C

Data Analgsis In Geophgsics

ESC] 7205

Bob Sma leg
Room 105 in 3892 (long ouilcling), X~4929

Tu/Th - 1%:00-14:30

ERI MAC (or STUD!

ENT) LAB

Lab — 23, 11/14-/1%

Q: how many programmers does it take to change a light bulb?
A

none, that’s a hardware Problem

Urban legenc‘: but goocl!

i i e i e e i e i e i e e i S i S e S St i S e S e S e i St i S St S St i St e S St S St i St e S et S St i S S S St S St i S e S St S St i St st S

At a computer EXPO (COMDEX), Bill Gates reportedl comparecl the computer
industrg with the auto industrg and stated: " GM had kept up with the
tec:}mologg like the computer incJustrg has, we would all be clri\/ing $25.00 cars
that got 1,000 miles to the ga”on.“

—— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— ——

In response to Bill's comments, General Motors issued a press release (]39 Mr.
Welch himself) stating;

If GM had clevelopecl technol?gﬁ like Microsoft, we would all be clri\/ing cars with
the fo owingcharacteristics:

. For no reason at a”, your car would crash twice a dag.

k. E\/erg time theg repaintecl the lines on the roacl, you would have to bug a new
car.

3. Occasiona”g, executin% a manoeuver such as a left-turn would cause your
car to shut down and refuse to restart, and you would have to reinstall the
engine.

4. When your car died on the Freewag for no reason, you woulcljust accept this,
restart and drive on.

5. On|9 one person at a time could use the car, unless you bought '‘Car9y' or
'‘CarNT, and then added more seats.

6. APPIC would make a car Powerecl]:39 the sun, reliable, five times as Fast, and
twice as casy to clrive, but would ran on on|9 five per cent of the roads.

7. Oil, water temperature and alternator warning Iights would be replaced bg a
single ‘general car default warning light.

8. New seats woulcl force every-one to have the same size but’c.

9. The airbag would say 'Are you sure?’ before going off.

10. Occasiona”g, for no reason, your car would lockctﬁou out and refuse to let
you in until you simultaneouslg ifted the door handle, turned the keg, and
grabbecl the radio antenna.

1. GM would recluire all car bugers to also Purchase a deluxe set of road maps
from Ranc‘-McNa”g (a subsidiarg of GM), even though theg neither need them
nor want them. Trgin to delete this oPtion would immeo‘iatelg cause the car's
Pemcormance to diminis]39 50 per cent or more. Moreover, GM would become a
target for investigation bg the Justice DePar’cment,

12. Everg time GM introduced a new mociel, car buyers would have to learn how
to clri\/e a” over again because none oF the controls woulcl oPerate n the same
manner as the olcl car.

1%. You would press the 'start’ button to shut off the engine.

—~— —— —~— —~— —~— —~— —~— —~— —~— —~— —~— —~— —~— —~— —~— —~— —~— —~—

Read more at (’che definitive page for clebunking urban legends)
httlpz b6/ WWW.SNOpes.com A humor/jokes/ autos.asp#\/]\/P‘%PGJiOUmTérIq .99

Programming Ianguages must lf)C:

. tota”g unambiguous (unlike natural languages, for
example) E:nglislﬂ)J

. exPressive —— it must be Fairlg easy to program common
tasks
. Practical —— it must be an easy language for the

Coml:)ilcr to translate
. simple to use.

All Programming languages have a very Precise sgntax
(or grammar). This ensures all 59ntact1ca”3~correct
programs have a single meaning.

users.aber.ac.uk/ruw/teach/340 /fortran_course/lecturel ppt

Intro to FORTRAN

Early 1950s ‘order codes” (primitive assemblers)

1957 FORTRAN the first high-level programming language
1958 ALGOL the first modern, imperative language

1960 LISP, COBOL Interactive programming; business programming
1962 APL, SIMULA the birth of OOP (SIMULA)

1964 BASIC, PL/I

1966 ISWIM first modern functional language (a proposal)
1970 Prolog logic programming is born

1972 C the systems programming language

1975 Pascal, Scheme two teaching languages

1978 CSP Concurrency matures

1978 FP Backus’ proposal

1983 Smalltalk-80, Ada OORP is reinvented

1984 Standard ML FP becomes mainstream (?)

1986 C++, Eiffel OORP is reinvented (again)

1988 CLOS, Oberon, Mathematica

1990 Haskell FP is reinvented

1990s | Perl, Python, Ruby, JavaScript Scripting languages become mainstream
1995 Java OORP is reinvented for the internet

2000 C#

Oscar Nierstrasz@iam.unibe.ch

So Wl’lﬂ should we waste time |<:aminga clging
niche |anguage.

