
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929

�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 21, 11/07/13

Computers make it easier to do a lot of things,
but most of the things they make it easier to do

don't need to be done.

 �

Andy Rooney �

Computers may save time but they sure waste a
lot of paper. About 98 percent of everything

printed out by a computer is garbage that no one
ever reads. �

Andy Rooney

AWK programming language

Introduction

awk Programming Language

standard UNIX language that is geared for text
processing and creating formatted reports

But is very valuable to seismologists because it
uses floating point math, and is designed to work

with columnar data

syntax similar to C and bash

one of the most useful UNIX tools at your
command

(Softpanorama says “AWK is a simple and elegant pattern scanning and processing
language.”)

awk considers text files as having records (lines),
which have fields (columns)

Performs floating & integer arithmetic and string

operations

Has loops and conditionals

Can define your own functions (subroutines)

Can execute UNIX commands within the scripts
and process the results

Basic structure of awk use

The essential organization of an awk program
follows the form:

pattern { action }!

�
The pattern specifies when the action is

performed.

Like most UNIX utilities, awk is line oriented.

It may include an explicit test pattern that is
performed with each line read as input.

If there is no explicit test pattern, or the condition

in the test pattern is true, then the action
specified is taken.

The default test pattern (no explicit test) is

something that matches every line, i.e. is always
true.

(This is the blank or null pattern.)

Versions/Implementations

awk: original awk

nawk: new awk, dates to 1987

gawk: GNU awk has more powerful string
functionality

- NOTE –

We are going to use awk as the generic program
name (like Kleenex for facial tissue)

Wherever you see awk, you can use nawk (or
gawk if you are using that on a LINUX box).

Every CERI UNIX system has at least awk. The
SUNs also have nawk.

Rumor has it that in OS X awk is actually nawk,
although I’ve not been able to establish this.

If this is the case no changes to nawk codes are

necessary (except the name).

If you have lots of scripts with nawk and it is not
found/installed, put the following in your .cshrc

or .bashrc file

alias nawk='awk' (csh) or alias nawk=awk (bash)!

Command line functionality

you can call awk from the command line two ways,
we have seen/used the first – put the awk

commands on the command line in the construct
'{…}' or read awk commands from a script file.

awk [options] 'pattern { commands }' variables infile(s)!
awk –f scriptfile variables infile(s)!

or you can create an executable awk script

!
%cat << EOF > test.awk!
#!/usr/bin/awk!
some set of commands!
EOF!
!
%chmod 755 test.awk!
%./test.awk!

How awk treats text

awk commands are applied to every record or line
of a file that passes the test.

it is designed to separate the data in each line
into a number of fields and can processes what is

in each of these fields.

!

essentially, each field becomes a member of an
array with the first field identified as $1, second

field $2 and so on.

$0 refers to the entire record (all fields).

Field Separator

How does awk break the line into fields.

It needs a field separator.

The default field separator is one or more white
spaces

!
$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11!
1  1918 9 22 9 54 49.29 -1.698 98.298 15.1 ehb!
!

So $1 = 1, $2=1918, …, $10=15.1, $11=ehb!

Notice that the fields may be integer, floating
point (have a decimal point) or strings.

awk is generally smart enough to figure out how
to use them.

print!

print is one of the most common awk commands
(e.x. for an input line)

1 1918 9 22 9 54 49.29 -1.698 98.298 15.1 ehb!
!

The following awk command ‘{…}’ will produce

!
%awk '{ print $2 $8}' /somewhere/inputfile!
1918-1.698!
!

The two output fields (1918 and -1.698) are run
together - this is probably not what you want.

!
This is because awk is insensitive to white space in

the inside the command '{…}'!

print!
!
%awk '{ print $2 $8}' /somewhere/inputfile!
1918-1.698!
!

The two output fields (1918 and -1.698) are run
together – two solutions if this is not what you

want.

%awk '{ print $1 " " $8}' /somewhere/inputfile!
1918 -1.698!
%awk '{ print $1, $8}' /somewhere/inputfile!
1918 -1.698!
!

The awk print command different from the UNIX
printf commad (more similar to echo).

any string (almost – we will see the caveat in a minute) or numeric text
can be explicitly output using double quotes "…"!

Assume our input file looks like this

1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb!

Specify the character strings you want to put out
with the "…".

