Data Analgsis N Geophgsics
ESCI 7205

Bob Sma leg
Room 105 in 3892 (long ouilcling), X~4929

Tu/Th - 1%:00-14:30
CERIMAC (or STUDENT) LAD

Lab — 22 11/12/1%

string functions

index(months,mymonth)

Built-in string function index, returns the starting
Position ot the occurrence of a subs‘cring (the
second Parameter) in another string (the first
Parameter), or it will return 0 i the string isn't

found.

months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec”

000000000111111111122222222223333333333444444444
123456789012345678901234567890123456789012345678

d

print index(months, ”Aug”)
29

To get the number associated with the month
(based on the string with the 12 months) add 3 to
the index (29+3=%2) and divide bg 4 (B2/4=8, Aug

is 8t month).
The string months was designed so the
calculation gave the mont% number.

Good Place for tangent —
Functions (aka Subroutines)

We have used the word functions quite a]:)it) but
what are they (cleﬁ nition with respect to

Programming?)

Blocks of code that are semi»-inclepencient from
the rest of the program and can be used multiple
times and from multiple Places N a program
(sometimes including themselves — recursive) .

Théﬂ can also]DC USCCl ‘FOF Program organization.

<Placemark>
<name>PELD</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.67493000, -33.14318000,
</Point>
</Placemark>

0.0000</coordinates>

<Placemark>
<name>COGO</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.97526000, -31.15343000,
</Point>
</Placemark>

0.0000</coordinates>

This is a Picce of
kml code (the
|anguage of
Google Earth).

Notice that the
onlg iHerence
between what is in
the two boxes is
the stuff in red.

<Placemark>
<name>PELD</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.67493000, -33.14318000,
</Point>
</Placemark>

0.0000</coordinates>

<Placemark>
<name>COGO</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.97526000, -31.15343000,
</Point>
</Placemark>

0.0000</coordinates>

This is a Prime
example of when
one would want to
use a subroutine
(umcortunately km
does not have
subroutines— but
we will Pretend it

does).

(soIn kml, it you have 500 Points
this code is repeatecl 500 times
with minor variations)

ttttttttttttttttttttttttttttttttt

<description><![CDATA[‘ ‘
<table width="580" cellpadding="0" cellspacing="0"> C I ea O unC lons
<tr>
<td align="left" valign="top">

/ /

<p>

Ceone coror="0000000° and subroutines is to
xt

 P

</p>
write the code once

<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white"> 0
<tr>
<<<<< with some sort of
<<<<<<<<
/
<<<<<
Placeholder in the
<Point>
<coordinates> long lat ht </coordinates>
</Point> .t
c Par S.

Go back to calling routine

We will also need to put some wraPPing around it
(@ name, abilitg to get and return data from
ca“ing routine, etc.) and have a way to “call” it.

Function KML_Pooint (name, description ,location)

<Placemark>

<name>name</name>

<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA[

<table width="580" cellpadding="0" cellspacing="0">

<tr>
<td align="left" valign="top">
<p>

description

</p>

<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> lat long ht </coordinates>
</Point>
</Placemark>

Go back to calling routine

| et's say the
subroutine name is
KML_Point and it
takes) arguments, a
character string for
the name, a
character stri ng with
the description and a
character s’tring with
the location (lat,
|ong elevation) .

Function KML_Pooint (name, description ,location)

<Placemark>
<name>name</name>

Ve
CHCE TP I, | Now in'm Yy Program | can

<table width="580" cellpadding="0" cellspacing="0">
<tr>

call this “subroutine”

e and don"t have to

<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">

<table border="0" cellspacing="0" cellpadding="0" bgcolor="white"> re Cat a l l tl¢~l C CO m m O n
<tr>

</tr>
</table>

e intormation.

