Data Analgsis N Geophgsics
ESCI 7205

Bob Sma leg
Room 105 in 3892 (long ouilcling), X~4929

Tu/Th - 1%:00-14:30
CERIMAC (or STUDENT) LAD

Lab — 24 11/19/13

| don’t know what the rogramming language
of the year 2000 will loo like, but I know it
will be called Fortran.

Charles Anthong Richard Hoare

One other rather clangcrous DO form is allowed
under Fortran 90.

x=1

do x=2*x+1

if (x.gt.200) exit

if (x.1t.100) cycle print *, ' x.ge.l1l00’
end do

print * , ' x = ',x

This will continue to lool:) until an EXIT, or GOTO
statement within the looP forces the looping to

CﬂCl.

Place were goto sort of makes sense — want
ditferent behavior depending on how leave the
|ooP.

do 100 it=1,itmax
XO=X
fx=f (xo,dfdx)
dx = -fx/dfdx
X=xX0+dx
write (*,2000)1it,x,£fx,dx
1f(abs(x-x0).lt.eps*abs(x)) go to 200
100 continue
print *, 'Iteration failed to converge’
Better do something else here!
200 x=x1n

1 you belong to the school of tlﬁouglﬁtj that
GOTOs should be avoided at all cost, then the
Fortran CYCLE and EXIT statements are for you.

Fix the Previous code to be “modular’ and not
use tlnc GOTO.

Modern way.
Neecl sometlﬁing to tc” you l’lOW you |e1ct tl’lé |ooP.
Use some sort of |ogical “ﬂag”.

converge flag=.false.
do 100 1it=1,itmax
.. fortran code from last slide.....
1f(abs(x-x0).lt.eps*abs(x)) then
converge flag=.true.
exit
endif
If(.not. converge flag) then
print *, 'Iteration failed to converge'’
Better do something else here!
end if
X=%1n

Random stutf for |ooPs

- Can’t moclhcg IOOP control variable inside looP.

Compiler will catch this.

- Can’t depen& onvalue of looP counter when
exit looP bg coml:)leting it (it you are |ucl<g it will
have the first value that Failegl the test, causing
the IOOP to terminate).

Coml:)iler will not catch this.

Random stutf for |ooPs

- Traditional IOOPS can share a labeled “end”

do 100 i=1,10

“fortran statements”

Do 100 j=20,30

“fortran statements”

100 continue or “executable fortran statement”

what are the values of i and | here?
J

do..enddo have to be incﬂividua”y Paired.

In nested lool:)s, which |ooP do the exit and
cycle commands aPPlg to”

~> The nest level being executed.

What if you want get all the way out of the |ool:>?
Chi %er the the next level up in the nest.)

New with Fortran 90 — you can name the |ool:>s

(at beginning and end)

R@Cer to the looP name you wanttoexit or
cycle

outer: do 1i=1,5
middle: do j=11,25
inner: do k=21, 25
print *, 1, j, k
1f(jJ==12)exit outer
end do inner
end do middle

end do outer

lmpliecl |ool:>s
x = (/ (2*i, i=1,4) /)

Equivalent to
do 1 = 1,

X(1)
end do

4
2*%1

lmplici’t locc)fs are used for initialization of arrays,
rea ing and Printing (heavies‘c use).

lmpliecl IOOPS

x = (/ ((i*j, i=1,4), Jj=1,6) /)

Equivalent to
do j = 1,6
do 1 = 1,4
X((J=1)*4+1) = i*]
end do

end do

lmplied IOOPS
Can be very handg.

Write(*l*)((il"*nljI"=”Ii*jlj=1I9)Ii=1l9)

Prints multiplication table (but all on one line).

_

lmplied |ooP5
Most commonlg usecl to reacl and write

read(*,*) n,(x(1),1=1,n)
or
read(*,*) n
read(*,*)(x(1),1=1,n)
or
read(*,*) n

do ri=;'2 — All 3 seem to do the same
ead(*,*)x(1) tl»-,|r]g—- aﬂCl theg CIO o
enddo

sometimes!

589 | have % files with the Fo”owing contents

5149 16 25 The first Piece of code on the
last page will read all 3 files.

5 The second will read the last
1 8 27 64 125 two fles.

The third will read only the
|last file.

