
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929

�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 7, 09/17/13

Aside

Sharing files on the machines in the
mac lab.

Along the left side of folder
windows you will see a list of

folders, other computers, etc.

If you see one called “ceridsm” click
on it.

If you don’t see one called
“ceridsm” (as here) click on “All”

If you clicked on “All” you
will see this.

Double click on

ceridsm.ceri.memphis.edu

If you get a blank window click on “Connect As”

and log in using the dialog box that comes up.

This will bring you to a window that looks like this

Double click on “pod0”

This will open a window with
all the home folders for

accounts on the Macs in the
Mac Lab.

Now navigate around

normally (you may not be able to enter
folders if the owner has protected them, at which
point you need to talk to them if you really need

some help).

Returning to SAC

So far we have some files in memory.

If we simply read in another file(s) – the new data
will clobber what we have.

If we need to read in more data (say we have

processed the data we’ve read in and now want a
spectral ratio of the processed data with the

original data) we have to use the “more” option to
read in additional data (to not clobber what is

there).

read more filename!

In general SAC does commands to all the files in
memory.

If the command is starting from scratch (like a

read) it clobbers what is already there.

Some commands require certain pairs of files

(N and E for example for rotating seismograms).

We have now seen 4 SAC commands

(but only used 3).

read filename!
write still to be determined!
plot!
qdp on or off!

Fortunately (in the newer versions of UNIX-SAC)
the OS handles the command entry and you can

still move around through the command line or
“history” with the cursor keys and use regular
expressions to build names (wildcards, etc.).

Let’s try a few more things.

Here I have to be a little more careful when I
specify the file name. I want to read in all 3

components of the seismogram.

(I’m also demonstrating a feature of SAC, if SAC does not understand a command
[something you typed], it passes it to the OS for further processing.

Based on the output of the “ls” command, I don’t want SAC to read in the “.ai”, “.ps”,
or “.tif” format files – although if I try to read them SAC will generate an error message

that it cannot understand them and just skip/ignore them).

SAC> ls *sumatra*bh*!
ccm_sumatra_.bhe ccm_sumatra_.bhn ccm_sumatra_.bhz
ccm_sumatra_bhz.ai ccm_sumatra_bhz.ps ccm_sumatra_bhz.tif!
SAC> r *sumatra*bh?!
ccm_sumatra_.bhe ccm_sumatra_.bhn ccm_sumatra_.bhz!

Try the command “plot”.

SAC> plot!
Waiting

SAC plots the traces one at a time, in the order
they are stored in memory (these happen to be in alphabetical

order – BHE, BHN and BHZ – due to the wildcard expansion) (And that we don’t have to

keep resetting qdp to off, it remembers it.) . Each time you enter a
<CR> it plots the next trace.

(and says Waiting if there are more traces to display, or the prompt if not).

!

New command – plot1 (“p1”).

SAC> plot1!
SAC> !

This command plots all the data in memory on one
plot.

Also notice that the prompt returns so we can enter more commands.

If you have too many traces it plots a mess

Say I want to process these three traces
together.

UGLY little detail.

Notice that the three traces do not start at the
same time (and we will see that they are not the

same lengths, either).

We can fix the time alignment using

synchronize (“synch”): which modifies (the headers

of) the files in memory so that they all have the
same reference time.

(Does not otherwise modify the data. If I need to combine two traces rotate them for
instance, and they are not the same length, SAC will complain and not do it.)

SAC> synch!
SAC> plot1!

How do we find out what do we have in memory?

What metadata is available about the seismic
data?

(metadata is data about data – examples are the name of the seismic station and
component, the sampling rate, etc. This information is stored in the SAC header.)

listhdr (lh): lists the headers of the files in
memory.