(according to C aficionados and comPutcr scientists evergwhcre for the last 30-40 years; like UNIX, FORTRAN willjust not go awagl)

CONS

— Legacg FORTRAN code can be difficult to read
and refactor due to age.

- Older FORTRAN programs may not have
obeged any recogniza%)lc mcthodologg.

~ Also, GOTO statements.

(this sin alone is cnougl‘x to iusti{g capital Punishmcnt}

SO wlﬂg should we waste time |eaminga <:19ng
niche |anguage

PROS

- A majorit ofsu ercomputers run prosrams
jority of supercomp prog
written in FORTRAN

~Monster.com lists ~§Ojobs rec]uiring FORTRAN
expeﬁence.

(20 of those 50 also require securitg clearance.)

So Wlﬂg should we waste time |eaminga <:19ng
niche |anguage

PROS

_FORTRAN is still the fastest when it comes to
number crunching:

intensive mathematical models, such as weather
Precliction,
ComPutational science, air and fluid modeling etc.

(exl:)loration seismologg is one of the “etc.”. Sois Passive
seismologg but there’s no $% 1IN that — excePt for CTBT)

So Whg should we waste time Iearninga dging niche

language
l?gou can’t win, insult!

~-FORTRAN 1sn't unic]ue. Evergthinlg FORTRAN does
can also be done bg more Powerlcul anguages, starting
with C.

- FORTRAN is fast with mathematics, but Moore's Law is
faster.

Moore's |_aw

observation that, over the historg of computing
harclware, the number of transistors on integrated
circuits doubles aPProximate|9 every two years.

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2,600 000,000 -
1,000.000,000

100,000,000

So whg should we waste time leaminga dging niche

language
l{gou can’t win, insult!
~-FORTRAN was an im{:)ortant stelo N Programming

languages, but it now on y caters to the niche market of
High Performance Computing.

Fortran was invented in 1957, C in 1972, neither is a
SPring chicken.

(C does not even contain 1/O [not even a WOM -
write onlg memorg!].

C also did not contain any math functions, there
was no “standard” math i rary well into the 807,
you had to write your own.

Even now, you have to link in libraries Forjust

about anytlﬁing and e\/ergthing.)

Fortran was invented in 1957, C in 1972, neither is a
SPring chicken.

Each was clevelol:)ecl to do a different task on the

coml:)utcr, number crun
chvs. oPerating sgstem.

There are no ﬂging submarines, and for goocl
reason, use the aPProPriate tool!

Good historg of FORTRAN

http://en.wikipedia.org/wiki/Fortran

| atest versions (2003, 2008) support olaject
oriented Programming, structures (4:};0), Pointers
$90), dgnamic memory allocation, and all the
other “good stuff” Cis so Proud of.

And it still has “go’to”!

B4 FORTRAN your choices were

D Machine code

Address instruction and additional
information/data

EE |20
4C 131

htt[:): //c2.com/ cgj/ wiki?MachineCode

B4 FORTRAN your choices were

i Assembler code
Now get to tgpe on teletg pe and have to run a
Drogram (an assemblcr) to change what you
wrote into what we saw on last age (exactlg —
ne bg line, element bﬂ elemcntg)

Start: .org $8020
SEI

LDA #$80

STA S$0315

LDA #$2D

STA $0314

CLI

RTS

INC S$SD020

JMP SEA31l

FORTRAN (I): 1954-57
FORTRAN I : 1958
FORTRAN 11l : 1958 (not released to Public)

FORTRAN IV : 194]

Then things sort of fell aPart (the Plusses and minuses of standards)

FORTRAN 77 :~1977
Fortran 90, 95 : 1n1990’s

Fortran 200%: 2004

- Tortran 2008: 2010

The big Problem is “standards” and compatibilitg
T]ﬁings like data files (or disks) from my coml:)uter
working on yours, code Porta]:)ility,

Standards make it casy to Eet stuff done the old
way on every machine, but kill innovation.

The Fortran communitg has had a hard time
coming up the standards.