This is because each read starts a new
“record’=line from the input file, but if it is
not done reading when it gets to the end of
the line, it keeps going wit the next line.

Or & WD EF-, O

Reacling and writing from fles

First have to open a file and tell the program how
to identi@ it, do this with a “unit
number” (standard-in is unit) but can use *).

Then replace the first * in ()'s after read with
“Unit” number, stuff in grey is oPtional

open (1 'f3.dat ')
read (l,*) n,(x(1),1=1,n)
write(*,*)(x(1),1=1,n)

End

Can do same with output

Reading and Writing from fles

There are lots more oPtions for the open

look them up.

Hanc”ing errors/end of file on inl:)ut.
Modern way.

read(1l,*,10ostat=10status) n
if(1ostat>0)then

print *, 'something wrong
elseif(i1ostat<0)then
print *, 'eof’

else

write(*,*) 'n=',n

endif

close(1l)

Hancﬂing errors/enci of file on inPut.
Old “goto” way.

read(l,*,end=100,err=101) n
write(*,*) n=',n
close(1l)

Somewhere else in the code
100 print *, 'eof’
stop
101 print *, ’bad input’
stop

So far we've onlg been reading and wri’ting what is
called list-directed (free) format

As long as inPut IS composecl of numbers it is
easy (alt ough ?ou have to make sure you don’t
try to read a real into an integer) , sel:)arating the

numbers bg spaces or commas.

A bit more complicatecl to read in character
strings since theg can have spaces (ancl don’t
have to be in quotes).

Formatted 1/O
Gives more control over what it read and written.

WRITE (unit, "(A,F10.3,A)") "flux =" &

\\\\\\\ ,source flux, " Jansky"”

(Can use variable to SPCChcg unit number to Print)

Then Print a character string (a) of unspechqed
Icngth
Followed bg a ﬂoating Point number using a total
of 10 spaces, with three digits atter the éecimal
oint (sign and decimal point count)

Ancl ﬁna”y another character string.

Formatted |/O

Can also use with Print and accePt.

print '("A,F10.3,A")" "flux =" &
,source flux,

Jansky"

Have various ways to speci{g clhq:erent types omc
numbers

I — inte]ger
(Inis n digits/spaces w/o leading zeros, or In.m
, paces? 5510
Prmts at least m=<n cl:glts, SO uses leaclmg ZEros)

F — ﬂoating Point
(Fn.mis n total digits, m after decimal Point,
remember to count sign and decimal Poiﬂt
characters)

A — character
(An is n total Characters, including sPaces)

E — scientific notation

(ESn.mEois n total di its, m aftter decimal Point,
normalized with 1 cli%it efore decimal Point and
oPtionang speci yo digits for €><P0ﬂ€ﬂt.

ENn.mEo is n total cligits, m after decimal Pointj
normalized such that exponent IS multiple of %)

Also have

Generalized exponent (@)
Hex, Octal and Binary (H, O, B)
Logical (L).

Space (X)
Tab (T)
New line (/)

Repetition (for all format 5Peciﬁer5)
rX, rFn.m

Rel:)eats the sPeciﬁcation that number of times.

Formatted 1/O
Old way.

Could do same
WRITE (unit, "(A,F10.3,A)") "flux =" &
,source flux, " Jansky”

Or use labels (mag not work in F90...)

WRITE (unit,100) "flux =" &
,source flux,
100 format(A,F10.3,A)

Jansky"”

Ancl slﬁare Format bctween dhq:ereﬂt statements.

Internal 1/O

Read From/ write to character variable.
And how to declare characters.

Canuse 'or" In Pairs to define strings.
character(len=100) :: string
character(100) :: otherstring
Character(*) :: prompt ='enter real' !compiler will figure

out length

read(*, ' (A)')string
read(string(102£5), *) somereal

Reads from character substring In Positions 10to 15
inclusive.

Q format spcci er

Get lengt]ﬁ of inPut record.

character(50) buf; character(60) string;

buf = 'this string is 29 bytes long.'
read(buf, fmt='(gq)') nbytes

write(*,*) nbytes
read(*,fmt="'(g,a)') nbytes, string
write(*,'(i,x,3a,/,a,/,3a)') nbytes,
', '"'",string(l:nbytes),
end

Run it
50

24 "how long is this string?

integer(4) nbytes

,string, , VS

\4S
"how long is this string?”

n

Unformatted (binarg} /O

Omit the format speciﬁer.
Writes data in binarg format.