</table>]]></description>
<Point>

S A —— An even b etter wa H £o

</Placemark>

e T—— do it is to have the data
N an array and do a

Call KML Point("PELD","PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue","-70.67493000, -33.14318000, 0.0000")

Somewhere in my program

COGO_Name="COGO"

COGO_Desc="COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti"
COGO_Loc="-70.97526000, -31.15343000, 0.0000"

Call KML_Point($COGO_NAME, $COGO_Desc,$COGO_Loc)

Call KML Point($1, $2, $3)

|oo over the elements
in the array.

Recursion (just For fun 1Cor you out O{: the box
tl’winkers, or those of you who will do it
accident 5.)

definition of recursion.

Recursion: See “Recursion”.

Recursion.
A routine that calls itself.

Classic examlale — Factorial.

N!=N*(N-1)*(N-2)*..*¥2
For N=2
N!=1 for N=1
N!=1 for N=O0

N! undefined for N<O.

How to calculate.

Sag | have a routine NFact that calculates the
factorial of a number-

Recursion.

One Possible way to implement the Factorial
Functlon.

l\/\g main program will call the subroutine NFact
with the number N whose factorial | want.

Mg subroutine NFact will then do this.

| ook at the number-

ifitis 0 or 1, return 1.

fNis >2, calculate N*NFact (N-1)

Recursion.

So this is what would get done for n=4

NFact (4)
4*NFact(3)
4*3*Nfact(2)
4*3*2*Nfact (1)

dx3*xIDx]

nd NOW, finall ,lcanev

definition of recursion.

Recursion: If you still don't getit, see
“Recursion”...

The shell and awk are not recursive
(ungortunatelg) .

(an& you also can’t “nest” command
substitution).

Fortran (77 can be tricked, 90 and 95 Fu”g

support it) and C, and C++ are recursive.

Can also use subroutines to or%anize your

Program rather tlﬁanjus‘c use tlﬁem or things you
have to do lots of times.

Can Put subroutines in se ~arate files.

This also allows you to easi y change the
calculation in the su%)routine bgjust re |aciﬂg it
(works for single use or multiple use suEroutines

— e.g. raytracer N INversion Program.)

Functions (aka Subroutines)
(nawkzﬂkigawk,notawk)

Format -~ “function”, then the name, and then
the parameters separatecl bg commas, inside
Parentlneses.

Followed by “{y the code block that contains
the actions that Hou'cl like this function to
execute.

function monthdigit (mymonth) {
return (index(months,mymonth)+3)/4 }

awk Provides a “return” statement that a”ows tl’lé
function to return a value.

function monthdigit (mymonth) {
[return (index(months,mymonth)+3) /4 ﬂ

This function converts a month name in a §~|etter
5tring format into its numeric equivalent. For
example, this:

print monthdigit("Mar")
...will Print this:

3

Example

607 $ cat fntst.sh
#!/opt/local/bin/nawk -f
#return integer value of month, return 0 for "illegal" input
#legal input is 3 letter abbrev, first letter capitalized
{

if (NF = 1) {

print monthdigit(S$S1)

} else {

print;

}

}

function monthdigit (mymonth) ({
months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec';;
if (index(months,mymonth) == 0) {
return 0
gllse {
(index (months,mymonth)+3)/4

E‘xamP|e
607 $ cat fntst.dat

Mar

Jun

JUN

608 S fntst.sh fntst.dat
3

6

0

609 $ cat callfntst.sh

#!/bin/sh

echo $1 is month number “echo $1 | fntst.sh"
610 $ callfntst.sh May

May is month number 5

611 S

substr(string,StartCharacter,NumberOfCharacters)

cut sPeciﬁc subset of characters from stri ng

string: a string variable or a litera striz(g from
which a substring will be extracted.

StartCharacter: starting character Position.
NumberOfCharacters: maximum number

characters or |eng’th to extract.

(f length(string) is shorter than StartCharacter+NumberOfCharacters,
your result will be truncated.)

substr () won't mOCth%H‘)C original string, but
returns the su string instead.

Back to stri ngs
Sub-stri ngs

substr(string,StartCharacter,NumberOfCharacters)
oldstring=“How are you?”

newstr=substr(oldstring,9,3)

What is newstr in this example?

match () searches for a regular exPression.

match returns the startin% Position of the match,
or zero if no match is found, and sets two
variables called RsTART and RLENGTH.