What haPPcns when a committee does it

How the Business

How the customer How the Project How the Analyst How the Programmer
explained & Leader understood it designed it wrote f Consultant described &

ﬂ

How the project What operations How the customer How it was supported | | What the customer
was documented installed was biled really needed

General aPProach to any coml:)utational Problem

Statement of Problem: clearer this can be clone) the
easier the cle\/elol:)ment and implementation

Solution Algoritlﬂm: Eixactlg how pro blem will be solved.

lmplementation: L’)reaki(r}g algorithm into manageable
ieces that can be coded into Iangua%e of choice, and
Pu’cting all the Pieces together to solve the Problem.

Verification: v implementation solves original Problem.
Often this is the most ditficult steP as don't know
“correct" answer (reason for program in the first Place).

Fortran derives from “FORmula TRANslator” and
was the first successful HLL, oPtimizing
coml:)utational|9 oriented, ComPiler.

What is a comPiler’?

So far we’ve been working with intcrpretecl

languages (shell, Matlab)

Or SJEUH: We have not cliscussecﬂ as to What tHPC omc
program itis

(SAC, GMT

both are compiled, the former written in FORTRAN, the latter in C — and Proud of it — UNIX/C is evangelical) -

A comPiler s a comPuter program (or set of
Programs) that transforms source code written in
a Programming |anguage (the source /anguage)
into anotlﬂer computer |anguage (t]’]e ta/get
P! ,

/anguage, often havmga bmarg torm known as

o[jcct code) .

The most common reason for wanting to
transncorm source cocle 1Is to create an executable
Program.

httl:)://en‘wikil:)e&ia,org/wiki/ComPi!er

The objcct cocle/ file is not gct a useable program.
It has translated what we want to do (Print or
example) , but does not ye‘c have all the Parts (‘che
machine code that does the Printing) .

We need to “link” our objcc’t code to the missing
Parts.

A linker or link editor is a coml:)uter program that
takes one or more object files gencratecl [39 a
ComPiler and combines them into a single
executable program.

After - ht’cp v cn.wikipedia.org/ wiki/ Linker_%%computing%?.?

One used to have to do this in two steps
ComPile
then
Link

Now the linking step is tupically done by the call
to the compiﬁzr (aﬁ)thoggh it cgan be skigpped).

Compilecl |angua§es .e., source code is created
with an editor as a Plain text file.

Program then needs to be “compilecﬂ" (converted
from source code to machine instructions with
relative addresses and undefined external

routines still needed) .
http://geoweb.mit.edu/~tah/12.010

Compilecl |angua§es i.e., source code is created
with an editor as a Plain text file.

Extemal routines are those neeclecl to clo such
operations as read disk files, write to the screen,
read the kegboard strokes etc.)

rd

The coml:)ilecl routines (called object modules)
need then to be linked or }Joaclec{.

http://geoweb.mit.e&u/~tah/lZ.OlO

Linking creates an executable with relative
addresses resolved and external routine loaded
from the sgs’cem and user libraries.

The executable can thenJ IN most cases, be run on
any machine with the same architecture.

Compiling and linking can be done in one user
step.

h’ctP://geoweb.mit.edu/~tah/12.010

Mang modern compﬂers come as Par’c of a
clevelopment environment

- sort of like Matlab, but for Fortran, C, C++-

Theg have context sensitive editors that indent,
color, etc., your code to “help” you.

T]’weg have interactive debuggers.

Stutf to organize, reuse, the parts.

Mang modern comPilerS come as Par‘c of a
clevelopment environment

| ots of tools to slow you down in the short run
while Promising to get you to nirvana in the long
run.

Analgsis of Fortran Program

Code is delimited bg

PROGRAM

END PROGRAM

statements. Between these there are two distinct
sections.

= SPeciﬁcation Part

- Execution Part

Analgsis of Fortran Program
Speciﬁca‘cion Part

. sPeciﬁes named memory locations (variables)
for use

. sPeciﬁes the type of the variable,

I .

Analgsis of Fortran Program

Execution Part

(does the work!)

* may read in data

e calculates something (FORmula TRANslator)
(or does sometlﬁing)

. outl:)ut something — clata/ results/ action.

How to Write a ComPuter Program

5 main steps

I SPCC@ Prob

-
R J

em,

2. cleve!op algori’chm) ana!gse and

break down into series

of steps towards solution,

3. write the code in some Programming |anguagej

4. coml:)ile (for Fortran, C, C++, etc.) and run

5. test the program.

It may be necessary to iterate between stePs % and 5 in
order to remove any mistakes.