Must be reacl back With exactlg the same tgl:)es cnc
variables, on the same computer architecture, if
you want it to make sense!!

(E.g. with the same endianness and word size.)
Example:

write(unit=9) x, y, z
read(unit=9) a, b, c

Character strings in Fortran and C.

Canr’t find a limit for character string |ength N
Fortran90

It is 255 characters in Fortran-Fortran// (first bgte IS
Ieng‘ch, can on|9 count up to 259, from 000, with 8 bits)

C character strings are “zero” terminated. Theg start
at a givcn memor[(j location and continue until a bgte
equa to zero is encountered.

This makes Passing strings between the two Ianguages
trickg.

Arrags

Fortran also has arrays (similar to Matlab —
incluciing how elements are ordered in memorg.)

You have to declare variables as being arrays.

Traclitiona”g you had to declare the size of an
array at the time you wrote the program
(Fortran before Fortran9) did not have dgnamic
memory allocation — excel:)t on the DEC VAX,
whose extended Fortran had it in the earlg to mid
80’s, but it was not “Portable”).

Declaring traditional (Predcﬁnecl size) arrays

real z(20) !traditional, 20 floating points
real :: a(20) !jJust add the :: for consistency
real, dimension(20) :: b,c !new options format

integer, parameter :: 1size=100

real, dimension(isize) :: d !new options format

real, dimension(2*isize) :: e !with calculation

real :: f(isize,isize) !2d traditional w/

real, dimension(isize,isize) :: g !2d, options

real :: h(-isize:1isize) !neg indicies

integer, dimension(5) :: i=(/1, 2, 3, 4, 5/) !

initialize

integer k

integer, dimension(5) :: j=(/{k,k=1,4ﬂ, 5/) luse
implied do loop to initialize

So far all variables have been static variables

Theg have a fix memory requirement, which is
sl:)eciﬁecl when the variable is declared.

Static arrays In Par’ticular are declared with a
speciﬁecl slﬁape and extent which cannot change
while a program IS running
(at least not in the main Program).

So far all variables have been static variables
This means that when Processing variable
amounts O{: data you have to:
Dimension arrays to the |argest Possible size that
will be requireci

or

Change the sizes in the source, and re-compile
every time you run (or the array s too sma |).

Declaring arrays with cignamic memory allocation
(size not fixed at cocling time) .

Having to declare arrays at comPile time has long
been a complaint against Fortran
(eslz)ecia”g bﬂ C programmers as C allowed it) .

Fortran 90 (and newer) has “fixed” the Problem.

Various ways to declare using allocatable oPtion

General form

type, ALLOCATABLE [,attribute] :: name
CXB!ﬂPl@S

INTEGER, DIMENSION(:), ALLOCATABLE :: a !rank 1

INTEGER, ALLOCATABLE :: b(:,:) !rank 2

REAL, DIMENSION(:,:), ALLOCATABLE :: c !rank 2

Declare array using allocatable oPtion

program dynamem

implicit none

integer :: nmax,istat,error
real*8, allocatable :: array(:)

end

When you need the array, use allocate.

General form

ALLOCATE(name(bounds) [,STAT])

E‘xamples
ISome part of the code determines nmax
nmax=100
allocate(arrayld(nmax),stat=error)
1f (stat.ne.0) then
print*, 'error: couldnt allocate memory &

for arrayld, nmax=',nmax
stop

endif

‘NhenckwmﬂMHwaﬂag,dmmﬂ&(hawaﬂﬂ)deallocate.
General form
DEALLOCATE(name [,STAT])
exanwﬂes

DEALLOCATE (a, b)
DEALLOCATE (c, STAT=test)
IF (test .NE. 0) THEN

STOP 'deallocation error'
ENDIF

Status of allocatable memory
Allocated — has associated memory
Not currentlg a”ocatecl — No memory associatecl

General Form

Allocated(name)

Returns .true. or .false.

Note that you still need to know the size of the
array when you declare it cﬂgnamica“g.

You can compute it in your program, etc.

(this is also true in C)

You cannot just |<eel:> aclcling elements ancl have
the array grow as in Matlab.