SAC> listhdr!
 FILE: ccm_sumatra_.bhe - 1!
 ----------------------!
 NPTS = 389396!
 B = 0.000000e+00!
 E = 1.946975e+04!
 IFTYPE = TIME SERIES FILE!
 LEVEN = TRUE!
 DELTA = 5.000000e-02!
 IDEP = UNKNOWN!
 DEPMIN = -1.073057e+06!
 DEPMAX = 1.091875e+06!
 DEPMEN = 8.429739e+02!
 OMARKER = 7.315 (origin)!
 KZDATE = DEC 26 (361), 2004!
 KZTIME = 01:09:52.684!
 IZTYPE = BEGIN TIME!
 KSTNM = CCM!
 CMPAZ = 9.000000e+01!
 CMPINC = 9.000000e+01!
 STLO = -9.124470e+01!
 DIST = 8.818225e+03!
 AZ = 1.854116e+02!
 BAZ = 2.013326e+02!
 LOVROK = TRUE!
 NVHDR = 6!
 LPSPOL = TRUE!
 LCALDA = TRUE!
 KCMPNM = BHE!
 KNETWK = US!

All sorts of good stuff.
Look in SAC

documentation for full
details.

Obvious/important –

File name - FILE!
Number points – NPTS!
Beginning time offset - B!
Sampling rate – DELTA!
Start date – KZDATE!
Start time –KZTIME!
Station – KSTN!
Orientation – CMPAZ

May have info about stn
location, event locn, … .

Says Waiting when page is full (may not be
complete header listing).

<CR> to continue till run out of stuff to display.

(there is no way to “break” out of the commands
(e.g.: plot, listhdr, …) that do something
for each file. You have to <CR> till it finishes, or

^C out and start over.)

FILE: ccm_sumatra_.bhe – 1!
 NPTS = 389396!
 B = 0.000000e+00!
 KZDATE = DEC 26 (361), 2004!
 KZTIME = 01:09:52.684!
FILE: ccm_sumatra_.bhn – 2!
 NPTS = 389328!
 B = 0.000000e+00!
 KZDATE = DEC 26 (361), 2004!
 KZTIME = 01:09:48.485!
FILE: ccm_sumatra_.bhz – 3!
 NPTS = 389600!
 B = 0.000000e+00!
 KZDATE = DEC 26 (361), 2004!
 KZTIME = 01:09:43.684!

 B = 0.000000e+00!
KZDATE = DEC 26 (361), 2004!
KZTIME = 01:09:52.684!
!
!
 B = -4.199000e+00!
KZDATE = DEC 26 (361), 2004!
KZTIME = 01:09:52.684!
!
!
 B = -9.000000e+00!
KZDATE = DEC 26 (361), 2004!
KZTIME = 01:09:52.684!

 Before synch After synch

 Lining files up in time

To make them all start at the same time and be the
same length

- Read them in, then synch (aligns them to the same relative time –
the time of the file that starts last [all the bs are negative], but still different lengths.)

- Write them out (this clobbers the original file on the disk unless you

rename them),

-  Set up a cut (reads from a start time [which we just aligned above] to an
end time with respect to the reference time, not the start time or number of samples)

To make them all start at the same time and be the
same length

- Then read again (under control of the cut, everything in memory will be

the same size, [unless one was shorter, but that will not happen here]).

-  Write out again (if you want to save them, clobbering what was there).

(I don’t know how to do this “in-place”, you need the write and re-read since the SAC
commands do not modify, except by writing, files on disk, data in memory.)

SAC> w over!
SAC> cut 0 8000!
SAC> r!
ccm_sumatra_.bhe ccm_sumatra_.bhn ccm_sumatra_.bhz!
SAC> p1!

And they all have the following in their header

 NPTS = 160001!
 B = 0.000000e+00!
 E = 8.000000e+03!
KZDATE = DEC 26 (361), 2004!
KZTIME = 01:09:52.684!

cut: defines how much of a data file is to be
read.

You need to re-read the data after specifying a
cut. (specifying the cut does not effect data in memory, or the files on disk)

You can also specify the cut with respect to times

stored in the header (p wave arrival time for
example) 5 s before to 30 s after t1 pick

SAC> cut t1 -5 30 !!
SAC> r!

Commands to see/change header values

listhdr (lh): list the header contents.

readhdr (rh) and writehdr (wh): read and
write headers without the data.

chnhdr (ch): change header values.

copyhdr : copy header values from one file to

the others in memory.

