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More on vectorization.




MATLAB is a vectorized high level language




Requires change in programming style

(if one already knows a non-vectorized 

programming language such as Fortran, C, Pascal, 
Basic, etc.)




Vectorized languages allow operations over 

arrays using simple syntax, essentially the same 
syntax one would use to operate over scalars.


(looks like math again.)








What is vectorization?

(with respect to matlab)





Vectorization is the process of writing code for 
MATLAB that uses matrix operations or other 
fast built-in functions instead of using explicit 

loops.




The benefits of doing this are usually sizeable.




The reason for this is that MATLAB is an 
interpreted language. Function calls have very 

high overhead, and indexing operations (inherent 
in a loop operation) are not particularly fast. 




Loop versus vectorized version of same code.

New commands “tic” and “toc” - time the 

execution of the code between them.

 
>> a=rand(1000);  !
>> tic;b=a*a;toc!
Elapsed time is 0.229464 seconds.!
>> tic;for k=1:1000,for l=1:1000,c(k,l)=0;for m=1:1000, c(k,l)=c
(k,l)+a(k,m)*a(m,l);end, end, end, toc!
Elapsed time is 22.369451 seconds.!
>> whos!
  Name         Size                Bytes  Class     Attributes!
  a         1000x1000            8000000  double              !
  b         1000x1000            8000000  double              !
  c         1000x1000            8000000  double              !
  k            1x1                     8  double              !
  l            1x1                     8  double              !
  m            1x1                     8  double              !
!
>> max(max(b-c))!
ans =!
   9.6634e-13!

Factor 100 difference in time for 
multiplication of 103x103 matrix!




Vectorization of 
synthetic seismogram 

example from




Stein and Wysession




Intro to Seismology and 
Earth Structure.




Section on scientific programming 


u(x, t) = sin n! x / L( )sin n! xs / L( )cos !nt( )exp ! !n"( )2 / 4"
#

$
%

n=1

&

'



u(x, t) = sin n! x / L( )sin n! xs / L( )cos !nt( )exp ! !n"( )2 / 4"
#

$
%

n=1

&

'

Start by just 
"translating" the Fortran 

code into Matlab.




So far we probably 
don't fully understand 

the math, but we have a 
formula and so we can 

calculate u(x,t).




%synthetic seismogram for homogeneous 
string, u(t)!
%calculated by normal mode summation!
%string length!
alngth=1;!
%velocity m/sec!
c=1.0;!
%number modes!
nmode=200;!
%source position!
xsrc=0.2;!
%receiver position!
xrcvr=0.7;!
%seismogram time duration!
tdurat=1.25;!
%number time steps!
nstep=50;!
%time step!
dt=tdurat/nstep;!
%source shape term!
tau=0.02;!
fprintf('%s\n','synthetic seismogram for 
string')!
fprintf('%s %0.5g\n','number modes', 
nmode)!
fprintf('%s %0.5g %0.5g\n','length and 
velocity', alngth, c)!
fprintf('%s %0.5g %0.5g\n','posn src and 
rcvr',xsrc,xrcvr)!
fprintf('%s %0.5g %0.5g %0.5g\n','durn, 
time steps, del t',tdurat,nstep,dt)!

fprintf('%s %0.5g\n','source shape', 
tau)!
%initialize displacement!
for cnt=1:nstep!
    u(cnt)=0;!
end!
for k=1:nstep!
    t(k)=dt*(k-1);!
end!
%outer loop over modes!
for n=1:nmode!
    anpial=n*pi/alngth;!
%space terms - src & rcvr!
    sxs=sin(anpial*xsrc);!
    sxr=sin(anpial*xrcvr);!
%mode freq!
    wn=n*pi*c/alngth;!
%time indep terms!
    dmp=(tau*wn)^2;!
    scale=exp(-dmp/4);!
    space=sxs*sxr*scale;!
%inner loop oner time  steps!
    for k=1:nstep!
%        t=dt*(k-1);!
%        cwt=cos(wn*t);!
        cwt=cos(wn*t(k));!
%compute disp!
        u(k)=u(k)+cwt*space;!
    end!
end!
plot(t,u)!