Aside
Logical variables
Define as Iogical
logical :: TF
They take the values

.true. Or .false.

can do stuff like do while (.true

Status of allocatable memory

E‘xamples
if you need memory can check and allocate if not
alreaclg allocated

If(.not.allocated(x)) allocate(x(1:10))

Or it you dor’t need it, can check if allocated and
get rid of it it it is allocated.

IF(ALLOCATED(x)) DEALLOCATE(X)

Memory leaks

Norma”g, the rogram takes responsibility for
a”ocating andP clea”ocating storage to (static)
variables. When using dgnamic memory a”oc:ation,
however, this responsibilitg falls to the
programmer.

Storage allocated throug]ﬁ the ALLOCATE
statement may onlg be recovered bg:
a corresponc iIng DEALLOCATE statement, or
the brogram terminating,

l\/\emor9 leaks

Storage allocated to local variables (N say a
subroutine or ?unc’cion} must be clea”ocatccl
before the exiti ng, the Proceclure.

When Ieaving a Proceclure all local variable are
deleted from memory and the program releases
any associated storage for use elsewhere,

Memory leaks

HOWEVER any storage allocated through the

ALLOCATE statement will remain “in use' even
though it has no associated variable name!

Storage a”ocatecl, but no longer accessible,
cannot be released or used elsewhere in the
program and is said to be in an ‘undefined’ state.

This rea

uction in the total storage available to the

Drogram called is a “memorg leak”.

Memory |ea‘<s
And to make matters worse —

memory leaks are cumulativej rePeatecl use of a
Procedure which contains a memory leak will
increase the size of the a”ocatecl, but unusable,
memory.

Memo:y leaks can be ditficult errors to detect but
may be avoided]:)9 remembering to allocate and
clea”ocate storage N the same Proceclure.

Assigning array values

a=0 !whole array set to zero
b(l)=5 lelement 1 set to 5
c(j(2))=a(l) 13(2) element of c set to a(l)

f(3,4)=a(10) 12 d element (3,4)

What is this going to do?

integer, parameter :: nmax=100
real*8 arrayld(nmax), array2d(nmax,nmax)

arrayld(1l)=1
arrayld(nmax+1)=nmax+1
array2d(1l,1)=1
array2d(0,0)=-1

print *,' arrayld ', arrayld(l),
arrayld(nmax+1)

print *,' array2d ',array2d(l,1l), &
array2d(0,0)=

end

| shoulcl]navc you write a sma” Program to trg it
(But that would take 20 minutes)

So here’s the result

arrayld 1.000000000 101.0000000
array2d 1.00000000 -1.00000000

So it seems like it worked!

The Problcm is that it is not guaranteecl to work!

How about | g0 109 outside of bounds

579 $ a.out
forrtl: severe (174): SIGSEGV, segmentation fault occurred

Image PC Routine Line Source

a.out 000000010ED9BCFB Unknown Unknown Unknown
a.out 000000010ED9BA3C Unknown Unknown Unknown
libdyld.dylib 0O0007FFF8F3BE7E1 Unknown Unknown Unknown

Here we Jucked out and the OS Protectecl us
from ourselves.

it looks like we wanted to write into the clgnamic
Iibra rg (which is shared bﬂ all the programs running on the machine — Probablg not

a nice thing todo).

This “Problem” is not restricted to Fortran.

C, and most other languages, will do the same bad
things very nicelg also.

Produces the famous “segmentation fault”

(sags you are trging to trespass outside your “Pro[:)ertg” n memory, and it will not let 9ou).

But it does let you do it within your “Propertg” (in
the memory a”ocatecl to your Program).

This may or may not cause your Program to get
bad results or crash.

How to fix it?
Use something called “bounds checking”

Most |anguages do not do it bg default as it is
increcliblg slow.

However,dgou can tell the compiler ke tO dO
it, and it will then save you from 9ourse|1c.

583 $ ifort -check bounds dynamem.f90

584 $ a.out
forrtl: severe (408): fort: (2): Subscript #1 of the array

ARRAY1D has value 101 which is greater than the upper
bound of 100

Can do “scalar” oEerations on arrays (as In
Matlab: *./)

For arrays a, b and c (tl’lé arrays have to be
declared earlier)

c=a+b

Arrags have to be “conformable” — same size.

Subroutines and Functions

(subl:)rograms)
Functions return a single value

Subroutines can return multiple values through an
argument list.

