
Data Analysis in Geophysics
ESCI 7205

Bob Smalley

Room 103 in 3892 (long building), x-4929

Tu/Th - 13:00-14:30
CERI MAC (or STUDENT) LAB

Lab – 3, 09/03/13

More on vectorization.

MATLAB is a vectorized high level language

Requires change in programming style

(if one already knows a non-vectorized

programming language such as Fortran, C, Pascal,
Basic, etc.)

Vectorized languages allow operations over

arrays using simple syntax, essentially the same
syntax one would use to operate over scalars.

(looks like math again.)

What is vectorization?

(with respect to matlab)

Vectorization is the process of writing code for
MATLAB that uses matrix operations or other
fast built-in functions instead of using explicit

loops.

The benefits of doing this are usually sizeable.

The reason for this is that MATLAB is an
interpreted language. Function calls have very

high overhead, and indexing operations (inherent
in a loop operation) are not particularly fast.

Loop versus vectorized version of same code.

New commands “tic” and “toc” - time the

execution of the code between them.

>> a=rand(1000); !
>> tic;b=a*a;toc!
Elapsed time is 0.229464 seconds.!
>> tic;for k=1:1000,for l=1:1000,c(k,l)=0;for m=1:1000, c(k,l)=c
(k,l)+a(k,m)*a(m,l);end, end, end, toc!
Elapsed time is 22.369451 seconds.!
>> whos!
 Name Size Bytes Class Attributes!
 a 1000x1000 8000000 double !
 b 1000x1000 8000000 double !
 c 1000x1000 8000000 double !
 k 1x1 8 double !
 l 1x1 8 double !
 m 1x1 8 double !
!
>> max(max(b-c))!
ans =!
 9.6634e-13!

Factor 100 difference in time for
multiplication of 103x103 matrix!

Vectorization of
synthetic seismogram

example from

Stein and Wysession

Intro to Seismology and
Earth Structure.

Section on scientific programming

u(x, t) = sin n! x / L()sin n! xs / L()cos !nt()exp ! !n"()2 / 4"
#

$
%

n=1

&

'

u(x, t) = sin n! x / L()sin n! xs / L()cos !nt()exp ! !n"()2 / 4"
#

$
%

n=1

&

'

Start by just
"translating" the Fortran

code into Matlab.

So far we probably
don't fully understand

the math, but we have a
formula and so we can

calculate u(x,t).

%synthetic seismogram for homogeneous
string, u(t)!
%calculated by normal mode summation!
%string length!
alngth=1;!
%velocity m/sec!
c=1.0;!
%number modes!
nmode=200;!
%source position!
xsrc=0.2;!
%receiver position!
xrcvr=0.7;!
%seismogram time duration!
tdurat=1.25;!
%number time steps!
nstep=50;!
%time step!
dt=tdurat/nstep;!
%source shape term!
tau=0.02;!
fprintf('%s\n','synthetic seismogram for
string')!
fprintf('%s %0.5g\n','number modes',
nmode)!
fprintf('%s %0.5g %0.5g\n','length and
velocity', alngth, c)!
fprintf('%s %0.5g %0.5g\n','posn src and
rcvr',xsrc,xrcvr)!
fprintf('%s %0.5g %0.5g %0.5g\n','durn,
time steps, del t',tdurat,nstep,dt)!

fprintf('%s %0.5g\n','source shape',
tau)!
%initialize displacement!
for cnt=1:nstep!
 u(cnt)=0;!
end!
for k=1:nstep!
 t(k)=dt*(k-1);!
end!
%outer loop over modes!
for n=1:nmode!
 anpial=n*pi/alngth;!
%space terms - src & rcvr!
 sxs=sin(anpial*xsrc);!
 sxr=sin(anpial*xrcvr);!
%mode freq!
 wn=n*pi*c/alngth;!
%time indep terms!
 dmp=(tau*wn)^2;!
 scale=exp(-dmp/4);!
 space=sxs*sxr*scale;!
%inner loop oner time steps!
 for k=1:nstep!
% t=dt*(k-1);!
% cwt=cos(wn*t);!
 cwt=cos(wn*t(k));!
%compute disp!
 u(k)=u(k)+cwt*space;!
 end!
end!
plot(t,u)!

Slightly
cleaned up

version of
Fortran

program in
Stein and

Wysession
“translated”

to Matlab.
(took

calculation of
time out of

inner loop –
is

recalculated
each time
through,

waste of time,
calculate as
vector once

at beginning)

Doing
translation
for
homework!

Synthetic seismogram produced by Matlab code
translated from Fortran.