RSTART contains the return value (thf: location of
the first match), and RLENGTH sPeciﬁes its jjan in
characters (or -1 if no match was found) .

string substitution
sub() and gsub().
Moclhcg the original string.
sub (regexp,replstring,mystring)

sub () finds the first sequence of characters in
mystring matching regexp, and replaces that
sequence with replstring.

gsub () Pemcorms a %‘lobal replace, swaPPing out
all matches in the string.

string substitution sub () and gsub ().

oldstring="How are you doing today?"
sub(/0o/,"0",oldstring)

print oldstring

HOw are you doing today?

oldstring="How are you doing today?"
gsub(/0o/,"0"”,0ldstring)

print oldstring

HOw are yOu dOing tOday?

Other stri ng functions

length : returns the number of characters in a
string

oldstring=“How are you?”

length(oldstring) # returns 12

tolower/toupper :converts string to all lower or
to all upper case

(coulcl use this to fix our Previous example to take Mag or MAY.)

Continuing with the features mentioned in the
introduction.

awk does arithmetic (integer, ﬂoating Pointj and
some functions — sin, cos, sqrt, etc.) and |ogica|
oPerations.

Some of this looks like math in the shell, but ...

awk stores all variables as strings, but when math
o$erators are appliecl, it converts the strings to
oating Point numbers if the string consists of
numeric characters (can be interl:)reted as a
number)

awk‘s numbers are sometimes called stringg
variables

Arithmetic Operators
All basic arithmetic is left to right assoclative
+ : addition
- . subtraction
* multiplica‘tion
/ - division
S . remainder or modulus
” :exponent

other standard C Programming operators (++,
I o)

Arithmetic Operators

..| awk '{print $6,|$4/10., $3/10.,"0.0"}"' |..

Above is easy, fields 4 and 3 divided bg 10

“awk '{print S$3,
SO.tmp"

How about this

$2, £(2009-

$ (NF-2)

)/'$CIRCSC'}}'

(NF-2) is the number fields minus 2, then $ (NF-2)
is the value of the field in Position (NF-2), which is
subtracted from 2009, then evergtlﬂing is divided
bﬂ $CIRCSC passed in from script.

Arithmetic Operators
Math functions
.| awk '{print $1 $2*0.01745)}'

Arguments to trig functions have to ecified
in RADIANS, so it ciegreesj multiplg bﬂ 7t/180.

MAXDISP= awk '{print[sqrt($3A2+$4A2ﬂ}' SSAMDATA/
ARIA coseismic offsets.v0.3.table | sort -n -r |
head -1

a trick
Iif afield is comPosed of both strings and
numbers, you can multiplg the field bﬂ | to remove
the string,

head test.tmp

1.5 2008/09/09 03:32:10 36.440N|89.560W 9.4
1.8 2008/09/08 23:11:39 36.420N|89.510Ww 7.1
1.7 2008/09/08 19:44:29 36.360N|89.520W 8.2

awk '{print $4,$4*1}' test.tmp
36.440N 36.44
36.420N 36.42
36.360N 36.36

Selective execution

So far we have been Processin every line (using
the default test Pat‘cern which a ways tests true).

awk recognizes regular expressions and
conditionals at test patterns, which can be used
to selec‘ci\/elg execute awk Proceclures on the
selected records

Selective execution

Simplc test for character strin
“/test pattern/”, it {:OUHCI, does stutt in “{..} 7,
from command line

root:x:0:1:Super-User:/:/sbin/sh

awk —F":" ';roo;; { print $1, $3}' /etc/passwd #reg expr

root 0O

or within a scriPt

cat esciawkl.sh

#!/bin/sh

awk -F":" {print $1, $3}
cat /etc/passwd | esciawkl.sh

root 0

Use/reuse other UNIX Features/ tools to make
much more Poweﬁcul selections.