The testing Phasc is very imPortant (and hardest, FollonedisfER I

users.aber.ac.uk/ruw/teach/340/fortran_course/lecturel. Ppt

Write first FORTRAN program

The famous “hello world”
Edit this into a file. On UNIX sgstems you must
end the file name with “. £2 or “. £90” o .cosr .

print *, “hello world”
end

Note that there are 6 spaces (many compilers accept tab, but this i an “extension”

at the beginning of each line. This is was require&

for 50 years and 90% of existing FORTRAN files
will be like this.

Save it.

Free and Fixed format

Original Fortran used a so~called fixed format,
where the first 5 columns were used for labels,
column 6 for a continuation character and
columns 7-72 for code (and 75-80 for sortini? .
Such programs can be written in Fortran 90, but
may need to have an extension . £.

The default inFortran 90 is free format, since
there is far less need for labels. Free format
Programs must ha\/e extension .£90 .05,

We will use free format from here on.

users.aber.ac.uk/ruw/teach/340/fortran_course/lecturel Ppt

Now we have our Program written ancl neecl to do
something to be able to run it.

Enter the “compiler”
gfortran

This will Prociuce a file named “a.out” (on UNIX/
LINUX machines).

This file will be executable (have executable

Privi |eges)

To “run” or “execute the Program,just type its
name (like any other Program).

a.out

./a.out

1t you don’t have “dot” in your Patl’w.

. g

Write your ﬁrst Fortran Program to Print

“hello world”

Not very useful to continuouslg clobber your

Pro§rams (but tgpical UNIX), so save it with a

usetul name (notice FORTRAN, or any other,

compiier does not work with inPut redirection {<,
<<} or output redirection {>}).

gfortran —O0

o)

This will Prociuce a file named ©

Add some conventions recommended 139
comPuter sclence People

program hello

print *, “hello world”
end

Add “Program” declaration at top of file with main
program name.

The “*” in the Print statement tells it where to
Priﬂt G goes to standard outPut)

For now — assume Variable assignment statement
IS same as Matlab, SAC, etc.

X=5
Makes variable named x equal to 5, for cxamplc.
But new twist wrt Matlab
Variables in FORTRAN can be INEEGErS Giocustsin docar

exist, or exists Poorlg, in Matlab)) rea IS (ﬂoating Point, “sort of” as in Matlab) D) CO m P I CX (“sort of” as in
Matlab, but do not exist in ©) 3 Cha ra Cte rS (evergboclg does it digcrentlg) -

Variable names must start with a letter.

Can have numbers (but not ﬁrst character).

« »

, dollar sign “$”

Can have underscore

Can’t have other characters.
Variable name lengtlf] limited:

6 characters (up to FORTRAN 77)
63 characters (Fortran 90 and highcr)

Types of numbers in FORTRAN

(automatic error generator, shares this feature with MATLAB, C makes it imPossible to do this error - or mix things even when you
want to do it.)

hcyou don’t do angthin%qparticular all variables
that start with the letters

i throug]ﬁ m
are integers

Size has Chaﬂ%fCl through time — now theg are 32
its, =4 bgte@ long

This is called implici’t tgping (as i type-kind of variable

It saves tgPiﬂ g (1 suppose this is now called keyboarding)

but

every tgpo ety DECOMES @ New variable (as in
Matlab).

Itis very hard to debug this t9P€ error.

Types of numbers in FORTRAN

(automatic error generator, shares this feature with MATLAB, C makes it imPossible even when youwant to doit.)

hcyou don’t do angthin%qparticular all variables
that start with the letters

a through hand o through Z
are reals (ﬂoating Point)

Size has chanﬁid througlﬁ time — now theg are 32
its, =4 bgtes, Iong

Changing lmplicit tgping
dangerous

this defines all variables that start with the letters
1 tlﬁrough n to be reals and a ’tlnroug]ﬁ h and o
through z to be integer (and does not solve the
typo Creating new variable Problc—:m) :

implicit real i-n
implicit integer a-h, o-z

Explicit tgl:)ing

What if you want something besides an integer or
a real of the default size?

Use exl:)licit tgl:)ing.

_

E‘xplici‘c tgl:)ing

What is available in terms of tgpes.

| nteger
real
comPlex
Ioglcal

character

inter [is special i

E‘xplicit tyPing

integer :: a, b, c
real :: 1, j, k

We can exPIicitlg declare what ‘chjpe each variable
will be (so the variables a, b and ¢ are integer and
i,jandk arereal).