Variables

!
>> whos!
 Name Size Bytes Class Attributes!
 alngth 1x1 8 double !
 anpial 1x1 8 double !
 c 1x1 8 double !
 cnt 1x1 8 double !
 cwt 1x1 8 double !
 dmp 1x1 8 double !
 dt 1x1 8 double !
 k 1x1 8 double !
 n 1x1 8 double !
 nmode 1x1 8 double !
 nstep 1x1 8 double !
 scale 1x1 8 double !
 space 1x1 8 double !
 sxr 1x1 8 double !
 sxs 1x1 8 double !
 t 1x1 8 double !
 tau 1x1 8 double !
 tdurat 1x1 8 double !
 u 1x50 400 double !
 wn 1x1 8 double !
 xrcvr 1x1 8 double !
 xsrc 1x1 8 double !

Let's return to the
original problem and try

to understand what is
going on.

We will use this to
understanding to
further vectorize

(speed up) the code.

u(x, t) = sin n! x / L()sin n! xs / L()cos !nt()exp ! !n"()2 / 4"
#

$
%

n=1

&

'

u(x,t) = sin n! xs / L()sin n! x / L()cos !nt()exp ! !n!()
2
/ 4"

#$
%
&'

n=1

(

)

Note : !n = n*!0()

u(x,t) = sin n! xs / L()exp ! !n!()
2

/ 4"
#$

%
&'

*

+
,

-

.
/ sin n! x / L()cos !nt()

n=1

(

)

u(x,t) = an sin n! x / L()cos !nt()
n=1

(

)

u(x,t) = 0an cos n! x / L+!nt()+ cos n! x / L!!nt()"
#

%
&

n=1

(

)

This is just the Fourier domain representation for
waves on a string with fixed ends

Weight - no dependence
on x or t, only ωn.

Standing wave made from 2 opposite
direction traveling waves. Amplitude
varies with time, but does not "move"

Going left Going right

This is a sinusoidal wave that is
fixed in space, cos(kx), whose
amplitude is modulated

harmonically in time, cos (ωt)!

u(x, t) = Acos (kx +!t)+ Acos(kx !!t)
u(k,!) = Acos (kx +!t)+ Acos(kx -!t)
u(x, t) = u(k,!) = 2Acos(!t)cos(kx)

un (x, t) = cos(knx / L)cos(!nt)

where !n = v kn

Normal Mode (and combination of traveling waves to make standing wave)

formulation for displacement of a string

u(x,t)=Acos (kx+ωt)+Acos(kx−ωt)!
u(k,ω)=Acos (kx+ωt)+Acos(kx−ωt)!

!
u(x,t)=u(k,ω)=2Acos(ωt)cos(kx)!

Do over a range
of frequencies.

Delta functions
going right on
top

and left in
middle

and combined
(bottom).

Look at the basic element of Fourier series,
weighted sum of sin and cos functions

(look at cos only to see how works).

u(tm) = a0

2
+ an cos !ntm()

n=1

N

!

u(tm) = a0

2
+ a1 a2 a3 ! an()• cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()()

u(tm) = a0

2
+ a1 a2 a3 ! an()

cos !1tm()
cos !2tm()
cos !3tm()
!

cos !ntm()

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

=
a0

2
+ cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()()

a1

a2

a3

!
an

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

"u tm : tm+k() = a0

2
+

cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()
cos !1tm+1() cos !2tm+1() cos !3tm+1() ! cos !ntm+1()
! ! ! ! !

cos !1tm+k() cos !2tm+k() cos !3tm+k() ! cos !ntm+k()

"

#

$
$
$
$
$$

%

&

'
'
'
'
''

a1

a2

a3

!
an

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

"u tm : tm+k() = a0

2
+
!
W !a

Dot product

or matrix multiply: ac=(c'a')'

matrix multiply, at multiple times to make full seismogram

!

! u tm : tm +k() =
a0

2
+

cos "1tm() cos "2tm() cos "3tm() " cos "ntm()
cos "1tm +1() cos "2tm +1() cos "3tm +1() " cos "ntm +1()
" " " " "

cos "1tm +k() cos "2tm +k() cos "3tm +k() " cos "ntm +k()

$

%
%
%
%

&

'

(
(
(
(

a1

a2

a3

"
an

$

%
%
%
%
% %

&

'

(
(
(
(
((

! u tm : tm +k() =
a0

2
+
!

W ! a

Look at the basic Fourier series

At constant time, weighted
sum of cosines at different
frequencies at that time

constant frequency cosine as function of time
(basis functions)

This is multiplication of a matrix (with cosines as
functions of frequency – across - and time -

down) times a vector containing the Fourier series
weights.

We have just vectorized the equations for the
Fourier series!

Even though this is a major improvement over
doing this with for loops, and is clear

conceptually, it is still not "computable" as it takes
O(N2) operations (and therefore time) to do it.

This is OK for small N, but quickly gets out of
hand.

Fourier analysis is typically done using the Fast
Fourier transform (FFT) algorithm – which has
O(N log2 N) operations and is significantly

faster for large N.

Fourier decomposition.

“Basis” functions are the
sine and cosine functions.

Notice that first sine term is
all zeros (so don’t really

need it) and last sine term
(not shown) is same as last

cosine term, just shifted one
– so will only need one of

these).