!
!
1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb FEQ x!
1 1 1918 9 22 9 54 49.29 9.599 -92.802 30.0 0.0 0.0 ehb FEQ x!
1 1 1918 9 22 9 54 49.29 4.003 94.545 20.0 0.0 0.0 ehb FEQ x!
!
!
%awk '{print "latitude:",$9,"longitude:",$10,"depth:”,$11}’ SUMA.Loc!
latitude: -1.698 longitude: 98.298 depth: 15.0!
latitude: 9.599 longitude: -92.802 depth: 30.0!
latitude: 4.003 longitude: 94.545 depth: 20.0

Does it for each line.

Notice that the output does not come out in nice
columnar output (similar to the input).

If you wanted to put each piece of information on
a different line, you can specify a newline several

ways

!

%awk '{print "latitude:",$9; print "longitude:",$10}' SUMA.Loc!
%awk '{print "latitude:",$9}{print "longitude:",$10}' SUMA.Loc!
%awk '{print "latitude:",$9”\n””longitude:",$10}’ SUMA. Loc!
latitude: -1.698!
longitude: 98.298!
!

Stop printing with “;” or } (the } marks the end
of statement/block) and then do another print
statement (you need to start a new block with
another { if you closed the previous block),

or put out a new line character (\n)(it is a
character so it has to be in double quotes "…").!

awk variables

You can create awk variables inside your awk
blocks in a manner similar to sh/bash. These

variables can be character strings or numeric -
integer, or floating point.

awk treats a number as a character string or
various types of number based on context.

awk variables

In Shell we can do this

!

796 $ a=text!
797 $ b='test $TEXT'!
798 $ c="check $0"!
799 $ d=10.7!
800 $ echo $a $b, $c, $d!
text test $TEXT, check –bash, 10.7!

!

No comma between $a and $b, so no comma in
output (spaces count and are output as spaces, comma produces comma in

output)

In awk we would do the same thing like this (spaces
don't count here, comma produces spaces in output)!

!
809 $ echo text | nawk '{b="test $TEXT";a=b;c="'$0'";d=10.7;print $1, a, b, c, d}'!
text test $TEXT test $TEXT -bash 10.7!
810 $ echo text | nawk '{b="test $TEXT";a=b;c="'$0'";d=10.7;print $1, a b, c, d}'!
text test $TEXTtest $TEXT -bash 10.7!

Aside - Several ways to enter awk command(s)
(some more readable than others

separate commands on the command line by “;”

!
809 $ echo text | nawk '{b="test $TEXT";a=b;c="'$0'";d=10.7;print $1, a, b, c, d}'!
text test $TEXT test $TEXT -bash 10.7!
!

Or you can put each command on its own line
(newlines replace the “;”s)

!
506 $ echo text | nawk '{!
b="test $TEXT"!
a=b!
c="'$0'"!
d=10.7!
print $1, a, b, c, d!
}'!
text test $TEXT test $TEXT -bash 10.7!
507 $!

Aside - Several ways to enter awk command(s)
(some more readable than others)

Or you can make an executable shell file –
tst.awk – the file has what you would type on the

terminal (plus a #!/bin/sh at the beginning).

$ vi tst.awk!
i#!/bin/sh!
nawk '{!
b="test $TEXT"!
a=b!
c="'$0'"!
d=10.7!
print $1, a, b, c, d!
}’esc!
:wq!
$ x tst.awk!
$ echo text | tst.awk!
text test $TEXT test $TEXT ./tst.awk 10.7!

Aside - Several ways to enter awk command(s)

Make a file, tst.awk.in, containing an awk
“program” (the commands you would type in).

Notice that here we do not need the single quotes
(stuff not going through shell) or the {} around the block of
commands (outside most set of braces optional as file is used to define the

block). Use –f to id file with commands.

$ vi tst.awk.in!
i#!/bin/sh!
b="test $TEXT"!
a=b!
c="'$0'"!
d=10.7!
print $1, a, b, c, d!
esc!
:wq!
$ echo text | tst.awk –f tst.awk.in!
text test $TEXT test $TEXT ./tst.awk 10.7!

$ cat tst.awk.in!
b="test $TEXT"!
a=b!
c="'$0'"!
d=10.7!
print $1, a, b, c, d!

Back to awk variables

#!/bin/sh!
column=$1!
nawk '{print $'$column'}'!
!
822 $ ls -l *tst!
-rwx------@ 1 robertsmalley staff 2250 Aug 16 2004 az_map_tst!
-rwx------@ 1 robertsmalley staff 348 Aug 16 2004 tst!
823 $ ls -l *tst | Column2.sh 9!
az_map_tst!
tst!
824 $!
!