Selective execution
Or using a script and spechcging an inl:)ut file

root:x:0:1:Super-User:/:/sbin/sh

S cat esciawkl.nawk
| /root/|{print $1, $3}

S esciawkl.sh -f esciawkl.nawk < /etc/passwd
root 0

Relationa

Relational ol:)erators re
Hi oPPosite of bas

Operators
urn 1 ik true and O it false

h/shell test command

All relational operators left to right associative

< :test For |ess than

<=:test For |ess than or cqual to

> . test For greater tl’)aﬂ

>= . test 1Cor greater than or equal to

== test For cqual to

= : test For not equal

Unlike baslm the comParison and relational
ol:)erators in awk don’t have different sgntax for
strings and numbers.

«

Ie: use “== onlg N awk

rather than “==¢ or “—eqg® using test in shell.

Boolean (Logical) OPerators

Boolean oPerators return 1 For true & 0O 1Cor False
Hi oPPosite of bash/she” test command

&& : logical AND; tests that both exPressions are
true

left to right associative

|| logical OR ; tests that one or both of the
expressions are true

left to right associative

! . |ogica| negation; tests that exPressiOH s true

Selective execution
Boolean Expressions N test Pattern.

awk '((US/| | /US\|/)&&!/continuous/)&&(/BOLIVIA/||/BODEGA/ ||/
"SP/)'$SARGONLY' {print $3,$2, " 12 0 4 1 ", $1$5}' SGPSDATA

- have to escape the Pipe 59mbo|
(/\|us/||/Us\|/) - groupterms

/continuous/ - simple Pa’ttem match

Plus more self~-modification

' $SARGONLY' - One of ARGONLY=<CR> or ARGONLY='&&/
ARGENTINA/' make it up as you go along (ﬁ'rst one Is not]ﬁing,
second adds a test and Iogical to combine with evergthing In
pa rentheses).

Selective execution

Rclational) Boolean cxpressions in test pattern

. | awk '('SLATMIN'<=$2&&$2<='SLATMAX') {print
SO}' | ..

awk ' ('SLONMIN'<=$1)&&($1<='SLONMAX')&&
('SLATMIN'<=$2)&&($2<='SLATMAX')&&
($10>='SMINMTEXP') &&$3>50 {print $1, $2, $3, $4,
$5, $6, $7, $8, $9, $10, 'SMECAPRINT' }'
SHCMTDATA/SFMFILE

Also Passing shell variables into awk

Selective execution

Regular E‘xpressions N test Pattem.

awk '((/\|us/||/us\|/)&&!/continuous/)&&(/BOLIVIA/||/BODEGA/ ||/
~sp/||/*AT[0-9]/|| |/ "RL[0-9]/) '$ARGONLY' {print $3,$2, " 12 0 4 1
", $1$5}" S$GPSDATA

/ AT[0-9]/ - regular exPressions (beginning of line
- *, range of characters - [0-97)

Selective execution

shell variable in test Pattem.

awktst shal=\(\$3\<60\&\&\$4\>10\)
awk ''Snawktst shal' {print $0}'

Notice the escapes “\” in the definition of the
variable awktst.

The “\¢ escape the ¢ (¢, “S and & and get
striPPecl out bﬂ the shell inside the «' '« before
going to nawk.

Also notice the quotes “' ' $nawktst_shal' ..'f

(more self moclifzging code)

Selective execution

shell variable in test Pattcm.

awktst shal=\(\$3\<60\&\&\$4\>10\)
awk S$nawktst shal' {print $0}"
Notice in this case don’t really have to turn
Protcction ot and then immec?iatelg back on
(""Snawktst shal' {print $0}'), youan
get away withjust cxpanding the Varia[;le.

536$ echo does this work | nawk $nawktst shal' {print $0}’
does this work
537S

Effect of \ and c]uotes.

513 $ awktst shal=\(\$3\<60\&\&\$4\>10\)
514 $ echo Sawktst shal
($3<60&&$4>10)

All the backslashes “go away “ when there are no
c]uotes.