Example: Say the header does not have the
location of the event (if you do an “lh” and there is no EVLA – Event

Latitude, or EVLO, - Event Longitude, reported). We can add this
information to the headers of all files using

chnhdr.

!
SAC> chnhdr EVLA = 4.079930e+01 # event latitude!
SAC> chnhdr EVLO = 3.100330e+01 # event longitude !
SAC> lh!
. . . !
EVLA = 4.079930e+01!
EVLO = 3.100330e+01!
. . . !
SAC>!
SAC> wh!
!

We overwrite only the header because no
changes were made to the seismic data (time series).

When you download preprocessed seismic data
from the IRIS-DMC associated with an

earthquake, it will now have the earthquake
location, origin time, delta, azimuth, etc. in the

header.

If you download data in some arbitrary time
window (even if it has a big earthquake in it) it will not come with
information about anything in particular within

that time window (may be multiple events or none!).

You will have to put in the event information (if it has a
event location, SAC now computes the delta and az/baz and stores it in the header for

you).

Graphics Action Module

REVIEW

plot (p): plots each signal in memory on a
separate plot.

plot1 (p1): plots a set of signals on a single
plot with a common x axis and separate y axes.

NEW

plot2 (p2): plots set of signals on a single plot
with common x and y axes (i.e. an overlay plot).

SAC> p1!

SAC> p1 rel!

Can plot each file relative to its begin time.

(default is absolute, so the traces are shifted by actual time)

SAC> color on increment on!

SAC> p2!

!

!

!

!

!

!

!

Sac> p2 rel!

Can color traces (this is an addition since the TEK401X days – when it was
green or nothing).

Graphics

There are three graphics devices currently
supported.

SGF (SAC Graphics File) is a file with graphics
information that can get converted into

postscript, etc.

X-WINDOWS is a general windowing system
running on most high-resolution, bit-mapped

graphics workstations

(and where our plots have been showing up)

(SUNWINDOW, is a windowing system that was available on the Sun in SunOS 4.X.

Listed for completeness)

X-windows or X!

X is widely used on UNIX graphics workstations
and offers one of the best frameworks (UNIX opinion, X

follows the UNIX philosophy so it is powerful and difficult) for developing
portable window-based applications.

It should be the default graphics device when you

start SAC.

Can be turned on using begin device: (bd).

sac> bd x!

SGF demonstrates the power (or kluginess) of SAC and
UNIX.

Rather than burden the SAC program with

producing graphics for a large number of possible
devices

(postscript did not even exist when SAC was written)

have SAC write out a file (that is probably just the TEK401X

commands) that some other programs read and
translate into the appropriate format for display

on any particular device.

SAC Graphics Files contain all the information
needed to generate a single plot.

Each plot is stored in a separate file.

The file names are of the form “fnnn.sgf” where
nnn is the plot number, beginning with 001,

resetting each time you start SAC

(so if you have some preexisting files that you have not renamed, they will get clobbered
– you have been forewarned).

SGF output is turned on with the command
begindevice: (bd)!

sac> bd sgf!

Graphics output will now go to the sgf file.

You will not see it on the screen (X display).

There is no “save my figure” from the X-display!
(this is UNIX and without an inordinate amount of work to bring out its power, X is very

basic).

So if you want to make a figure for printing or
sending anywhere but the X-display!

(if it is a complicated figure you may have to first
make it and look at it on the X-display - then).

Turn on the sgf device and (RE)make the with
the output now going to the file.

Or if you are on a Mac or a PC you could use the
screen capture function and then paste it into

another file.

(there is no screen capture on the Sun, it is "pure"
UNIX.)

To create a postscript file, you would turn on the
sgf device, create your plot, and then run a

conversion program called sgf2ps or sgftops.

SAC> qdp off!
SAC> read ccm*_.bhz!
ccm_india_.bhz ccm_solomon_.bhz ccm_sumatra_.bhz!
SAC> bd sgf!
SAC> p1!
SAC> sgftops f001.sgf sac_example.ps!
SAC> bd x!

!

Unfortunately trying to display the figure using
the gs command from within SAC falls over since
gs also is a SAC command (plot greyscale image

of data in memory). Need final “bd x” to send
graphics back to screen.

