
Linear Time-invariant systems, Convolution, 

and Cross-correlation 
 

 

(1) Linear Time-invariant (LTI) system 

 A system takes in an input function and returns an output function. 

 

 

 

 

 

 

 

An LTI system is a special type of system.  As the name suggests, it must be both 

linear and time-invariant, as defined below. 

LINEAR 
  Scaling: T[ax (t)]=aT[x (t)] 

  Superposition: T[x1(t)+x2(t)]=T[x1(t)]+T[x2(t)] 

TIME INVARIANT 

   If  y(t)=T[x(t)], then y(t-s) =T[x(t-s)] 

 

 Many systems in neuroscience can be approximated as LTI:  

 

 

 

 

 

 

 

 

 

 The reason LTI systems are incredibly useful is because of a key fact: if you 

know the response of the system to an impulse, than you can calculate the response of the 

system to ANY input.  This gives you an enormous amount of predictive power. 

 But what do I mean by an impulse? As plotted in the figure below, the impulse 

function is just a function that is zero at all times except for at t=0 (left panel below).  

You can think of it as the force on an object created by a hammer hitting it – the force is 

0 except for at the moment of impact. The impulse response is the response of the system 

to the impulse.  You can think of this as the response of your leg to your knee getting hit 

with a hammer at the doctor’s office. The right panel below is an example of what the 

impulse response of a system might look like. 

 

x(t) T y(t) 

Input    System Output 

y(t) = T[x(t)] 
 

Input LTI system Output 

Membrane potential Passive neural membrane Injected Current 

Firing rate Retinal ganglion cell Stimulus contrast 

Retinal image Eye Visual stimulus 

Post-synaptic conductance Synapse Pre-synaptic action potentials 



  
   

 

(2) Convolution 

 

 How do we predict the response of our system to an arbitrary input once we know 

the impulse response? The secret is convolution. It allows us to predict the response of 

our knee to some arbitrary input function (once we know the response to the hammer), or 

the response of a building to an earthquake (once we know how it responds to the impact 

of an impulse). 

 Convolution is a mathematical operation which takes two functions and produces 

a third function that represents the amount of overlap between one of the functions and a 

reversed and translated version of the other function.  Here is the mathematical definition 

of convolving two functions, x(t) and h(t), to create an output y(t): 

 

 

 

 This is often written in shorthand as y=x*h, where the * represents the 

convolution operation. You can think of t in the equation above as a variable that 

represents time. But what is τ? It’s called a “dummy” variable. As you can see, it doesn’t 

exist on the left hand side of the equation – it’s just used to index over time for the 

integration on the right hand side. Hopefully, the example below of convolving sample 

functions x(t) and h(t) will make this clear
1
. Here are our functions x(t) and h(t). 

 

 

 

 

 

 

 

 

 

                                                 
1
 Example borrowed from http://www.ee.washington.edu/class/235dl/EE235/Project/lesson6/lesson6_1.html 
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 The first step is to reverse one of the functions.  We choose to reverse h(t), which 

we now plot on the “dummy” time axis τ. 

 

 

 

 

 

 

 

 

 

 We plot x(τ) on the same axis, and begin the process of shifting h(-τ) by t, and 

comparing it to x(τ).  Since these are continuous (not discrete) functions, we take an 

integral (not the sum) when calculating the convolution.  In the figure below, h is shifted 

by  t=-2.  For this value of shift, there is no overlap between x(τ) and h(t-τ), so y(t)=0 

(which is why it doesn’t show up in the plot below). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 As we continue to shift h(t-τ) by changing t, there gets to be overlap between the 

two functions, as plotted below (the convolution, y(t), is depicted in pink).  The overlap is 

quantified by multiplying the two input functions on a point by point basis, and then 

integrating the resulting function. 

 

 

 

 

 

 

 

 

 



 

 Once t reaches 5, there is no longer overlap between the two functions, and y(t)=0 

once again.    

 

 

 

 

 

 

 

 

 

 

 Convolution is an incredibly useful operation because it can be used to predict the 

output of an LTI system to any input.  Just think of x(t) as the arbitrary input function 

(e.g. a visual stimulus) and h(t) as the response of the system to an impulse (e.g. the firing 

rate of the retinal ganglion cell to a flash of light).  Then the convolution of x(t) and h(t) 

is the predicted output of the system (e.g. the firing rate in response to the arbirary visual 

stimulus). Because of this great predicitive power, LTI systems are used all the time in 

neuroscience.   

 A useful thing to know about convolution is the Convolution Theorem, which 

states that convolving two functions in the time domain is the same as multiplying them 

in the frequency domain:   

 If y(t)=x(t)*h(t),  (remember, * means convolution) 

 then Y(f)=X(f)H(f) (where Y is the fourier transform of y, X is the fourier transform of x, etc) 

  

 Since multiplying is a simpler operation that convolving, it is often easier to work 

in the frequency domain. 

 

(3) Cross-correlation 

 

 Cross-correlation is a mathematical operation that is used to quantify the 

similarity of two functions for different time delays.  For example, it can be used to 

compare firing rate between two neurons to see at what relative time delay the firing is 

most similar. 

 Despite having a different purpose than convolution, the mathematical operation 

of cross-correlation is very similar to that of convolution.  Mathematically, the main 

difference is that when two functions are cross-correlated, neither function is time-

reversed before being shifted and compared. 
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 As a simple example, let’s consider the cross-correlation of two neurons with the 

following spiking pattern (1 represents a spike during the timebin; 0 represents no spike). 

 

 
 

 To calculate the cross-correlation, we need to compare the spike trains for 

different relative time delay (i.e. different relative shifts of the two spike trains).  First, 

let’s consider a time delay of 0. When we multiply the two spike trains on a point by 

point basis, we get the following: 

        

      0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
 
 The next step of calculating the cross correlation is to sum across all these values.  

This gives us a cross-correlation of 2 (for a time delay of 0).  We repeat the same 

calculation for different delays.  As you can see from the plot below, the cross correlation 

peaks for time delay of -1.  

 

 
 

 

 The interpretation of this cross-correlation is that the two spike trains are in the 

greatest agreement when spike train 2 is shifted backwards in time by one time point. In 

other words, neuron 2 tends to spike after neuron 1. A biological scenario that could lead 

to this cross-correlation profile is that neuron 2 is postsynaptic to neuron 1.  

Neuron 2 spike train:    0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 

Neuron 1 spike train:    0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 

time 

Time delay 

Cross- 
corr 

-2  -1  0  1  2   3 