""he backslaslﬁes ﬁe‘c "consumecﬂ" bg the sl*we”
Qrotecting the fo owing metacharacter so it
‘comes out” as a character (to be interl:)retecl bg

awk) .

EHect of \ and quotes.

515 $ awktst shal="\(\$3\<60\&\&\$4\>10\)"
516 $ echo Sawktst shal
\ ($3\<60\&\&$4\>10\)

The «m Protect most metacharacters from the

shell.

This keeps most of the backslashes, but «"."”
evaluates “s”and “°...77, so the backslashes in

front of the «s” g0 away, t|’1€9 get “consumed” bg
the she”, as theg Protect the «s” from the shell.

Effect of \ and cluotes.

517 $ awktst shal="\(\$3\<60\&\&\$4\>10\)"'
518 $ echo Sawktst shal
\(\$3\<60\&\&\$4\>10\)

519 $

The “r 17 Protects a” metacharacters From the

shell.

This |<<:<-:Ps all the backslashes.

I —

Selective execution
New structure

conclitionaLassignmcnt exl:)rcssion (iP) -
(4 'p »

TestPtruetalse
N

..| awk '{print ($7>1802$7-360:57), $6,
$4/10., $3/10., "0.0 0.0 0.0"}"' |..

Does the test $7>180, then prints out $7-360 if
true, (else) $7 if false.
The test is inside the "print".

Write a file with nawk commands and execute it.

#!/bin/sh

#general set up

ROOT=$HOME

SAMDATA=$ROOT/geolfigs

ROOTNAME=$0_ ex

VELFILEROOT="echo $latestrtvel”

VELFILEEXT=report
VELFILE=S${SAMDATA}/${VELFILEROOT}.S${VELFILEEXT}

#set up for making gmt input file

ERRORSCALE=1.0

SEVENFLOAT="%f %f %f %f %f %f %f "

FORMATSS=$ {SEVENFLOAT}"%s %f %f %f 2£f\\\\n"
GMTTIMEERRSCFMT="\$2, \$3, \$4, \S$5, S{ERRORSCALE}*\$6, S{ERRORSCALE}*\
$7, \$8”

#make the station list

STNLIST="$SAMDATA/selplot S$SAMDATA/gpsplot.dat pcc”

#now make nawk file

echo $STNLIST {printf \"$SFORMATSS\", SGMTTIMEERRSCFMT, \$1, \$9,
SERRORSCALE, \$6, \$7 } > ${ROOTNAME}.nawk

#cat ${ROOTNAME}.nawk

#get data and process it
nawk -f S$SAMDATA/rtvel.nawk $VELFILE | nawk -f ${ROOTNAME}.nawk

Notice all the “cscaping” (“\” character) in the
Shé” Variable CZlCﬁﬂitiOﬂS (FORMATSS and GMTTIMEERRSCFMT)

and the echo.

Loo|< at the nawk ﬁle — i |ooses most 01C the
escapes.

The next slide shows the nawk file at the ‘Qp
and the output 01(: aEPIHin the naw|< ﬁle to an
input data file at the bottom.

/ /
BASM/
CFAG/
DRAO/
GAS2/
HARX/
KOUR/
MAW1 /
PARC/
SANT/
UEPP/
{printf
$5, 1.0

| /ANT2/ | | /ANTC/
/BLSK/ | | /BOGT/
/COCR/ | | /CONZ/
/EISL/||/FORT/
/GAS3/ | |/GLPS/
/HUET/ | | /IGMO/
/LAJA/ | | /LHCL/
/MCM1/ | | /MCM4/
/PMON/ | | /PTMO/
/SYOG/ | | /TOW2/
/UNSA/ | | /VALP/
$6, 1.0$7, $8,