Slightly 
cleaned up 

version of 
Fortran 

program in 
Stein and 

Wysession 
“translated” 

to Matlab. 
(took 

calculation of 
time out of 

inner loop – 
is 

recalculated 
each time 
through, 

waste of time, 
calculate as 
vector once 

at beginning) 


Doing 
translation 
for 
homework!



Synthetic seismogram produced by Matlab code 
translated from Fortran.




Variables

!
>> whos!
  Name        Size            Bytes  Class     Attributes!
  alngth      1x1                 8  double              !
  anpial      1x1                 8  double              !
  c           1x1                 8  double              !
  cnt         1x1                 8  double              !
  cwt         1x1                 8  double              !
  dmp         1x1                 8  double              !
  dt          1x1                 8  double              !
  k           1x1                 8  double              !
  n           1x1                 8  double              !
  nmode       1x1                 8  double              !
  nstep       1x1                 8  double              !
  scale       1x1                 8  double              !
  space       1x1                 8  double              !
  sxr         1x1                 8  double              !
  sxs         1x1                 8  double              !
  t           1x1                 8  double              !
  tau         1x1                 8  double              !
  tdurat      1x1                 8  double              !
  u           1x50              400  double              !
  wn          1x1                 8  double              !
  xrcvr       1x1                 8  double              !
  xsrc        1x1                 8  double !



Let's return to the 
original problem and try 

to understand what is 
going on.




We will use this to 
understanding to 
further vectorize 

(speed up) the code.


u(x, t) = sin n! x / L( )sin n! xs / L( )cos !nt( )exp ! !n"( )2 / 4"
#

$
%

n=1

&

'



u(x,t) = sin n! xs / L( )sin n! x / L( )cos !nt( )exp ! !n!( )
2
/ 4"

#$
%
&'

n=1

(

)

Note :  !n = n*!0( )

u(x,t) = sin n! xs / L( )exp ! !n!( )
2

/ 4"
#$

%
&'

*

+
,

-

.
/  sin n! x / L( )cos !nt( )

n=1

(

)

u(x,t) = an sin n! x / L( )cos !nt( )
n=1

(

)

u(x,t) = 0an cos n! x / L+!nt( )+ cos n! x / L!!nt( )"
#

%
&

n=1

(

)

This is just the Fourier domain representation for 
waves on a string with fixed ends


Weight - no dependence 
on x or t, only ωn.


Standing wave made from 2 opposite 
direction traveling waves. Amplitude 
varies with time, but does not "move"


Going left                             Going right




This is a sinusoidal wave that is 
fixed in space, cos(kx), whose 
amplitude is modulated

harmonically in time, cos (ωt)!

u(x, t) = Acos  (kx +!t)+ Acos(kx !!t)
u(k,!) = Acos  (kx +!t)+ Acos(kx -!t)
u(x, t) = u(k,!) = 2Acos(!t)cos(kx)

un (x, t) = cos(knx / L)cos(!nt)

where !n = v kn

Normal Mode (and combination of traveling waves to make standing wave) 

formulation for displacement of a string




u(x,t)=Acos (kx+ωt)+Acos(kx−ωt)!
u(k,ω)=Acos (kx+ωt)+Acos(kx−ωt)!

!
u(x,t)=u(k,ω)=2Acos(ωt)cos(kx)!

Do over a range 
of frequencies.




Delta functions 
going right on 
top

 

and left in 
middle 



and combined 
(bottom).




Look at the basic element of Fourier series, 
weighted sum of sin and cos functions


(look at cos only to see how works).
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Dot product


or matrix multiply: ac=(c'a')'


matrix multiply, at multiple times to make full seismogram
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Look at the basic Fourier series


At constant time, weighted 
sum of cosines at different 
frequencies at that time


constant frequency cosine as function of time 
(basis functions)


This is multiplication of a matrix (with cosines as 
functions of frequency – across - and time - 

down) times a vector containing the Fourier series 
weights.




We have just vectorized the equations for the 
Fourier series!




Even though this is a major improvement over 
doing this with for loops, and is clear 

conceptually, it is still not "computable" as it takes 
O(N2) operations (and therefore time) to do it. 

This is OK for small N, but quickly gets out of 
hand.




Fourier analysis is typically done using the Fast 
Fourier transform (FFT) algorithm – which has     
O(N log2 N) operations and is significantly 

faster for large N.