Theg are the default size.

Explicit tgping
Numeric choices continued

integer P integer* 4 (the same, 32 bit, ‘%bgte integer)
integer *2 (16 bit, 2. bgte integer)
integer* 1 ’ bYte (8 bit, 1 bgte integer)

integer *8 4+ bit, 8 bgte integer, called “double precision”)
integer *16 (s bit, 16 bgte integer, called “quacl precision”)

E‘xplici’t tgping L Par’t of variable definition
type, options :: names, initializations

the :: notation delimits the t pe and attributes
from variable name (s) and ﬂ‘ieir o[:)tional initial
values, a”owing full variable speoﬁcation and
initialization to be tgpecﬂ in one statement (in
Pre\/ious standards, attributes and initializers had
to be declared in several statements).

Expiici‘c tgping ~ Part of variable definition
type, options :: names, initializations

While the “::” is not requirecﬂ in above examples
(as there are no additional attributes and
initialization), most Fortran-90 programmers
acc]uire the habit to use it evergwiﬁere.

E‘xplic:it tgping
Numeric choices continued

Similar for reals (but can’t 2o smaller than basic
size)

real y Yea 1*4 (the same, 32 bit, 4 bgte real)
integer, parameter :: sp = kind(1l.0)
real(sp) :: aa = 0.

E‘xplici’c tgping
All this works for double Precision

real*8 (64 bit, 8 byte real, called
“double precision”)

real(8):: b

double precision :: e

real (kind=8):: £

integer, parameter :: dp=kind(1.0dO0)
real(dp) :: bb = 0., dd = 0.0 dp

EXElicit typing

All this works for quadruplc Precision

!gfortran does not seem to support

these for quad precision
real*1l6 :: g (128 bit, 16 byte real, called “quad
precision”)
real(l6):: h
real (kind=16):: p
integer, parameter :: quad=kind(1l.0g0)
real(kind=quad):: g
integer, parameter::quadk=selected real kind(32)
real (kind=quad):: r

Where SELECTED REAL KIND(P,R) returns the kind value of a
real data type with decimal Precision of at least P cligits, exponent
range of at least R

E‘xplic:it tgping
Numeric choices continued

Similar 1Cor com Iex (but can’t go sma”er tlﬂan
P ut g
basic size)

comp lex y COInp lex*4 (the same, 32 bit, 4 bgte real)
comp lex*8 s+ bit, 8 bgte real, called “double Precision”)

comp lex*16 (s bit, 16 bgte real, called “quacl precision”)
Ctc.

E‘xplici‘c tgl:)ing

For coml:)leteness

character

logical

more on them Iater

E‘xplicit tgping
Recommended Programming Practicc—: ~ Put
implicit none

At begirming of all programs

This turns ot implicit ty ing and forces you to
declare each an every variable.

Now if you make a tgpo the Compiler will complain
and not finish making 2our executable program
le.

E‘xplicit tgping

Realistica“g , ever tlﬂinﬁ but variables that are 4
byte integers or 4 byte tioating Points have to be

cleclarecl.

This includes other types of variables (b?tesj
double Precision, c]uacl recision, complex,
logicalj characterﬁand arrays.

So implicit none is notthat onerous.

Fortran allows ul:zfer and lower case, but is not
case sensitive and ignores whitesyace (sPaces,

notsumzabouthﬂxs.

PrOgRaM CaSe
impLicit none
InTeGeR 1, 1 I
REAL X

I=1

X=2

11=3

PRINT *, i, X, I I
1 1=4

PRINT *, i, X, iI

Hard to read and maintain, but works!

540 $ gfortran case.f
541 $ a.out
1 2.0000000 3
1 2.0000000 4
542 S

. _—

Arithmetic
Fortran knows about arithmetic on
MH%pr

Real
Complex

ﬂUﬂ‘lef’S

Arithmetic oPerations

Add +

Subtract -

*

Multiplg

Divide /

Tixponentiate

Arithmetic oPerations
Can applg to all tgl:)es numbers

integers, reals, Complex

and mixtures of them.

kﬁqggraﬁﬂmneﬁc.

integer :: 1,7,k
real :: X,y
real*l6 :: z

N U -
i
DN Ol

/]

Il
-=-

What is k?

Mixed mode arithmetic.

1=5
j=2
xX="7
print *, i/j*x, x*i/j
end

Try it and see what you Zet. wries rortan proggam

What’s going on?