| / | /AREQ/ | | /AaScC1/ | |/AUTF/ ||/
/BOR4/||/BORC/||/BRAZ/||/CAS1/| |/
/COPO/ | |/CORD/ | |/COYQ/||/DAV1/| |/
/FREI/||/GALA/||/GASO/||/GAS1/ ||/
/GOUG/ | | /HARB/ | | /HARK/ | | /HART/ | |/
/IGM1/||/IQQE/||/IQTS/||/KERG/| |/
/LKTH/ | |/LPGS/||/MAC1/||/MARG/ | |/
/OHI2/||/OHIG/||/PALM/||/PARA/| |/
/PWMS/ | | /RIOG/ | |/RIOP/||/SALT/| |/
/TPYO/||/TRTL/||/TUCU/||/UDEC/| |/
/VESL/||/vVICO/||/HOB2/||/HRAO/ | |/DAVR/
$f %f %s %f %f %f %f\n", $2, $3, $4,
$1, $9, 1.0, $6, S$7 }

-78.071370 45.955800 -6.800000 -8.600000 0.040000 0.040000

0.063400
-70.418680 -23.
-0.308300 ANT2

-71.532050 -37.
-0.339900 ANTC
-71.492800 -16.

-0.061900

-71.492790 -16.

-0.243900

12.296000 1.000000 0.040000 0.040000<J

696350 26.500000 8.800000 1.010000 1.010000
0.583000 1.000000 1.010000 1.010000<J
338700 15.000000 -0.400000 0.020000 0.040000
8.832000 1.000000 0.020000 0.040000<
465520 -9.800000 -13.000000 0.190000 0.120000
3.348000 1.000000 0.190000 0.120000<J
465510 14.100000 3.800000 0.030000 0.020000
7.161000 1.000000 0.030000 0.020000<J .

nawk '{print ($1>=0?$1:360+S$1)}"

Syntax: (test?stmtl:stmt2)

This will do a test

(in this case: $1>=0)

i true it will outl:)ut stmtl! s

(does this: nawk " {print S$1}’

it false it will outl:)ut stmt2 Géo+si)
{

(does this: nawk print 360+S1}’

(in this case we are changing longitudes from the range/format
-180<=10on<=180 to the range/format 0<=lon<=360)

S cat
isn't

S cat
isn't

S cat
isn't

S cat
isn't

Selective execution
tmp
that speciall!

tmp | nawk ’‘/that/ {print $0}'
that speciall!

tmp | nawk '$2=="that" {print $0}'

that speciall!

tmp | nawk '{ if ($2=="that") print $0}'
that speciall!

tmp | nawk '{ if ($2=="I") print $0}'

LooPing Constructs in awk
awk |ool:> sgntax are very similar to C and Perl

while: continues to execute the block of code as
long as condition is true.

Iif not true on first test, which is done before ong

through the block, it will never 2o through block.

Do stuff in “block” between <{ .. 3~

while (x==y) {

block of commands

do/while
do the block of commands between 0} and

while, while the test is true

block of commands

}[Wﬂiie.(X==y)J

The ditference between while (last slide) and do/
while (notice the while at the encl) is when the
condition is tested. It is tested lm to running

the block of commands for a while looP, but
tested atter running the block of commands in a
do/while lool:) (so at least one triP throug}w the
block of commands will occur)

forICK”DS

The for |OOP, allows iteration,/ counting as one
executes the block of code in {..}.

It 1s one o1C t]’]c most common looP structures.

for (x=1; x<=NF; x++) {
block of commands

}

This is an extremelg useful / imPortant construct
as it allows aPPI ing the block of commands to
the elements omc an array

(at least numerical arrays with all the elements “filled-in?).

break ancﬂ continue
break: breaks out of a IOOP (innermost)

continue: restarts at the beginning of the Ioop

x=1
while (1) {
if ((x == 4) {
X++
continue
}
print "iteration",x
if (x> 20) {
break

}

X++

if/else if/else blOCl(S

similar to bash but syntax s different (no then or
fi, uses braces { .. .}to define block instead)

if (conditionall) {
block of commands
} else if (conditional2) {

block of commands
} else {
block of commands

} else 1if an&
else are oPtional

you can have an “if’ looP w/0 an “else if” or
“else”, but you can’t have an “else if” or
“else” w/oan “if”

AWK also has Arrags that supcrﬁciang resemble
arrays in other Programmini languages; but there
are fundamental ditferences.

