
Data Analysis in Geophysics
ESCI 7205

Bob Smalley

Room 103 in 3892 (long building), x-4929

Tu/Th - 13:00-14:30
CERI MAC (or STUDENT) LAB

Lab – 4, 09/05/13

Finish off last time

(if you have not figured it out already)

!

! u tm : tm +k() =
a0

2
+

cos "1tm() cos "2tm() cos "3tm() " cos "ntm()
cos "1tm +1() cos "2tm +1() cos "3tm +1() " cos "ntm +1()
" " " " "

cos "1tm +k() cos "2tm +k() cos "3tm +k() " cos "ntm +k()

$

%
%
%
%

&

'

(
(
(
(

a1

a2

a3

"
an

$

%
%
%
%
% %

&

'

(
(
(
(
((

! u tm : tm +k() =
a0

2
+
!

W ! a

Note : !n = n*!0()
an =

1
2
sin n! xs / L()exp ! !n!()

2
/ 4!

"#
$
%&

'

(
)

*

+
,sin n! xr / L()

The math

We need to make a matrix and a vector

Note : !n = n*!0()
an =

1
2

sin n! xs / L()exp ! !n!()
2

/ 4"
#$

%
&'

(

)
*

+

,
-sin n! xr / L()

n! xs / L = n ! / L xs

n! xr / L n ! / L xr

Look at weights first

Look at arguments of the sines

We need two vectors of integers (that
count/id spatial frequencies)

Scaled by π/L, and either xs or xr.

Note : !n = n*!0()
an =

1
2

sin n! xs / L()exp ! !n!()
2

/ 4"
#$

%
&'

(

)
*

+

,
-sin n! xr / L()

n! xs / L = n ! / L xs

n! xr / L n ! / L xr

Look at weights first

Look at argument of exp.

We need one vector of integers (that count/
id temporal frequencies)

Scaled by πc/L

Now can make time independent part

timeindep= sin(?) ? sin(?) ? exp(?);!

cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()
cos !1tm+1() cos !2tm+1() cos !3tm+1() ! cos !ntm+1()
! ! ! ! !

cos !1tm+k() cos !2tm+k() cos !3tm+k() ! cos !ntm+k()

!

"

#
#
#
#
##

$

%

&
&
&
&
&&

Now make matrix

Each column is cos(ωnt)

We already have a vector of the ωn

We need a vector for the times

(integer count * dt).

cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()
cos !1tm+1() cos !2tm+1() cos !3tm+1() ! cos !ntm+1()
! ! ! ! !

cos !1tm+k() cos !2tm+k() cos !3tm+k() ! cos !ntm+k()

!

"

#
#
#
#
##

$

%

&
&
&
&
&&

Now make matrix

Now we need to make the matrix of
arguments to the cos

(ωntm)

Do this by multiplying the two vectors

Take the cos of the matrix

!u tm : tm+k() = a0

2
+

cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()
cos !1tm+1() cos !2tm+1() cos !3tm+1() ! cos !ntm+1()
! ! ! ! !

cos !1tm+k() cos !2tm+k() cos !3tm+k() ! cos !ntm+k()

!

"

#
#
#
#
##

$

%

&
&
&
&
&&

a1

a2

a3

!
an

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

"u tm : tm+k() = a0

2
+
!
W !a

Now do the matrix multiply

Don't worry about the first term – it just
moves the seismogram up and down.

Don't worry about the factor of 2 we forgot,
it just scales it.

We are after how to do it.

Synthetic seismogram produced by Matlab
code on previous slide.

Intro to programming

So far our "programming" has been just using the
computer or Matlab as a big calculator.

We just gave it equations to evaluate.

The computer does not get bored doing the same
thing over and over in a loop (or multiplying

matrices).

But what about situations where what we do next
depends on the previous results.

Iterating to a solution for example.

Flowchart For Problem Resolution

Don’t Mess With It!

YES NO

YES

YOU IDIOT!
NO

Will it Blow Up
In Your Hands?

NO

Look The Other Way

Anyone Else
Knows? You’re SCREWED!