I _—

program testfunctions
implicit none

real a, b, a mean, g mean
write(*,*) ' 'enter two real values'
read(*,*) a,b

a mean=ArithMean(a,b)

g _mean=GeoMean(a,b)
write(*,*) 'value 1 ', a,
geom mean ',g mean

Functions — roll your own

value 2 ',b,' arith mean ',a mean,

contains
real function ArithMean(a,b)

implicit none 5 , ,
real, intent(in) :: a,b Can Put functions inside
ArithMean=(a+b)/2.0 ‘ﬁl ,

end function ArithMean sSame nie as main Program
real function GeoMean(a,b) — use contains

e LE none Can also Put in another
real, intent(in) :: a,b ;)

GeoMean=sqrt (a*b) file and combine at

end function GeoMean , ,
COH‘IPIIC time.

end program testfunctions

Intrinsic Functions

Built into Fortran (cion’t need to link libraries for
/O, math, etc.)

There are about a hundred of thcm) some of the
most common

sgrt

sin, cos, tan — take argument in radians
sind, cosd, tand — take argument In clegrees

Etc. — look ‘em up.

program testsubroutines

implicit none Subroutines
real a, b, ¢, d

write(*,*) 'enter two real values'

read(*,*) a,b

call Means(a,b,c,d)

write(*,*) 'value 1 ',a,' value 2 ',b,' arith mean ',c,’' geom
mean ',d

contains o)

subroutine Means(a,b,c,d) S]mllar to ‘FUﬂCthﬂ —
implicit none L) }j L]
real, intent(in) :: a,b ut output now throug
real, intent(out) :: c,d argumeﬂt lSt aﬂCJ can
c=(a+b)/2.0)

d=sqrt(a*b) 4

el have multiple outputs.

end program testsubroutines

In example) a and b are
inl:)ut and ¢ and d are
output variables.

What is
intent (xxx)
where xxx isoneof in, out, inout
INTENT (IN) function takes the value from the
corresponciing “formal argument” (the thing in the
argument list in the subroutine definition) and

does not change its content.

s ol:)tional

Also have

INTENT (OUT) the “formal argument” does not
receive a value from the ca”ing program, but will
return a value to the ca”ing program through the
corresponcli ng argument.

INTENT (INOUT) the “bormal argument” can both
receive ancl return a Value through the
corresponding argument.

BOth arc OPtiOﬂal anc:l 8” arc mutua”g CXCIUSEVC

But — can get in trouble it don’t sPcch(y

(Problem is when Put constant or cxprcssion N ca”)

real a

write(*,*) 'enter real value'
read(*,*) a

call MySub(2*a)

write(*,*) 'value a ’,a
call MySub(2)

write(*,*) 'value a ’,a

Contains

subroutine MySub(x)
implicit none x

real x=sqrt(x)

end subroutine Means
end

Main & subprograms don’t have to be in same fle

File mainsubs.f90

program mainsubs
implicit none

real a, b, ¢, d
write(*,*) 'enter two &
real values'

read(*,*) a,b

call Means(a,b,c,d)
write(*,*) 'value 1 ’'&
,a,'value 2 ',b&

, arith mean ’',cé&

, geom mean ',d
end program mainsubs

File subsubs .90

subroutine
Means(a,b,c,d)
implicit none

real, intent(in) :: a,b
real, intent(out) :: c,d
c=(a+b)/2.0

d=sqgrt (a*b)

end subroutine Means

To comPile —list all source files needed
gfortran mainsubs.f90 subsubs.f90 —o myprog

Fortran passes bg “reference” (address).

When you pass a variable to a subroutine it gets
the address of the variable.

(use the intent statement to control what can be

ChBﬂg@A}

When you pass an array, the subroutine gets the
address of the start of the array. There is no
metadata. The subroutine does not know
an tlﬁing about the size of the array, so you also
%wave to pass the size with more arguments.

Canresize an array in subroutine (clangerous}.

Soif you change the value of a variable in your
Fortran subroutine (ancl you are not using
intent) — the change s seen outside

(that’s how you pass stutt back out!)

C, on the other]ﬁand, passes bg “value” — a copy,
SO changes are local to inside the subroutine —
excep’t for arrays, which C also passes bg
reference.

Write a subroutine to multiplg two arrays.

Write a program to do Gaussian elimination.
(shoulcl also be a subroutine or function) .