The most fundamental or signhqcant difference is
that any number or string may]:)c usecl as an
array index in awk, notjust consecutive integers.

(in the end in awk, array indicies, even numerical ones, are strings)

In awk, you also don't need to sl:)ec:hcy the size of
an array before you start to use it.

An array s a table of values, called elements.

The elements of an arraﬁ are distinguishecl by
their indices.

Indices in awk may be either numbers or strings.
(arrags are "associative", not numerical)

(as awk maintains a sinigle set of names for naming variables) arrays and Functions, you
cannot have a variab e ancl an array with the same name in the same awk Program.)

awk arrags

numerical array indices in awk start at| (in most
comPuter pro ramming |anguages, exccl:)t fortran
and matlab, arrays start at O)

arrays are commoniy indexed Zﬂ numbers, but in
awk, theg can be indexe }39 strings

to cxplici‘cl set an arra{jxj element, use brackets to
spcchc which index of the array you are setting

myarray[1l]=*7jim” #note, strings appear in quotes
myarray[2]=456

or

myarray[“name”]=*jim” #index strings appear in quotes too

or

for (X in myarray) {
print myarray[Xx]

}

x gets set to an index variable [39 use of the “in’
function, but the access order of the index
variables is random

Arrags iN awk are associative.
This means that each array is a collection of Pairs:
an index, and its corresponding array element
value:

Element 4 Value 30
Element 2 Value "foo"
Element 1 Value 8
Element 3 Value ""

The Pairs are shown injumbled order because the
array index order is irrelevant and has nothing to
do with storage N memory.

One acivantage of associative arrays is that new
Pairs can be added at any time.
Aclcling a 10th element whose value is "number ten”
to our examl:)le array.

Element 10 Value "number ten”
Element 4 Value 30

Element 2 Value "foo"
Element 1 Value 8

Element 3 Value ""

Now the array is sparse, WI’IiChJUSt means some

indices are missing: it has elemients 1 through 4
and 10, but doesn't have elements 5 throug %

Indices of associative arrays don't have to be
Positive integers.
Any number, or even a string, can be an index.
Here 1s an array which translates words from
English into French:

Element "dog" Value "chien"
Element "cat" Value "chat"
Element "one" Value "un"
Element 1 Value "un”

We use the number one in each language sl:)e”ecL
out and in numeric form--a single arrjy can have
both numbers and strings as indices.

(arrag subscripts in awk are actua Yy alwags strings)

The Principal way of usin%an array is to refer to
one of its elements.

An array reference is an exPression which looks

like this:

array[index]
Here, array is the name of an array.

The exPression index is the index of the element
omc the array that you want.

Arrag elements are assigned Valuesjust like awk
variables:

array[subscript] = value

array IS the name oggour array.

subscript is the index of the element of the array
that you want to assign a value.

value is the value you are assigﬂing to that
element cnc the array.

mi5~indexing of arrays (when theg are indexed bg
integers) is one of the most common]:)ugs in
Programming.

hcgou mis-index an array in awk, itjust makes a
new element with that index and a null value.

(Wastes space and does not return value you were trging to obtain.)

To explicitlg set an array elementj use brackets to

/

specncy which index of the array you are setting.

animals["dog"] = "perro"
animals["cat"] = "gato"
stuff[l]=1

stuff[4]=4

stuff[-1]=-1

stuff[0]=0

print animals["dog"]
print stuff[1l]

BYTRT STUTT 7] Reference to elements that don’t
print stuff[3]

e oxst — creates emptg element.

print stuff[-1]
print stuff[0]

}

Execute the nawk scril:)t

smalley$S nawk -f arrays.nawk
perro
1

Null output for reference to elements that

i didn’t exist (the do after the reference)

0
smalley$

to delete an array element, use the delete
command

delete myarray[1l]

Done with our ga”op throug]q AWK

