Data Analgsis In Geophgsics
ESC 7205

Bob Sma leg
Room 105 in 5892 (long auilcling), X~4929

Tu/Th = 1%:00-14:30
CERIMAC (or STUDENT) LAB

|Lab — 21, 11/07/13

Computers make it easier to do a lot of things,
but most of the things they make it easier to do
clon't neecl to be done.

Anclg Rooneg

. _—

Coml:)uters may save time but theg sure waste a
lot of paper. About 98 Percent of evergthing
Printe& out bg a computer 1S garbage that no one
ever reads.

Ancﬂg Rooncg

Introduction

AWK programming language
prog glanguag

awk Programming Language

standard UNIX language that is geareci for text
Processing and creating formatted rcPorts

But s very valuable to seismologists because it
uses ﬂoating Point matlﬁ, and is esignecl to work
with columnar data

sgntax smilar to C and bash

one of the most useful UNIX tools at your
command

(So‘rt]:)anorama says “AWK 1s a simp[e ancl e[egant Pattern scanning ancl Processing

Ianguage.”)

awk considers text files as having records (lines) ,
which have fields (columns)

Performs ﬂoating & integer arithmetic and 5tring
oPera‘cions

Has lool:)s and conditionals
Can define your own functions (subroutines)

Can execute UNIX commands within the scripts
ancl process the results

Basic structure of awk use
The essential organization of an awk program
Fo lows the Form:
pattern { action }

The Pattem sPeciﬁes when the action is

PCF{:OFmCCl .

Like most UNIX u‘cili‘ciesJ awk is line oriented.

[t may include an explici’c test Pattem that is
Pencormecl with each line read as inPut.

If there is no cxplici’t test pattern, or the condition
in the test pattern s true, then the action
speciﬁe& is taken.

The default test Pattem (no explici’c test) is
something that matches every |ine, l.e.1s alwags

true.
(This is the blank or null Pattem.)

Versions/ Implemcntations
awk: original awk

nawk: new awk, datesto 987

gawk: GNU awk has more Powemcul string
Functionalitg

_NOTE —

We are going to use awk as the generic Program
name (like Kleenex for facial tissue)

Wherever you see awk, you can use nawk (or
gawk hcgou are using that on a LINUX box).

E:verg CERJI UNIX sgstem has at least awk. The
SUNSs also have nawk.

Rumor has it that in OS X awk is actua”%] nawk,
although 've not been able to establish this.

i this is the case no changes to nawk codes are
necessa rg (excep’c the name) .

1t you have lots of scril:)ts with nawk and it is not

?ouncl/insta”ccﬂ, Put the Fo”owing In your cshre
or .bashrc file

alias nawk='awk' (csh) or alias nawk=awk (bash)

Command line Functionalitg

you can call awk from the command line two ways,
we have seen / used the first — Put the awk
commands on the command line in the construct
'{..} ' or read awk commands from a scril:)t file.

awk [options] 'pattern { commands }' variables infile(s)
awk —f scriptfile variables infile(s)

Or you can create an cxccutablc awk scril:)’t

cat << EOF > test.awk
#!/usr/bin/awk

some set of commands
EOF

chmod 755 test.awk
./test.awk

How awk treats text

awk commands are appliecl to every record or line
oF a ﬁ le tlﬁat passes the test.

it is designed to separatc the data in each line
into a number of fields and can processes what is

in each of these fields.

essentia”g, each field becomes a member of an
array with the first field identified as $1, second

field S$2 and so on.

$0 refers to the entire record (all fields).