Data Format and Header

Each signal or seismogram is stored in a separate
binary or alphanumeric data file.

SAC can read data in a variety of formats:

- SAC Binary Format (most common)

- SAC ASCII Format (big)

- CSS format

- SDD format

- ASCII formats

Each data file contains a header (we have already seen a bit

about the header) that describes the contents of that file.

Some header fields

Time

The SAC header contains a reference or zero
time, stored as six integers (NZYEAR, NZJDAY, NZHOUR,

NZMIN, NZSEC, NZMSEC), but normally printed in an
equivalent alphanumeric format (KZDATE and KZTIME), the
offset in seconds between the reference and the
data start time (B) and the number of seconds to

the data end time (E).

 B = 0.000000e+00!
 E = 3.600990e+03!
KZDATE = APR 06 (097), 2008!
KZTIME = 02:59:59.320!

Event and Station Info

SAC header can store station and event info

 KSTNM = WMQ!
 STLA = 4.382110e+01!
 STLO = 8.769500e+01!
 STEL = 8.970000e+02!
 EVLA = 3.086000e+00!
 EVLO = 9.584800e+01!
 EVDP = 3.040000e+01!
OMARKER = 0!
!

Plus metadata info about the time (gmt for
example).

If the event and station information are in the
header, SAC automatically calculates and stores

distance (in km)

azimuth (in degrees)

backazimuth (in degrees)

and great circle arc length (in degrees)

in the header

(SAC2000 and later, earlier versions did not do this).

 DIST = 4.583862e+03!
 AZ = 3.510350e+02!
 BAZ = 1.675856e+02!
 GCARC = 4.120298e+01!

Phase Info

SAC can be used to pick and store phase
information in header variables A & T0-T9 !

(although this is another place where it shows its age and is quite clumsy).

omarker is reserved to for the origin time.

All pick and origin times are stored in seconds

from the reference time of the file.

omarker (origin time) is oftentimes set (incorrectly) to zero.

If amarker and t0marker are not set, they will

not show in a lh.

OMARKER = 0!
AMARKER!
T0MARKER!
T1MARKER = 462.7 (P)!
T2MARKER = 834.76 (S)!
T4MARKER = 472.5 (pP)!
T6MARKER = 478 (sP)!
!

You can also store what you think the time is.

 SAC data format (gory little detail)

 The standard data format for SAC is binary.

A binary SAC file contains a fixed-length header
composed of a combination of ascii, integer and

floating point data, which describe a variable
length of subsequent data in floating point binary

(or ascii, longer so not so popular, but it does
exist).

 For the seismic data this means a single data
component recorded at a single seismic station.

SAC does not currently work on multiplexed
data.

There is an issue with the SAC (actually all
numerical, except 8 bit) binary data.

SAC data is stored according to the "big-

endian” ($#*&%*) byte order (high-order byte of
the number is stored in memory at the lowest

address).

In many processors, however, it is stored
according to the "little-endian" byte order.

Newest version of SAC is bi-endian and handles it

automatically.

When given a choice between two equivalent ways
to do things (store stuff in memory in this case) it

will get done both ways!

How to store character data in a machine that
addresses bytes (8 bits of data)

store the number 6811 as 4 ASCII characters in
memory (this would be as they come from the keyboard before converting into a

base two number)

It would get stored as the hexadecimal string
(specified by the x)

0x36383131!

!
!value! !!36 !38!31!31!

!
!address! !! 1! 2! 3! 4!…!

!
!address! !…! 4! 3! 2! 1!

store the number 6811 as 4 ASCII characters in
memory

Can also do it with memory visualized vertically

(and get two ways to number/address elements).

(one can go from top or bottom – here go from
top) [vertical is less obvious since in memory the
bits are linearly connected and there is ambiguity

in how the bits connect to words in the vertical
view]

But the important thing here is that each
character needs 8 bits to represent it, so there is

a 1-1 map between the information and the
address in memory in which it is stored.

It gets more interesting when we store 16 (4 hex
digits) or 32 (8 hex digits) bit numbers

131116!= 488110! 11d116 = 456110!