Here column is a shell variable that is set to the
first command line argument, $1.

'$column’ is then expanded to 9 , the value of
the first command line argument above, creating

the awk variable $9!

nawk '{print $9}'

!
!

And another tangent - this example also
demonstrates a very powerful (and very

dangerous) idea and capability.

The field to be printed is determined in real-time
while the program is being executed.

It is not “hard coded”.

So the program is effectively writing itself.

This is a very, very simple form of self-modifying-

code.

(self-modifying-code is very hard to debug

because you don’t know what is actually being
executed! You better hope it is the guilty party.)!

You will find that it is very convenient to write
scripts to write scripts!

You can write shell scripts (or C or Fortran for
that matter) to write new shell scripts.

You can write shell scripts (or C or Fortran for
that matter) to write SAC macros, etc.

(Vocabulary/jargon - SAC macros are like shell
scripts, but are in the SAC command “language”.)

Built-In Variables

FS: Field Separator

The default field separator is the space, what if
we want to use some other character.

The password file looks like this

!
root:x:0:1:Super-User:/:/sbin/sh!
!

The field separator seems to be (is) “:”

We can reset the field separator using the –F
command line switch (the lower case switch, -f, is for specifying

scriptfiles as we saw before).

% awk –F":" '{print $1, $3}' /etc/passwd !
root 0!

Built-In Variables

FS: Field Separator

There is another way to reset the FS variable that
is more general (in that it does not depend on

having a command line switch to do it – so it works
with other built-in variables).

root:x:0:1:Super-User:/:/sbin/sh!

% awk 'BEGIN {FS=":"} {print $1, $3}' /etc/passwd !
root 0!

More awk program syntax

BEGIN {…} : the begin block contains everything
you want done before awk procedures are

implemented (before it starts processing the file)

{…}[{…}…] (list of procedures to be carried out
on all lines)

END {…} : the end block contains everything you

want done after the whole file has been
processed.

BEGIN and END specify actions to be taken

before any lines are read, and after the last line is
read.

The awk program:

BEGIN { print "START" }!
!{ print }!

END { print "STOP" } !

adds one line with “START” before printing out

the file and one line “STOP” at the end.

Field Separator

Can use multiple characters for Field Separators
simultaneously

FS = "[:, -]+"!

!

Built-In Variables

NR: record number is another useful built-in awk
variable

it takes on the current line number, starting from 1

root:x:0:1:Super-User:/:/sbin/sh

% awk –F":" '{print NR, $1, $3}' /etc/passwd !
1 root 0!

RS : record separator specifies when the current
record ends and the next begins

default is “\n” (newline)

useful option is "" (blank line)

OFS : output field separator

default is " " (whitespace)

ORS : output record separator

default is a "\n" (newline)

NF : number of fields in the current record

think of this as awk looking ahead to the next RS
to count the number of fields in advance

$ echo 1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb
FEQ x | nawk '{print NF}’!
16

!

FILENAME : stores the current filename

OFMT : output format for numbers

example OFMT="%.6f" would make all numbers

output as floating points

Accessing shell variables in awk!

3 methods to access shell variables inside a awk
script ...

Method 1 - Say I have a script with command
arguments and I want to include them in the

output of awk processing of some input data file:

Now we have a little problem

The Shell takes $0, $1, etc. as (the value of)
variables for the command that is running, its first

argument, etc.

While awk takes $0, $1, etc. as (the value of)
variables that refer to the whole line, first field,

second field, etc. of the input file.

So what does '{print $1}' refer to?

So what does '{print $1}' refer to?

It refers to the awk definition (the single quotes
protect it from the shell) – the first field on the

line coming from the input file.

The problem is getting stuff into awk other than
what is coming from the input stream (a file, a

pipe, stndin).

In addition to the shell command line parameter/
field position variable name problem, say I have

some variable in my shell script that I want to
include in the awk processing (using the shell variables $0, $1,

is really the same as this problem with the addition of the variable name confusion).

What happens if I try

$ a=1!
$ awk '{print $1, $2, $a}'!

awk will be very disappointed in you!

Unlike the shell awk does not evaluate variables
within strings.

If I try putting the shell variables into quotes to
make them part of a character string to be output

!

'{print "$0\t$a" }'!

awk would print out

$0 $a!