Field Separator

How does awk break the line into fields.
It needs a field seParator.
The default field separator is one or more white
lsl:)aces

$S1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11
1 1918 9 22 9 54 49.29 -1.698 98.298 15.1 ehb

50$1 =1, $2=1918, .., $10=15.1, $1ll=ehb

Notice that the fields maf? be integer, ﬂoating
Point (lﬁave a decima Point) or strings.

awk Is genera”g smart enough to ﬁgure out how
to use them.

print

print is one of the most common awk commands
(e.x. for an inPut line)

1 1918 9 22 9 54 49.29 -1.698 98.298 15.1 ehb

The owing awk command 4...}Y will Procluce

2awk '{ print $2 $8}' /somewhere/inputfile
1918-1.698

The two output fields (1918 and -1.698) are run
together _this is Drobably not what you want.

This is because awk is insensitive to white space N
the inside the command ' {..}'

print

2awk '{ print $2 $8}' /somewhere/inputfile
1918-1.698

The two output fields (1918 and =1.698) are run
together — two solutions if this is not what you
want.

awk '{ print $1[::::J$8}' /somewhere/inputfile
1918 -1.698

awk '{ print $1,|$8}' /somewhere/inputfile
1918 -1.698

The awk Print command different from the UNIX
Prinhc commad (more similar to CChO).

aﬂg Striﬂg' (almost — we will see the caveat in a minute) OF ﬂumeric tCXt
can be explicitlg outPut using double cluotes R

Assume our inPut file looks like this

1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb

SPCC@ the character strings you want to Put out
with the "..".

1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb FEQ x

awk '{print("latitude:",$9,"longitude:",$10,"depth:”,$11}’ SUMA.Loc
‘latitude: |-1.698 longitude: 98.298 depth: 15.0

latitude: 9.599 longitude: -92.802 depth: 30.0

latitude: 4.003 longitude: 94.545 depth: 20.0

Does it for each line.

Notice that the outPut does not come out in nice
columnar output (similar to the inPut) .

I you wanted to put each Piece of information on
a ditferent line, you can speci{y a newline several
ways

awk '{print "latitude:",S 'a print "longitude:",$10}' SUMA.Loc
awk '{print "latitude:",$9}{print "longitude:",$10}' SUMA.Loc
awk '{print "latitude:",S ‘ longitude:",$10}’ SUMA. Loc
latitude: -1.698
longitude: 98.298

Stolo Printing with “;” or } (the } marks the end
of statement/block) and then do another Print
statement (you need to start a new block with
another { | you closed the Previous Hock),

or Put out a new line character (\n) (it is a
character so it has to be in double quotes ALY

awk variables

You can create awk variables inside your awk
blocks in a manner similar to 51’1/12)85?1. These
variables can be character strings or numeric ~
integer, or ﬂoating Poiﬂt.

awk treats a number as a character string or
various tgpes 01C numbcr basecl on context.

awk variables
In Shell we can do this

a=text
b="test STEXT'
c="check $0"
d=10.7
echo $Sa b, SSc, $d
text test STEXT, check —bash, 10.7

No comma between $a and $b) SO No comma in

()LftF)Lrt(5Pacescountandznecnﬁputasspace5¢umﬂmaFxo&ucescomnwﬂn
outPut)

In awk we would do the same tlﬁing like this paces

don't count here, comma Procluces spaces in output)

text test STEXT test STEXT -bash 10.7

1 echo text | nawk '{%="test STEXT";a=b;c="'$0'";d=10.7;print $1,
text -bash 10.7

echo text | nawk '{b="test $TEXT";a=b;c="'$0'";d=10.7;print $1, af b, cousdiss

e el

Aside - Several ways to enter awk command (s)
(some more reaclable tlﬁan others

Q)

5eParate commands on the commancl |ine bg -

echo text | nawk '{b="test S$TEXT";a=b;c="'$0'";d=10.7;print $1, a, b, c, d}'
text test STEXT test STEXT -bash 10.7

Or you can Put each command on its own line
(newlines replace the “;7s)

echo text | nawk '{
b="test STEXT"
a=b
c="'$0""
d=10.7
print $1, a, b, ¢, d

}
text test STEXT test STEXT -bash 10.7

Aside - Several ways to enter awk command (s)
(some more reaclable tlﬁan others)