Mixed mode arithmetic.
Can “orce” types in calculations
Called a “cast’
z=real(i)/real(j)
Does not give same result as
z=real(i/j)

real, int, dble, cmplx

{00 can do some bizarre (undefined) things when
mixing integers, reals, doubles, etc.
ht’cp: / /fortra n90.org/src/ bcst—-Practices.lntml
http: // Fortran90.org/ src/ gotchas.html#ﬂoati ng-

Point—-numbers——gotclﬁa

For now we’re goin to ignore most of this stutt or
it will take a week to write the first program.

Simple read /write from terminal

print *, comma separated list of
stuff to print (variables,
constants)

[]
erte (* | 4 *) comma separated list of stuff to print (variables, constants)

accpet * | 4 comma separated list of stuff to print (variables, constants)

read(* 4 *) comma separated list of stuff to print (variables, constants)

Simple reacl/ write from termina

The
7] (* , *) n
N tl’)é reacl ancl write statements mean

First * - standard in or out, other things can go
here, leave for now.

Second * - free Format, numbers sel:)aratecl bg
spaces (it is a bit more complicatecl for character
strings — leave for now)

Write a Program to PromPt the user For the
temperature N degrees Fahrenheit and convert to
Celsius.

C=(F+40)*5/9-40

hC you want to jole tlne other way use
F=(C+40)*9/5-40

Declaring constants (using the oP‘cions Part of
the declaration)

real, parameter :: pi=4.*atan(1.0)
Makes a constant named pi.

Need the decimal Points here on the 4. and 1. or it
thinks theg are integers and comPIains

(on an executable line the 4 can be integer [no
decimal Point], but argument must be real
[decimal pont or Coctalels

Declaring constants (olcl wag)

real pi
parameter (pi=4.*atan(1.0))

Control (structuredzgoocb

1f (logical expressionl) then “Block
— Lines of Fortran”
(logical expression2)
“Block - Lines of Fortran”
(logical expression3)
“Block - Lines of Fortran”

“"Block - Lines of Fortran”
end 1if

Does stutt in one (and onlg one) of the blocks.
Red — basic if-then-endif, orange — oPtional —
more testing elseif, or do it it all others fail e1se.

http://en.wikibooks.org/wiki/Fortran/Fortran control

Control (traditional on left, new on right)

Greater than or less than

.GT. .LT. > <
Greater than or equal to or less than or ec]ual to
.GE. .LE. >= <=
E‘qual to and Not equal to
.EQO. .NE. == /=

To check more than one statement,
use .AND., .OR.,and .NOT.:
IF ((a .GT. b) .AND.NOT. (a < c))
THEN
Group with parenthcsis.

Control (structuredzgoocb

Do lool:)s
do 1=1,10
print*,1**2
end do
do 1=1,10
isquare = 1**2
1f (isquare == 25) cycle
print*, isquare
end do

TOP does looP 10 times, bottom skiPs rest of lool:)
on condition, but keel:)s looping to end.

Control (s’tructuredzgoocb

Do lool:)s
do i1i=1,10
lsquare = 1**2
i1f (isquare == 25) exit
print*,isquare
end do

exits |ooP on some condition (could do with do
while), does not finish |ooPing.

Control (structured)
[X)Wh&ﬂoops

1=0

do while (resid >= 5.0D-10)
resid = bs((1))
wrlte (*,*) ' Continue execution’
1 = i+l

end do

Control (or lack of it - unstructured)

Numbers in red are “labels” and you can
“‘goto” ('umP to) them
actorial
INTEGER CNT, FACT
CNT=5
FACT=1
IF (CNT.EQ.0) GOTO 2
ACT=FACT*CNT
CNT=CNT-1
GOTO
RINT* ,FACT END

C(gotob

is anathema in modern Coml:)utor science and
structured Programming.

(http/ fenwikipedin.org/iki/Structured_programming) LI UCEU red (moclular)
Programminiis a Programming Paraoligm aimed on
imProvingt e claritg, qualit . and cio\/eiopmont
time of a comPuter program by making extensive
use of subroutines, block structures and for and
while |ool:>s~—-—in contrast to using siml:)io tests and
Jumps such as the goto statement which could
lead to "spagnetti code" which is both ditficult to

follow and to maintain.

Spaghetti code is a chorative term for source code that
has a complex and tanglecl control structure, espcciauy
one using many GOTOs, exce tions, threa&s, or other

"unstructured" brancEing constructs.

