head on quiver!!!

quiver(real(c(1:estep:end)),imag(c(1:estep:end)),real(vc(1:estep:end)),imag(vc(1:estep:end)),'.r')!
axis equal!
hold!
quiver(real(c(1:estep:end)),imag(c(1:estep:end)),-real(vc(1:estep:end)),-imag(vc(1:estep:end)),'.r')!
plot(c)!
plot(0+i*0,'+r')!
grid!

This gives us the following plot !

That was amazingly easy.!

The calculations took all of 2 lines of code!!

There was much more code to plot it than
calculate it!! !

So we have basically plotted g on the surface of
the earth.!

Since g is radial and has uniform magnitude on the
surface of a homogeneous sphere – all we have to

do is state the scale and we are done!

[if we drew only the inward pointing vectors and
left the arrow head on them]. !

What about for the anomaly?!

We now need Physics vectors that go from the
center of the anomaly to the surface of the

earth.!

We have a MATLAB vector with the physics
vectors from the center of the earth to each

point on the surface.!

What about for the anomaly?!

The center of the anomaly is at [0,ca] or i*ca so
we can make a new MATLAB vector of the

Physics vectors from the center of the anomaly
to the surface of the earth!

ac=c-i*ca!

using vector addition (both MATLAB and Physics
simultaneously)!

What about for the anomaly?!

And we find the unit vectors on the circles
representing both the anomaly and the surface of

the earth from!

vca=ac./abs(ac)!

using vector addition and multiplication (both
MATLAB and Physics simultaneously)!

So, in another 2 lines of code we have the
Physics vectors on the surface of the earth that

are the radials of the anomaly !

To make this plot I took my circle, c, of unit
radius and multiplied/scaled it by the radius of

the earth to make the big circle (one line a code –
a multiply).!

I then took my unit circle, c, again and scaled it
by the radius of the anomaly (one line of code, a

multiply) and then offset it to the position of the
anomaly (one line of code, an add).!

I then plotted both circles.!

I next used quiver to draw the vectors from the
center of the anomaly to the surface of the earth

(twice to get the outward in inward vectors) !

You can easily see that the vectors are normal to
the surface of the anomaly (as expected)!

So far we have not calculated the magnitude,
which in this case, as opposed to the previous

case for the earth, vary as a function of position
on the surface of the earth. !

So how do we calculate the magnitude of the
gravity due to the anomaly on the surface of the

earth.!

We have a MATLAB vector with the Physics
vectors from the center of the anomaly to the

surface of the earth (vector ac).!

We are outside the anomaly so the magnitude of g
is g=-GMa /r2!

So the magnitude of g is!

gsea=-G*ma./abs(ac).^2;!

(we could have also done ac*ac’ in the denom.)!

Where we are using MATLAB and Physics vectors
simultaneously.!

To get the Physical vector g we just multiply the
MATLAB vector of magnitudes by the MATLAB
vector of (Physics) unit vectors element by

element.!

gseav=gsea.*vca;!

So gseav is a MATLAB vector, where each element
is a Physics vector.!

Plotting this up we get g on the surface of the
earth from the anomaly.!

Using superposition, to get the total force of
gravity on the surface of the earth (from the
earth and the anomaly) one adds the Physics

vectors (and you do this for the whole set of
points on the surface of the earth at once by

adding the two MATLAB vectors)!

Note that it is very important to add them as
vectors – not just the magnitudes!

Notice that
we never had

to use a loop!!

By representing the physical vectors (the ones
from the centers of the earth and anomaly to the
surface, g, etc.) as complex numbers we were able

to use MATLAB vectors to hold our sets of
physical vectors!

(x,y)=x+iy, magnitudes, and unit vectors.!

We used simple scaling and shifting to make the
earth and anomaly from a single unit circle.!

We used regular vector arithmetic (combined use
of MATLAB and Physics vectors into one step) to

do this.!

By representing the physical vectors (the ones
from the centers of the earth and anomaly to the
surface, g, etc.) as complex numbers we were able

to use MATLAB vectors to hold our sets of
physical vectors!

We were able to organize our code based on the
Physics (two simple gravity fields and add them

together), rather than the details of index
bookeeping (as would be necessary in fortran).!

The code is easier to understand and follow
(especially if you need to maintain it/look at it in

6 months).!

Now we are ready to attack the problem of
calculating g everywhere in a plane that goes

through the symmetry axis.!

First we have to make our sampling grid.!

Use the MATLAB routine meshgrid!

[xeg,yeg]=meshgrid([-maxp:step:maxp]);!