Or you can make an executable shell file —
tst.awk — the ﬁle has What you Woulcl tgpe on the
’termiﬂal (Plus a #1/bin/sh at the beginnin§ .

vi tst.awk
i#!/bin/sh
nawk '{
b="test STEXT"
a=b
c=""'$0""
d=10.7
print $1, a, b, ¢, d
}'esc
/e
X tst.awk
echo text | tst.awk
text test STEXT test STEXT ./tst.awk 10.7

Aside - Several ways to enter awk command (s)

Make a ﬁle) tst.awk.in, containing an awk
“Program” (the commands you would type in).
Notice that here we do not need the sin ?e quotes
(stuff not going through shell) OF the {} around tlﬁegi) ock o
cOMMaNdS$ (outside most sct of braces optional as fle is used to define the
blod. Use —f to id file with commands.

vi tst.awk.in

i#!/bin/sh .
b="test STEXT" cat tst.awk.1in

- b="test STEXT"
c=u|$0|u (a:.ilflso"'
d=10.7

rint $1, a, b, ¢, d e
gsc R printuSluasabislicias
e

echo text | tst.awk —f tst.awk.in
text test STEXT test STEXT ./tst.awk 10.7

Back to awk variables
#!1/bin/sh
column=S1
nawk '{print $'Scolumn'}’

ls -1 *tst
—IWX=————— @ 1 robertsmalley staff 2250 Aug 16 2004 az map tst
—IWX—————-— @ 1 robertsmalley staff 348 Aug 16 2004 tst

ls -1 *tst | Column2.s
az _map_ tst
tst

Here column is a shell variable that is set to the
first command line ar ument, S1.
'$column’ is then expanded to 9 , the value of
the first command line argument above, creating
the awk variable $9

nawk '{print $9}'

And another tangent ~ this example also
clemonstrates a very Poweﬁcul (ana’ very

cfangerous) idea and Capabi ity.

The field to be PrintecJ is determined in real-time
while the program IS being executed.

It is not “hard coded?”.

So the program 1S egectivelg wri’cing itselt
This is a very, very simple form of selﬁ-—mocji@ing—-
code.
(sehgmoclhcging—-cocle IS very hard to clebug
because you don’t know what is actua”g being
executed! You better hoPe it is the guiltg Partg.)

You will find that it is very convenient to write
scriPts to write scriptsl

You can write she“ scriPts (or C or Fortran For
that matter) to write new shell scrip’cs.

You can write shell sc:ril:)ts (or C or Fortran for
that matter) to write SAC macros, etc.
(\/oc:abularg/jargon - SAC macros are like shell
scriPts, but aré in the SAC command “language”.)

Built-In Variables
Fs: Field Scparator

The default field separator is the space, what if
we want to use some otl’lcr character.

The Passworcﬂ file looks like this

root:x:0:1:Super-User:/:/sbin/sh

(G

The field separator seems to be (is) “:
We can reset the field separator using the —F
com man& Iiﬂe SWitCI"l (the lower case switch, -f, is for s[:)echcging

scriptﬁles as we saw bC‘FOFC) .

awk —F":" '{print $1, $3}' /etc/passwd
root 0

Built-In Variables
FS: Field Scparator

There is another way to reset the FS variable that
IS more general (in that it does not clepend on
having a command line switch to do it — so it works
with other built-in variables) .

awk 'BEGIN {FS=":"} {print $1, $3}' /etc/passwd
root O

More awk Program sgntax

BEGIN {..} : the bcgin block contains evergthing
?ou want done before awk Proceclures are
imP emented (before it starts Processing the file)
{3 {.)] (list of Procedures to be carried out
on all lines)

END {..} : the end block contains ever%hinggou
want done after the whole file has been
Processecl.

BEGIN and END sPecth actions to be taken
before any lines are read, and after the last line is
read.