Inside quotes in awk, the $ is not a metacharacter
(unlike inside double quotes in the shell where

variables are expanded). Outside quotes in awk,
the $ corresponds to a field (so far), not evaluate
and return the value of a variable (you could think of the field

as a variable, but you are limited to variables with integer names).

Aside - The \t is a tab

!

{print "$0\t$a" }!

Another difference between awk and a shell
processing the characters within double quotes.

AWK understands special characters follow the

"\" character like "t”.

The Bourne and C UNIX shells do not.

To make a long story short, what we have to do is
stop protecting the $ from the shell by judicious

use of the single quotes.

For number valued variables, just use single
quotes, for text valued variables you need to tell
awk it is a character string with double quotes.

$ a=A;b=1;c=C!
$ echo $a $c | nawk '{print $1 '$b' $2, "'$0'"}'!
A1C –bash!
!

If you don’t use double quotes for character variables, it may not work !
!

$ echo $a $b | nawk '{print $1 '$b' $2, '$0'}'!
A1C -0!

The single quotes really group like this.

$ echo $a $c | awk '{print $1 '$b' $2, "'$0'"}'!
A1C –bash!
!

The first single quote turns off shell interpretation
of everything after it until the next single quote.
So the single quote before the $b turns off the
quote before the {. The $b gets passed to the

shell for interpretation. It is a number so awk can
handle it without further ado. The single quote
after the $b turns off shell interpretation again,

until the single quote before the $0.!

The single quotes really group like this.

$ echo $a $c | awk '{print $1 '$b' $2, "'$0'"}'!
A1C –bash!
!

The $0 returns the name of the program you are
running, in this case the shell –bash. This is a
character string so it needs to be in double

quotes, thus the "'$0'". The single quote after
the $0 turns "quoting" back on and it continues to

the end of the awk block of code , dignified by
the }.

The quotes are switches that turn shell
interpretation off (first one) and back on (second one).

The single quotes really group like this.

$ echo $a $c | awk '{print $1 '$b' $2, "'$0'"}'!
A1C –bash!
!

Practically, since you always have the first and
last, you can think about the ones about the '$b'

and '$0' as pairs – but they really match up
operationally as discussed.

Same for variables you define - if it is a text string
you have to say it is a text string with the double

quotes.

!

$ b=B!
$ echo $a $b | nawk '{print $1 "'$b'" $2}'!
ABC!
!

If the variable was a number, you can still print it
out as a text string (awk treats numbers as text

strings or numbers as necessary in context, while
text strings are stuck as text strings.)!

!

$ b = 1!
$ echo $a $b | nawk '{print $1 "'$b'" '$b' $2}'!
A11C!

Aside

How to print out quotes

(this is a very long line, no \ for continuation –

wraps on its own).

620 $ echo $a $c | nawk '{print $1, '$b', $2, "'$0'", "\"", "\"ab
\"", "*", "'"'''"'", "a'"'"'b", "/" }'!
A 1 C -bash " "ab" * ''' a'b /!

Aside

How to print out quotes

581:> nawk 'BEGIN { print "Dont Panic!" }'!
Dont Panic!!
582:> nawk 'BEGIN { print "Don'\''t Panic!" }'!
Don't Panic!!
583:> nawk 'BEGIN { print "Don'"'"'t Panic!" }'!
Don't Panic!!
586:> echo Don”’”t Panic! | nawk "{print}"!
Don't Panic!!
584:> echo Don\'t Panic! | nawk '{print}'!
Don't Panic!!
585:> echo Don\'t Panic! | nawk "{print}"!
Don't Panic!!
!

Look carefully at the 2 lines above – you can
(sometimes) use either quote (‘ or “) to protect

the nawk program (depends on what you are
trying to also protect from the shell).

!
alpaca.586:> echo Don”’”t Panic! | nawk "{print}"!
Don't Panic!!
alpaca.587:> nawk 'BEGIN { print "\"Dont Panic!\"" }'!
"Dont Panic!”!

Aside

How to print out quotes

!
alpaca.587:> nawk 'BEGIN { print "\"Don’\’’t Panic!\"" }'!
"Don’t Panic!"!

Method 2. Assign the shell variables to awk
variables after the body of the script, but before

you specify the input file

VAR1=3!
VAR2=“Hi”!
!
awk '{print v1, v2}' v1=$VAR1 v2=$VAR2 input_file!
!
3 Hi!
!

Also note: awk variables are referred to using just
their name (no $ in front)

There are a couple of constraints with this
method

Shell variables assigned using this method are not
available in the BEGIN section (will see this, and

END section, soon).