Which produces two MATLAB matricies – one
with the x values and one with the y values for

our grid.!

So any point on the grid is x(m,n), y(m,n).!

How are we going to “fix” this to get our Physics
vectors to each point?!

How about!

xyegrd=xeg+i*yeg;!

To make a MATLAB matrix of Physics vectors to
each point.!

And then!

dce=abs(xyegrd);!

To get the distance from the origin (center of
earth) to each point.!

and!

vxyegrd=xyegrd./dce;!

To get the unit vector direction at each point.!

Now we just repeat what we did before.!

With one difference.!

We now have to take into account whether or not
we are inside or outside the earth or anomaly. !

What do we want to do?!

We have a matrix that has the position of each
point where we would like to calculate gravity.!

We have a matrix that has the distance from the
center of the earth to each point.!

Each (p,q) element of first matrix is paired to the
(p,q) element of the second matrix, they “go”

together.!

We would like to create 2 new matrices that have
1) the magnitude and 2) the direction of gravity at
each point, with the same pairing of elements.!

MATLAB again comes to the rescue.!

Consider the lines of code!

ge=dce;!
ge(dce>re)=-G*me./dce(dce>re).^2;!

What does this do?!

ge=dce;!
ge(dce>re)=-G*me./dce(dce>re).^2;!

How it works is not intuitively obvious.!

Start with small
example!

The line “test a>=4”
returns a logical
matrix whose

elements are logicals
that contain the

results of the test
on each element of

the matrix!

(1 for true, 0 for
false). !

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> a>=4!
ans =!
 1 0 1!
 0 1 1!
 1 1 0!
>> whos !
 Name Size Bytes
Class Attributes!
 a 3x3 72 double !
 ans 3x3 9 logical!

How can we use this?!

MATLAB has a feature called
“logical indexing” in which it uses a

logical array for the matrix
subscript and returns the elements
for which the logical array value is

true.!

It returns these elements in a
column vector (1-D, linear index).!

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> a>=4!
ans =!
 1 0 1!
 0 1 1!
 1 1 0!
>> a(a>=4)!
ans =!
 8!
 4!
 5!
 9!
 6!
 7!
>> !

If you want to explicitly
identify the elements in “a”
that meet the test, use the

MATLAB find command.!

Note that it returns a vector
with a linear index into the
matrix (the line a(:) shows
how the elements of a are
stored in memory as a 1-d

vector).!

>> a!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> find(a>4)!
ans =!
 1!
 5!
 6!
 7!
 8!
>> a(:) !
ans =!
 8!
 3!
 4!
 1!
 5!
 9!
 6!
 7!
 2!
>> !

Note that the logical array has to
be the same size or smaller than
the array being tested (it goes

through both using linear indexing
till the logical array runs out of

elements).!

(This is true in this case since the
same matrix, a, is being tested and
was used to generate the logical

array.!

In our gravity example, however, we
are using two different arrays on

the LHS.)!

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> a>=4!
ans =!
 1 0 1!
 0 1 1!
 1 1 0!
>> a(a>=4)!
ans =!
 8!
 4!
 5!
 9!
 6!
 7!
>> !

This is not quite what we need,
since the result is a column

vector and we don’t know where
these elements came from in the

original array.!

Remember that the element
position (m,n) in the original arrays
map into the geometry and physics
of the problem (the position and

value of the variable).!

So we need a way to maintain the
original indexing in a.!

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> a>=4!
ans =!
 1 0 1!
 0 1 1!
 1 1 0!
>> a(a>=4)!
ans =!
 8!
 4!
 5!
 9!
 6!
 7!
>> !

Use the same scheme on the
LHS. Put the elements

selected on the RHS into the
elements selected on the

LHS.!

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> a>=4!
ans =!
 1 0 1!
 0 1 1!
 1 1 0!
>> b=zeros(3);!
>> b(a>=4)=a(a>=4)!
b =!
 8 0 6!
 0 5 7!
 4 9 0!
>> !

Note that “b” has to be big
enough to hold all the elements

that come from the RHS
(which is not the number of

elements in “a” on the RHS [9]
but the number needed to go!

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> b=zeros(3);!
>> b(a>=4)=a(a>=4)!
b =!
 8 0 6!
 0 5 7!
 4 9 0!
>> >> b=zeros(2);!
>> b(ind)=a(ind)!
??? In an assignment A(I) = B, a matrix A cannot be resized.!
>> b=zeros(1,8);!
>> b(ind)=a(ind)!
b =!
 8 0 0 0 5 9 6 7!
>> b=zeros(8,1);!
>> b(ind)=a(ind)!
b =!
 8!
 0!
 0!
 0!
 5!
 9!
 6!
 7!
>> !

from the start of “a” to the
last value that meets the

condition [8]. (If we used a<4
it would have put out 9

elements since the last element
in “a” meets the condition).!