The awk program:

BEGIN { print "START" }
{ print }
END { print "STOP" }

adds one line with “sTART” before rintir;}g out
the file and one line “sToP” at the end.

Field Sel:)arator

Can use multiple characters for Field Sel:)arators
simultaneouslg

FS — ll[:, —]+"

Built-In Variables

NR: record number is another useful built-in awk
variable
it takes on the current line number, starting from1

root:x:0:1:Super-User:/:/sbin/sh

% awk —F":" '{print NR, $1, $3}' /etc/passwd
1l root O

RS :record separator specifies when the current
record ends and the next begins
defaultis “\n” (newline)
useful oPtion is " (blank line)

OFS : output ﬁelcl separator
defaultis " (whitesl:)ace)

ORS : outl:)ut recorcl 56:Parator
defaultis a "\n" (newline)

NF : number OF ﬁelds N the current recorcl

think of this as awk looking ahead to the next rs
to count the number of fields in advance

echo 1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb
FEQ x | nawk '{print NF}'’
16

FILENAME : stores the current filename
OFMT : outPut Format For numbers

examlole OFMT="%.6f" woulcl ma|<e a” numbc—:rs
output as ﬂoatirxg Poiﬂts

Accessing shell variables in awk

b, methods to access shell variables inside a awk
scriPt

Method 1 - Sag | have a scril:)t with command
arguments and | want to include them in the
output of awk Processing of some inPut data file:

Now we have a little Problem

The Shell takes s0, $1, etc. as (the value of)
variables for the command that is running its first
argument, etc.

While awk takes $0 , $1, etc. as (the value of)
variables that refer to the whole ine, first ﬁelcl,
second field, etc. of the input file.

So what does {print S$1}' refer to?

So what does {print S$1}' refer to?

It refers to the awk definition (the single quotes
Protect it From the Sl’lé”) — the ﬁrst ﬁeld on the
line Coming from the inPut fle.

The Problcm is getting stutt into awk other than
what is coming from the input stream (a me, a

pipe, stndin).

In addition to the shell command line Parameter/
field Position variable name Problem) say | have
some variable in my shell scril:)t that | want to
include in the awk Processing (using the shellvariables $0, 1,

IS rea”g the same as this Problem with the addition of the variable name congusion) .

What haPPeﬂs it | try

a=1
awk '{print $1, $2, Sa}'

awk will be very clisappointecl N 3oul

Unlike the shell awk does not evaluate variables
within strings.

1 tr Put’cing the shell variables into quotes to
ma|<e them Par‘c OIC a character s’tring to be outl:)ut

'{print "$0\tSa" }'
awk would Print out
SO Sa

Inside quotes INn awk, the $ is not a metacharacter
(unlike inside double quotes in the shell where
variables are expanclecb. Outside quotes N awk,
the $ corresponds to a field (so Far)) not evaluate
and return tﬁe value of a variable ou could think of the fild

as a Variable, but you are limited to variables with integer names,).

Aside - The \t is a tab

{print "s$0\t$a" }

Another difference between awk and a shell
Procc—:ssing the characters within double c:]uotcs.

AWK understands sl:)ecial characters Fo”ow the
"\" character like "t”.

The Bourne and C UNIX shells do not.

Jo make a long storg short, what we have to do is
stop brotecting the $ from the shell bﬂjuciicious

use of the 5inge quo’ces,

Id

For number valued variables. just use single
quotes, for text valued variables you need to tell
awk it is a character string with double quotes.

a=A;b=1;c=C

echo $a $c | nawk '{print $1 'S$b'l $2, "

Al1C —bash

I$Ol|l

.

it you don’t use double quotes for character variables, it may not work

echo $a $b | nawk '{print $1 'S$b' $2,
AlC -0

l$0l

.