Figure from Smith

Fourier transform (actually
Fourier series)

Figure from Smith

!

u(tm) =
a0
2

+ an cos "ntm()
n=1

N

+ bn sin "ntm()
n=1

N

#

The Fast Fourier Transform (FFT)
depends on noticing that there is

a lot of repetition in the
calculations – each higher

frequency basis function can be
made by selecting points from the
ω0 function. The weight value is

multiplied by the same basis
function value an increasing

number of times as ω increases.

!

" a0

!

" a1

!

" a2

!

" a3

!

" a4

!

" b1

!

" b2

!

" b3

FFT

Figure from Smith

!

u(tm) =
a0
2

+ an cos "ntm()
n=1

N

+ bn sin "ntm()
n=1

N

#

!

" a0

!

" a1

!

" a2

!

" a3

!

" a4

!

" b1

!

" b2

!

" b3

The FFT uses regularities of the
calculation to calculate the basis

functions and then basically does
each unique multiplication only

once, stores it, and then does the
bookeeping to add them all up

correctly.

The points in the trace at the top
are made from vertical sums of

the weighted points at the same
time in the cos and sin traces in

the bottom.

FFT

Figure from Smith

u(tm) = a0

2
+ an cos !ntm()

n=1

N

! + bn sin !ntm()
n=1

N

!

u(tm) = a0

2
+ cn

n=1

N

! WN
mn, W = e"i2! /N

!

" a0

!

" a1

!

" a2

!

" a3

!

" a4

!

" b1

!

" b2

!

" b3

The FFT uses the following
symmetry properties

Symmetry

Periodicity

FFT needs number points =
power of 2.

WN
k+N /2 = !WN

k

WN
k+N =WN

k

% number of time samples M
% points!
% source/receiver position:!
% xs/xr (meters)!
% speed c (meters/sec)!
% length L (meters)!
% number of modes N!
% source pulse duration Tau
% (sec)!
% length of seismogram T (sec)!
 !
M=50;!
xs=0.25;!
xr = 0.7;!
c=1;!
L=1;!
N=200;!
Tau=0.02;!
T=1.25;!
!
%time vector, 1 row by M
%columns: start, step, stop!
%will need lots, calc once!
dt=T/M;!
t=0:dt:T-dt; !
 !

Same program in Matlab
after vectorization (is
mostly comments!)

!

! u tm : tm +k() =
a0

2
+

cos "1tm() cos "2tm() cos "3tm() " cos "ntm()
cos "1tm +1() cos "2tm +1() cos "3tm +1() " cos "ntm +1()
" " " " "

cos "1tm +k() cos "2tm +k() cos "3tm +k() " cos "ntm +k()

$

%
%
%
%

&

'

(
(
(
(

a1

a2

a3

"
an

$

%
%
%
%
% %

&

'

(
(
(
(
((

! u tm : tm +k() =
a0

2
+
!

W ! a

Note : !n = n*!0()
an =

1
2
sin n! xs / L()exp ! !n!()

2
/ 4!

"#
$
%&

'

(
)

*

+
,sin n! xr / L()

We need to make the matrix and the vector

Making the matrix.

What size does it have to be?

What does each row and column represent?

There are N=200 columns for the M frequencies

There are N=50 rows for the N samples in the seismogram
time series.

How do we make the elements (k,l) of the matrix?

Use fact that values needed are proportional to k and l.

Make appropriate vectors for time and frequency.

How big is each?

How combine them to make the matrix as a function of k
and l?

Multiply elements of the matrix by dt and .

Take cosine of matrix.

!0

Now calculate the weights.

Note the weights depend on n, and ,but not t.

All t dependence is in the matrix elements.

!n

So now have matrix with the trigonometric basis
functions and a vector of the weights.

Just multiply them!

(careful with sizes)

This is not the way it is typically done (although some
people still do it the "Fortran" way) as it is still O(N2).

The Matlab matrix multiplication method is faster than

the Matlab loop method.

(a good Fortran compiler will beat the pants off either

implementation in Matalb).

We did it this way for educational purposes.

Typically, it is done using the FFT (Fast Fourier
Transform) algorithm which avoids duplication of effort

in the multiplications and results in O(N log2 N)
multiplications.

For a time series 216=65,536

(FFT needs number of points = power of two, this is
pretty typical number of points in seismogram, about 10

minutes at 100 Hz sampling)

We need O(16 * 216)=1,048,576

Vs

4,294,967,296

Multiplications (slow)

(ratio 2.44140625e-4 -> 4096 times faster!!)

Two lessons

Vecotorizing Matlab (turn loops into matrix operations)
makes Matlab go lots faster.

Should do it.

Vectorizing in general

- is not algorithmic

- is case specific

can give gigantic speed improvements (much more than
Matlab style vectorizing) and even make something that

is non-computable, computable.

But is lots of work - an art!

Get same figure as before.