Fourier decomposition.


“Basis” functions are the 
sine and cosine functions.


Notice that first sine term is 
all zeros (so don’t really 

need it) and last sine term 
(not shown) is same as last 

cosine term, just shifted one 
– so will only need one of 

these).


Figure from Smith




Fourier transform (actually 
Fourier series)


Figure from Smith


! 

u(tm ) =
a0
2

+ an cos "ntm( )
n=1

N

# + bn sin "ntm( )
n=1

N

#

The Fast Fourier Transform (FFT) 
depends on noticing that there is 

a lot of repetition in the 
calculations – each higher 

frequency basis function can be 
made by selecting points from the 
ω0 function. The weight value is 

multiplied by the same basis 
function value an increasing 

number of times as ω increases. 
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FFT


Figure from Smith
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The FFT uses regularities of the 
calculation to calculate the basis 

functions and then basically does 
each unique multiplication only 

once, stores it, and then does the 
bookeeping to add them all up 

correctly.




The points in the trace at the top 
are made from vertical sums of 

the weighted points at the same 
time in the cos and sin traces in 

the bottom. 



FFT


Figure from Smith


u(tm ) = a0

2
+ an cos !ntm( )

n=1

N

! + bn sin !ntm( )
n=1

N

!

u(tm ) = a0

2
+ cn

n=1

N

! WN
mn,               W = e"i2! /N

! 

" a0

! 

" a1

! 

" a2

! 

" a3

! 

" a4

! 

" b1

! 

" b2

! 

" b3

The FFT uses the following 
symmetry properties





Symmetry



Periodicity



FFT needs number points = 
power of 2.


WN
k+N /2 = !WN

k

WN
k+N =WN

k



% number of time samples M      
% points!
% source/receiver position:!
% xs/xr (meters)!
% speed c (meters/sec)!
% length L (meters)!
% number of modes N!
% source pulse duration Tau     
% (sec)!
% length of seismogram T (sec)!
 !
M=50;!
xs=0.25;!
xr = 0.7;!
c=1;!
L=1;!
N=200;!
Tau=0.02;!
T=1.25;!
!
%time vector, 1 row by M        
%columns: start, step, stop!
%will need lots, calc once!
dt=T/M;!
t=0:dt:T-dt; !
 !

Same program in Matlab 
after vectorization (is 
mostly comments!)
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We need to make the matrix and the vector




Making the matrix.




What size does it have to be?




What does each row and column represent? 



There are N=200 columns for the M frequencies




There are N=50 rows for the N samples in the seismogram 
time series.




How do we make the elements (k,l) of the matrix?




Use fact that values needed are proportional to k and l.




Make appropriate vectors for time and frequency.




How big is each?




How combine them to make the matrix as a function of k 
and l?









Multiply elements of the matrix by dt and       .




Take cosine of matrix.


!0



Now calculate the weights.




Note the weights depend on n, and        ,but not t.




All t dependence is in the matrix elements. 






!n



So now have matrix with the trigonometric basis 
functions and a vector of the weights.




Just multiply them! 

(careful with sizes)




This is not the way it is typically done (although some 
people still do it the "Fortran" way) as it is still O(N2).




The Matlab matrix multiplication method is faster than 

the Matlab loop method.

(a good Fortran compiler will beat the pants off either 

implementation in Matalb).




We did it this way for educational purposes.




Typically, it is done using the FFT (Fast Fourier 
Transform) algorithm which avoids duplication of effort 

in the multiplications and results in O(N log2 N) 
multiplications.




For a time series 216=65,536




(FFT needs number of points = power of two, this is 
pretty typical number of points in seismogram, about 10 

minutes at 100 Hz sampling)




We need O(16 * 216)=1,048,576




Vs




4,294,967,296




Multiplications (slow)




(ratio 2.44140625e-4 -> 4096 times faster!!)




Two lessons




Vecotorizing Matlab (turn loops into matrix operations) 
makes Matlab go lots faster.


Should do it.




Vectorizing in general

 


- is not algorithmic

- is case specific




can give gigantic speed improvements (much more than 
Matlab style vectorizing) and even make something that 

is non-computable, computable.




But is lots of work - an art!




Get same figure as before.