The single c]uotes rea”g group like this.

echo $a SC | aWk '{print $1 ISbl $2, |Il$0lll}l
Al1C —bash

The first single quote turns off shell interpretation
of evergthing after it until the next single uote.
So the single quote before the $b turns off the

quote bcére the {. The $b gets Passecl to the
shell for interl:)retation. It is a number so awk can
handle it without further ado. The single quote
after the $b turns off shell interl:)retation again,
until the single quote before the $o.

The single quotcs rea”g group like this.

echo $a $c | awk |'"{print $1 '$b' $2, "'s$o0|'"}'
AlC —bash

The S0 returns the name of the program you are
running, in this case the shell -bash. Thisis a
character string so it needs to be in double
quotes, thus the " $O'". The single quote after
the $0 turns "quotin "back on and it continues to
the end of the awk block of code , cligniﬁecl bg
the }.

The c]uotes are switches that turn shell
| nterl:)retation ot Gretone and back on eecondone).

The single c]uotes rea”g group like this.

eChO $a $C | aWk l{print $1 l$bl $2, Hl$0l"}l
AlC —bash

Practica”g, since you always have the first and

last, you can think about the ones about the Sb'

and '$0' as Pairs ~ but theg rea”g match up
ol:)erationang as discussed.

Same for variables you define - it it is a text string
you have to say it 1s a text string with the double
quotes.

b=B

echo $a $b | nawk '{print $1 "'Sb'" $2}'
ABC

If the variable was a number, you can still Print it
out as a text string (awk treats numbers as text
strings or numbers as necessary in context, while
text strings are stuck as text strin gs.)

B 1

echo $a $b | nawk '{print $1 "'Sb'" 'Sb' $2}'
AllC

Aside

How to Print out quotes
(this is a very Iong ine, no \ for continuation —
wraps on its own).

'{print $1, '$b', $2, "'s0'", ["\""], "\"ab
II/II }l

Aside

How to Print out quotes

nawk 'BEGIN { print "Dont Panic!" }'
Dont Panic!

nawk 'BEGIN { print "Don'\''t Panic!" }'
Don't Panic!

nawk 'BEGIN { print "Don'"'"'t Panic!" }'
Don't Panic!

echo Don”’”t Panic! | nawk "{print}"
Don't Panic!

echo Don\'t Panic! | nawk|'{print}'
Don't Panic!

echo Don\'t Panic! | nawk|"{print}"

Don't Panic!

ook caréncung at the 2 lines above — you can
(sometimes) use either quote (‘or® to protect
the nawk program (Glepends on what you are
trging to also Protect from the she”).

Aside
How to Print out quotes

alpaca 587:> nawk 'BEGIN { print "\"Don’\’’t Panic!\"" }'
"Don’t Panic!”

Method 2. Assign the shell variables to awk
variables after tlﬁeiodg of the scriJ:)t, but before
you spechcy the input file

VAR1=3
VAR2="H1"

awk '{print vl1, v2}' v1=$VAR]l v2=$VAR2 input file

3 Hi

Also note: awk variables are referred to usingjust
their name (no $ in front)

There are a couple of constraints with this
method

Shell variables assignecﬂ usiﬂg this method are not
available in the BEGIN section (will see this, and

END section, soon).

If variables are assigned after a filename, theg will

not be available when

Qrocessing that filename

awk '{print vl1l, v2}' v1=SVAR1l filel v2=SVAR2 file2

In this case, v2 is not available to awk when
Processingﬁlel.

Method 5. Use the -v switch to assign the shell
variables to awk variables.

This works with awk, but not all flavors.

awk -v v1=$VAR1 -v v2=$VAR2 '{print vl1l, v2}' input file

Aside - w|r19 use variables?

Sag ’m cﬂoing some calculation tl’lat uses the
number TT.

| can Put 3.1416 1n whenever | need to use it.

But say later | decide that | need more Precision
anci want to change the V8|UC og nto3.1415926.

It 1s a Pain to have to Change this and as we have
seen global eclits sometimes havc unexpectecl

(mostlg because we were not rea”g paying
attention) side effects.