YES YES

NO

Hide It
Can You Blame
Someone Else?

NO

NO PROBLEM!

Yes

Is It Working?

Did You Mess
With It?

Flowchart for computing N!

Has

-  tests/decisions

- loop

Matlab documentation

http://www.mathworks.com/help/matlab/

Plus thousands of pdf, powerpoints, etc. found
on the web

Plus thousands of programs at

http://www.mathworks.com/matlabcentral/

fileexchange/

And lots of individual web sites.

Let's say we want to know how many times we
have to add 0.1 to get to 1

What would you do?

You could try something like

x=0.1;
rsum=0;
cnt=0;
while 1
 rsum=rsum+x;
 cnt=cnt+1;
 if rsum == 1, break
 end
end
display(rsum)
display(cnt)

OK, that's not working for some reason.

Try something more reasonable since we know the

answer should be 10.

Replace the red lines with the green line.

x=0.1;
rsum=0;
cnt=0;
while 1
 cnt=cnt+1;
 rsum=rsum+x;
if rsum == 1, break
 end
end
display(rsum)
display(cnt)

x=0.1;
rsum=0;
for cnt=1:20
 rsum=rsum+x;
 if rsum == 1, break
 end
end
display(rsum)
display(cnt)

So what is going on?

Math on the computer is not the same as Math in
your Math classes!

Finite precision representation of numbers on the

computer.

So what is going on?

1/3 is never ending decimal number

On computer is approximation at number of digits
the computer stores

(you would also get the wrong answer adding up
0.333 three times!)

Computer dies things in base 2, not base 10

In base 2, both 1/3 and 1/10 are both never ending

decimals.

So – will rarely get "real" (non integer) numbers to
be "equal" on the computer

(can get integers to be equal, count how many
times you do a loop for example, can test for

equals and it will always work)

Two kinds of numbers in non Matlab world

Integer – counting numbers

Floating point – subset of rational numbers

Integers on computer are pretty much simple base
2 number

(actually it is a little bit more complicated to
handle + and – without wasting a bit to store sign,

but detail we don't need now).

Real numbers (non round, non integer) need
something more complicated.

Based on regular way we write numbers, plus

scientific notation.

So what is this?

10.1

Ten and one tenth

(or two and a half?)

With the idea of zero (incredibly important) and

positional notation this is

1x101+0*100+1*10-1

(or 1x21+0*20+1*2-1)

On the computer we represent non integer
numbers in something called floating point.

It is in base 2

-1s x (a.b) x 2n

Where

s is one of 0 or 1

a.b is a number with m total digits and an asumed

decimal point (who's position is in a
predetermined place)

And n is an n digit exponent.

So we have m digits to specify the number (this
determines the precision of our numbers).

With m base two digits we can count from

0 to 2n-1

So for m=3, I can count from 0 to 7, a total of 8

values

000,001, 010, 011, 100, 101, 110, 111

And we have n digits to specify the exponent.

So we get

A number with n significant base 2 digits followed
by 2 raised to some power.

This is just scientific notation (in base 2) with a

stated number of significant digits.

We need to pick n and m.

To make using memory easier the bits (base 2
digits, a 0 or 1) are organized into larger units that

are typically handled together

Byte – 8 bits

Word – 2 bytes (16 bits, early computers)

Word – 4 bytes (current computers)

(taking the mouth analogy too far a nibble is 4
bits)

A floating point number is made up of 4 bytes (32
bits) (by convention)with

1 sign bit for the number

The number part (called the mantissa) with 23 bits

and

an exponent with 8 bits

And it is known as single precision floating point.

Matlab does all airthmetic in double precision
floating point arithmetic.

(another thing that slows it down, integer
arithmetic is faster – gets done in the cpu,

floating point arithmetic is slow – has to go to
floating point procesor).

Matlab uses double precision floating point.

Take what we had before, but "double"
everything.

Use 8 words (64 bits) with

1 sign bit

52 mantissa bits

11 exponent bits

Gives more significant digits and larger range of

exponents.