If variables are assigned after a filename, they will
not be available when processing that filename

awk '{print v1, v2}' v1=$VAR1 file1 v2=$VAR2 file2!

In this case, v2 is not available to awk when
processing file1.

Method 3. Use the -v switch to assign the shell
variables to awk variables.

This works with awk, but not all flavors.

awk -v v1=$VAR1 -v v2=$VAR2 '{print v1, v2}' input_file!

Aside - why use variables?

Say I’m doing some calculation that uses the
number π.

I can put 3.1416 in whenever I need to use it.

But say later I decide that I need more precision
and want to change the value of π to 3.1415926.

It is a pain to have to change this and as we have
seen global edits sometimes have unexpected

(mostly because we were not really paying
attention) side effects.

Aside - Why use variables?

Using variables (the first step to avoid hard-coding) – if you use
variables you don’t have to modify the code in a
thousand places where you used 3.1416 for π.

If you had set a variable

pi=3.1416!
!

And use $pi, it becomes trivial to change its value
everywhere in the script by just editing the single line

!

pi=3.1415926!

 you don’t have to look for it & change it
everywhere

Examples:

Say we want to print out the owner of every file

Record/Field/column separator (RS=" ")

The output of ls –l is

-rwxrwxrwx 1 rsmalley user 7237 Jun 12 2006 setup_exp1.sh!

So we need fields 3 and 9.

Do using an executable shell script

Create the file owner.nawk and make it
executable.

$ vi owner.nawk!
i#!/bin/awk -f!
BEGIN { print "File\tOwner" }!
{ print $9, "\t", $3}!
END { print " - DONE -" }esc!
:wq!
$ x owner.nawk!

Now we have to get the input into the program.

 Pipe the long directory listing into our shell
script.!

!
507:> ls -l | owner.nawk!
File Owner!
CHARGE-2002-107 rsmalley!
022285A.cmt rsmalley!
190-00384-07.pdf rsmalley!
. . .!
zreal2.f rsmalley!
zreal2.o rsmalley!
 - DONE –!
508:>!

So far we have just been selecting and
rearranging fields. The output is a simple copy of

the input field.

What if you wanted to change the format of the
output with respect to the input

Considering that awk was written by some of
UINX’s developers, it might seem reasonable to

guess that they “reused” some useful UNIX tools.

If you guessed that you would be correct.

So if you wanted to change the format of the
output with respect to the input – you just use

the UNIX printf command.

We already saw this command, so we don’t need
to discuss it any further (another UNIX

philosophy based attitude).

$ echo text | awk '{!
b="test $TEXT"!
a=b!
c="'$0'"!
d=10.7!
printf("%s, %s, %s, %s, %6.3f\n", $1, a, b, c, d)!
}'!
text, test $TEXT, test $TEXT, -bash, 10.700!

Notice a few differences with the UNIX printf
command

You need parens (…) around the arguments to the
printf command.

You need commas between the items in the
variable list.

$ echo text | awk '{!
b="test $TEXT"!
a=b!
c="'$0'"!
d=10.7!
printf("%s, %s, %s, %s, %6.3f\n", $1, a, b, c, d)!
}'!
text, test $TEXT, test $TEXT, -bash, 10.700!

The output of printf goes to stndout.

sprintf!

Same as printf but sends formatted print
output to a string variable rather to stndout

n=sprintf ("%d plus %d is %d", a, b, a+b);!
!

"Simple" awk example:

Say I have some sac files with the horrid IRIS
DMC format file names

1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC!

and it would rename it to something more “user
friendly” like KMBO.LHZ to save on typing while

doing one of Chuck’s homeworks.

alpaca.540:> more rename.sh!
#!/bin/sh!
!
#to rename horrid iris dmc file names!
!
#call with rename.sh A x y!
#where A is the char string to match, x and y are the field!
#numbers in the original file name you want to use in the!
#final name, and using the period/dot for the field seperator!
!
#eg if the file names look like!
#1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC!
#and you would ;ike to rename it KMBO.LHZ!
#the 8th field is the station name, KMBO!
#and the 10th field is the component name, LHZ!
#so you would call rename.sh SAC 8 10!
#(it will do it for all file names in your directory!
#containing the string "SAC”)!
!
for file in `ls -1 *$1*`!
do!
mv $file `echo $file | nawk -F. '{print $'$2'"."$'$3'}'`!
done!
alpaca.541:>

Loop is in Shell,
not awk.