Aside - Whg use variables?

USiﬂ Variables (the first step to avoid harchocling) — l‘FgOU usce
variables CJ\xjou don’t have to moclhcg the code in a
thousan Places wherc you used 3.1416 For TT.

hcgou had set a variable
pi1=3.1416

And use $pi, it becomes trivial to clﬁange its value
evergwhere in the script bﬂjus‘c edi’ting the single line

pi=3.1415926

you c:lon’t have to |oo|< For it & change it
e\/ergwhere

Examl:)lcs:
Sag we want to Print out the owner of every file
Record/Field/column separator (RS=" ")

The output of1s —1is

—-rwXrwxrwx 1 rsmalley user 7237 Jun 12 2006 setup expl.sh

So we need fields B, and 9.

Do using an executable shell scriPt

Create the ﬁle owner .nawk and ma|<e it
executable.

S vi owner.nawk

i#!/bin/awk -f

BEGIN { print "File\tOwner" }
{ print $9, "\t", $3}

END { print " - DONE -" }esc
:wq

S X owher.nawk

Now we have to get the inl:)ut into the program.

PiPe the long clirectorg |isting into our shell

SCr Pt.
507:> 1ls -1 | owner.nawk
File Owner
CHARGE-2002-107 rsmalley
022285A.cmt rsmalley
190-00384-07.pdf rsmalley
zreal2.f rsmalley
zreal2.o rsmalley
— DONE —

508:>

Id

So far we hav%ust been selectin% and
rearranging fields. The outPut IS a simP e copy of
the inPut field.

What if you wanted to change the format of the
output with resl:)ect to the input

Considerin]g that awk was written bg some of
UINX’s deve opers, it might seem reasonable to
guess that thcg “reused” some usetul UNIX tools.

i you gucssecl that you would be correct.

Soit you wanted to changc the format of the
output with respect to the input — 3ouju5‘c use
the UNIX printf command.

We alreadg saw this commancJ, so we don’t need
to discuss it any further (another UINIX
Philosophg based attitude).

echo text | awk '{
b="test STEXT"
a=b
c="'s0""
d=10.7
printf("%s, %s, %s, %s, %6.3f\n", $1, a, b, c, d)
y
text, test STEXT, test STEXT, -bash, 10.700

Notice a few differences with the UNIX printf
command

You need parens (..) around the arguments to the
printf comman&.

You need commas between the items in the
variable list.

echo text | awk '{
b="test STEXT"
a=b
c=""'s0""
d=10.7
printf("%s, %s, %s, %s, %6.3f\n", $1, a, b, c, d)
y
text, test STEXT, test STEXT, -bash, 10.700

The outl:)ut of printf goes to stndout.

sprintf

Same as printf but sends formatted Print
outl:)ut toa string variable rather to stndout

n=sprintf ("%d plus %d is %d", a, b, atb);

"Simple" awk examplc:

Sag | have some sac files with the horrid IRIS
DMC format file names

1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC

and it would rename it to something more “user
Hiendlg” like KMBO.LHZ to save on thing while
cﬂoiﬂg one of Chuck’s homeworks.

alpaca.540:> more rename.sh
#!/bin/sh

#to rename horrid iris dmc file names

#call with rename.sh A x y

#where A is the char string to match, x and y are the field
#numbers in the original file name you want to use in the
#final name, and using the period/dot for the field seperator

#eg if the file names look like
#1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC

#and you would ;ike to rename it KMBO.LHZ

#the 8th field is the station name, KMBO

#and the 10th field is the component name, LHZ

#so you would call rename.sh SAC 8 10

#(it will do it for all file names in your directory

#containing the string "SAC”) LooP 1S 1N Shén,

for file in "1ls -1 *$1*"

NOot awk.
s ot aw
mv $file “echo $file | nawk -F. '{print $'$2'"."$'$3'}"'"
done

alpaca.541:>