If you have the list of indices,
you can use that to fill the

elements on the LHS.!

Again, you have to be careful that
the LHS has the dimensions you

want.!

If you dynamically create the LHS
it will only have 8 elements in this
case and it is a linear 1-d matrix,

while we need a 2-d matrix.!

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> b=zeros(3);!
>> ind=find(a>4)!
ind =!
 1!
 5!
 6!
 7!
 8!
>> b(ind)=a(ind)!
b =!
 8 0 6!
 0 5 7!
 0 9 0!
>> c(ind)=a(ind)!
c =!
 8 3 0 1 5 9 6 7 2!
>>!

Finally, the most compact way
to do it.!

Uses logical indexing on both
sides to match up elements on
LHS with appropriate ones on

RHS.!

>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> b=zeros(3);!
>> b(a>4)=a(a>4)!
b =!
 8 0 6!
 0 5 7!
 0 9 0!

Places to look for more information on indexing!
http://www.mathworks.com/company/newsletters/digest/sept01/matrix.html!

http://www.mathworks.com/help/techdoc/math/f1-85462.html!

ge=dce;!
ge(dce>re)=-G*me./dce(dce>re).^2;!

The rest of the stuff (in red) on the RSH just
calculates the value of gravity at each of those M

points.!

ge=dce;!
ge(dce>re)=-G*me./dce(dce>re).^2;!

So now we have M (possibly less than the size of
dce) values that have to be stored somewhere.!

How this storage gets done is defined on the LHS.!

Finally!

ge=dce;!
ge(dce>re)=-G*me./dce(dce>re).^2;!

The dce>re on the LHS picks the same M
elements from the matrix ge (it uses the same

test on matrix dce to select elements) and the M
elements from the calculation on the RHS are

placed in the same locations (p,q) in the matrix ge
on the LHS.!

This is exactly what we want.!

Populating the LHS!
One could just as easily have intialized ge as!

ge=zeros(N,N),!

where N is the size of dce.!

It is also safer to do it this way, since none of
the elements of ge would have “garbage”, the

distances, in them.!

So now we have a matrix, ge, with M elements
containing the magnitude of gravity for the points

at (p,q) that are outside the earth.!

The other N*N-M points still have the distance in
them. (they were not modified)!

Similarly!

ge(dce<=re)=-4/3*pi*dce(dce<=re)*G*rhoe;!

Does the same thing for points inside the earth.!

Since every point will pass one of the tests
(dce>re or dce<=re) all elements in ge will be

properly filled (i.e. they will not be left with the
distance in them).!

So now we have a matrix whose elements are
populated with the magnitude of gravity at the

location associated with the (p,q) element.!

What about the g vector?!

Multiply the magnitudes by the unit vectors at
each point.!

gev=ge.*vxyegrd;!

Plotting this (decimated) with quiver we get!

Now we do the same for the anomaly.!

We have to use the matrices for the anomaly with
the shifted origin – but all the steps (all 2 of

them!) are the same.!

We get.!

Now we do the vector sum to find the total
gravity field from both the earth and the anomaly
(just add the two matrices – one for the earth

and the other for the anomaly).!

Still no
loops!!

One can also plot the magnitude of the gravity
field with a surface plot.!

You could also use quiver3 to plot the quiver
arrows on it.!

Or pull out g(r) along the z axis (the axis of
symmetry) (the combo is done with the vector

values).!

Plots of Potential.!
(zero ref at infinity)!

Plots of Potential.!Plots of Potential.!
(zero ref at infinity)!

Plots of Potential.!Plots of Potential.!
(zero ref at infinity)!

Plots of Potential.!Plots of Potential.!
(zero ref at infinity)!

Potential!
Review the definition of potential, U(x), the

negative of the work done to get to that point. !

€

U(x) = − g(x)dx
x0

x

∫ +U(x0)

U x ≥ Re() = −
GM
r

+U(x0)

U x < Re() = − 1
2GM r()r2 +U(x0)

U(x0, r≥Re)=0 if define U(∞)=0.!

U(x0, r<Re)=U(Re, r≥Re) to match up at Re.!

(note the factor of ½ for r<Re. It does not
change the functional form which goes as r2, but
comes out of the evaluation of the integral and

makes g=-grad(U) work correctly.)!

Compare calculation g from –GM/r2 (left) and
gradient of potential (right).!

Can’t tell difference.!