It is named such because program flow is conceptua”g
like a bowl of spaghetti, i.e. twisted and tanglecl.

Sanghetti code can be caused bg several Factors)
including inexperiencecl programmers and a complex
program which has been continuouslg modified over a

long life Cgcle.

Structured Programming greatlg decreased the incidence
of spa ghetti code.

(see http:/ / cn.wikipcclia‘org/ wiki/ Spaghetti code for above and discussion of various food based coding stgles)

Control (unstructured=bad)
1f (logical expressionl) goto 10
“I,ines of Fortran”
goto 11
10< continue !orexecutable statement
“LLines of Fortran”
11“Line of Fortran” lexecutable statement
“I,ines of Fortran”
do 1.2 1=1,10
“LLines of Fortran”

if (logical expressionl) goto 12 “Lines of Fortran”

ines of Fortran”
12 continue !non executable statement,
could also be executable, instead of enddo.

14

Control (unstructured=bad)
goto

Most People NOW Pretencl it does not exist

(and it does not exist in many languages such as
Q).

But you will get lots of |egacg code with goto’s, so
you should know what it is
(and it still WOF‘(S, with some restrictions).

Control (unstructurccﬂ:ba&
1f (logical expressionl) goto 10
“T,ines of Fortran”

o 12 1=1,10 N
“T,ines ortran”

10 “continue !or executable statement
“"T,ines of Fortran”

12 “Line of Fortran”

4mﬂ5Ve@ﬂxmi&kwgfﬁﬂﬁﬁbntkgaFﬁ{okkr
Fortran at |east). The lOOP counter s not

initialized, so it can be angthing.

The continue statement isg’ust a clummg line to
hanga |abc| on. It cioes Nno cio an‘gtlﬂing else.

rwodeﬂﬁwegtock)k
Factorial
(obvious itis ado while loop)

program FactorialProg

integer :: counter = 5

integer :: factorial =1

do while (counter > 0)
factorial = factorial * counter
counter = counter - 1

end do

print *, factorial
end program FactorialProg

Modern wi](j sometimes requires signiﬁcant
ggmnastics 18 esign to get around not using goto

(when in nesteci—-loops and if -blocks)

program doloops

integer 1

do 1 = 1,10

1f(i.eq.5) cycle !skips rest of this trip

print *, 1 !through outer loop

end do

do 1=11,20

1f(1==15) exit !quits inner loop, does not
print*, 1 lcomplete looping

end do

end

Modern Wi]‘j sometimes requires signiﬁcant
ggmnastics 18 esign to get around not using goto

(when in nested |ool:>5 and if blocks)

program nestedloops
integer 1i, j

do i=1,5

print*," 1 ",1

do j=1,4

print *I" il J ”lilj

1f(1==3)cycle

print*,” i "Iil ! j ”IjI" i*j "li*j
1f(j==2)cycle

print*l" i "lil ! j "ljl" i**j "li**j
enddo

print *

enddo

end

839 $ a.out

i 1

i, 3 1 1

i 13 1 i*j 1

i 13 1 i%*j 1

i, 3 1 2

i 1 3 2 ixj 2

i, 3 1 3

i 13 g a9 3

i 13 3 i*xj 1

i, 3 1 4

i 1 3 4 ixj 4

i 1 3 4 ix*j 1

al 2

i, J 2 1

i 2 3 1 i*j 2

i 2 3 1 i*xj 2

i, 3 2 2

i 2 3 2 ixj 4

i, J 2 3]

i 2 3 &) 5] 6

i 2 3 St 8

i, 3 2 4

i 2 3 4 ixj 8

i 2 3 4 i**j 16

i 3

i, 3 3 1

iy g 3 2

i, 3 3 3

i, 3 3 4

l 4

i, 3 4 1

i 4 3 1 i*j 4

i 4 3 1 i¥xj 4

i, 3 4 2

i 4 3 2 ixj 8

i, 3j 4 3

i 4 35 3 ix*j 12

i 4 3 3 ixxj 64

i,] 4 4

i 4 3 4 ixj 16

i 4 3 4 i**j 256
8

.

1 ixj 5
1 ixx§ 5

3 i 15
3 ixxj 125

(R S S S SR R R
.

B b
.

4 ixj 20
4 ixx§ 625

5]
j
3
5
j
3 5 G]
j
3
5
j
Jj