131111d116! = 31988577710!

131116!= 488110! 11d116 = 456110!

131111d116! = 31988577710!

With both we specify the number by the lowest of
the addresses (1000) and get the data at 1000

and 1001 for 16 bit, or 1000, 1001, 1002 and 1003 in
that order for 32 bit numbers.

You have to know which one you are getting.

Names come from Jonathan Swift’s “Gulliver’s
Travels” and the 100 year war between Lilliput and
the rival kingdom of Blefuscu over which end of a

soft-boiled egg to crack.

Trivial difference, but need to make one a
standard. Like Lilliput and Blefuscu the computer
people did it both ways -
and it became religious.

An error will occur when data is stored in Big
Endian by one computer and read in Little Endian

format on another.

Moving unformatted data files between big endian
and little endian computers requires that the data

be converted – called “byte swapping”.

Tutorial

See

http://geophysics.eas.gatech.edu/classes/SAC/

http://www.iris.edu/software/sac/manual/tutorial.html

http://moodle.glg.muohio.edu/mikeb/content/users/brudzimr/SAC/

Start SAC

Is interactive and command driven.

funcgen: generate various functions in memory.

STEP!
BOXCAR!
TRIANGLE!
SINE {v1 v2}!
LINE {v1 v2}!
IMPULSE!
QUADRATIC {v1 v2 v3}!
CUBIC {v1 v2 v3 v4}!
SEISMOGRAM!
DATAGEN!
RANDOM {v1 v2}!
IMPSTRIN {n1 n2 ... nN}!

It is VERY useful for testing the other commands
on known functions.

(seismogram is obsolete, replaced by datagen, but datagen reports it is missing the
directory with the sample files. Typical!)

Start with some simple commands to generate
seismic data

Roberts-MacBook-Pro:-bash:matlab:164 $ sac!
 SEISMIC ANALYSIS CODE [06/07/2010 (Version 101.4)]!
 Copyright 1995 Regents of the University of California!
SAC> funcgen!
SAC> p!

sac> funcgen impulse delta 0.01 npts 100  
sac> p!

Unary Operations Module

The commands in this module perform some
arithmetic operation on each data point of the

signals in memory.

add!
sub!
mul!
div!
sqr!
sqrt!

abs!
log,log10!
exp,exp10!

int !
dif!

Start with some simple commands to generate
seismic data

SAC> transfer to DWWSSN!
Station (-12345), Channel (-12345)!

!Waveform multiplied by 1.000000 after deconvolution.!

SAC> p

Read in some data – do some processing

SAC> read ./ccm_solomon*bh?!
…!
SAC> p1!

Low pass filter it

SAC> lp co .025 npoles 4 passes 2!
SAC> p1!

High pass filter it

SAC> r

SAC> hp co 1 npoles 4!
SAC> p1!

Spectral analysis – Fourier transform

SAC> read ccm_solomon_*z!
SAC> fft!
SAC> psp!
Waiting!
SAC> !

Rotate seismograms!
SAC> read *TUL1*SAC!
2010.058.06.42.30.9750.TA.TUL1..BHN.R.SAC … !
SAC> p1!
SAC> synch!
SAC> w TUL1.BHN TUL1.BHE TUL1.BHZ!
SAC> cut 0 1800!
SAC> r TUL1.BHN TUL1.BHE!
SAC> rotate!
SAC> lh!
 FILE: TUL1.BHE - 1!
 --------------!
...!

! ! STLA = 3.591040e+01!
 STLO = -9.579190e+01!
 STEL = 2.560000e+02!
 STDP = 0.000000e+00!
 EVLA = -3.612200e+01!
 EVLO = -7.289800e+01!
 EVDP = 2.290000e+04!

! ! DIST = 8.319518e+03!
 AZ = 3.408942e+02!
 BAZ = 1.609469e+02!
 GCARC = 7.476556e+01!
...!

SAC> read *BHZ*SAC!
2010.058.06.41.47.2750.TA.035Z..BHZ.R.SAC!
...!
SAC> qdp off!
SAC> p1!
SAC> sss!
 Signal Stacking Subprocess.!
SAC/SSS> prs!

