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For the most part we can quickly write sloppy 
code and get away with it.




Sooner or later, however, you will attempt a 
problem that takes more time than  you have 

available.




A simple way to get into this situation is trying to 
do something in “real-time”.









E.G. – you want to process GPS orbits for every 
day, within X days, so the community of GPS 

researchers can process their GPS data.




If it takes you longer than one day to do the 
calculation, the situation is hopeless.















The hurrier you go the behinder you get.




How to fix this?




Buy a bigger, faster, computer.




The HPC is this idea on steroids.




Buy 1,000 compters!




If you are lucky (e.g. Blaine) your problem will be 
amenable to having more computers.









You have to do lots of independent calculations 
(you have to do the same thing lots of times, and 

they don’t depend on one another. Send one 
calculation to each computer.)




Blaine will talk more about this on Tuesday.




Today we are going to look at what you can do in 
terms of programming to speed up your 

calculations.




As the size of the problems you want to do tends 
to grow faster than you can buy computers, a  
good algorithm can make-or-break whether or 

not you can do it.




A good example of this is Fourier Analysis – 
calculating the Fourier or inverse Fourier 

transform.




(actually on the computer one is calculating the 
“Discrete Fourier Transform”, involving discrete 
frequencies [Fourier Series, periodic], discrete 
time samples [, and finite precision arithmetic]).




The basic DFT formula is










Where xn are terms in the N point long time domain 
time series and Xk is the kth term of N terms in the 

frequency domain representation.


!



What “is” the exponential?
















Basically it is (cos(θ)+ i sin(θ)).




“straightforward” calculation of the DFT




To see what is actually going on, don’t be so fancy 
and go back to first presentation of Fourier Series




(which actually goes the “other” way, what the 

inverse Fourier transform does, making the signal 
in the real [time, space, etc.] domain from the 

frequency domain representation).










So assume for now we have the a’s and b’s.




Note the indices.




For each element n of our real space sequence, 
we are summing over index k, which represents a 

weighted sum of the sin or cos at k different 
frequencies.






The set of cos and 
sine terms form a set 

of basis functions 
that can be used to 
represent any other 

16 point long 
sequence 

(function).




Returning to the equation – note that each of the 
trig terms in the sum is basically the dot/inner 
product of the sequence of the weights with a 
sequence of trig terms at a fixed n and varying 

frequency (k2π).














Next remember that the dot/inner product can be 
written as the multiplication of a 1xN vector times a 

Nx1 vector. 




So if we make a matrix where each column has the 
kth sin or cos basis vector, and multiply that by a 

vector with the weights, we can generate the 
whole sequence of the xn.




Draw on board.




The problem with this straightforward, naïve, 
implementation is that as N gets larger the amount 

of time it takes gets even larger.




The time goes as N2 the number of points in the 
sequence.




This is generally considered to be non-

computable.




This “problem” can be “solved” by “parallelizing” 
the operations by




doing each dot product (they are independent) 

simultaneously on its own processor.




This is the buy a bigger computer method.




As N goes up you need N2 dollars to do this.




Lots of effort therefore went into finding an 
algorithm to significantly reduce the number of 

calculations.




In 1965, Cooley and Tukey of Bell Labs published 
such an algorithm and Fourier processing has 
become a fundamental element of numerical 

methods.




The method published by C&T was originally 
invented by C.F. Gauss around 1805 but without 

computers it was not very useful.




(Same with linear algebra, which was a theoretical 
lagoon of math until computers came along and 
could evaluate 1000x1000 matrices – and as we 

have seen the DFT can be cast in a linear algebra 
form.


We now beat problems into forms amenable to 
linear algebra and Foruier analysis to do them 

efficiently on the comptuer.)




The C&T algorithm was reinvented a number of 
times between Gauss and C&T, but computer 
technology was either not ready when it was 

published or the inventors kept it a trade secret 
(read – oil companies, big commercial advantage 

being able to process seismic reflection data).




C&T let the cat out of the bag and changed the 
world.




We are not going to derive it completely, but give 
the outline.




The C&T algorithm, one of many types of 

algorithm now known to speed up the discrete 
Fourier transform, is of the “divide-and-conquer” 

type.




So how does it work?




Return to our original definition of the DFT and 
assume we have an even number or points (if not 

add a point!).










Now notice (pull our of your you-know-what) 
that we can break this into two sums, each using 

every other point.




And factoring out the common term in the second 
sum (and rearranging the stuff in the exponent) 

we have












Skipping all the details, if we start out with a 
sequence that is a power of two long (if not – pad 

with zeros till it is) we can continue the above 
process until each sum (of which there will now be 

N/2) has only 1 element.




Pictorially the first step looks like




So now we just have to go backwards putting it all 
together – graphically























These two figures show the same set of 
operations, on the left the input is in order and 

the output is scrambled (decimation in 
frequency), on right the input is scrambled and 

the output is in order (decimation in time).




The basic operation is called a “butterfly”












Analyzing this algorithm it is found to require






O(N log2N) multiplies






(the arithmetic operation that counts – it is 
SLOW).




This is not very significant for small N, but is very 

important for large N.






http://blogs.mathworks.com/steve/2012/05/01/
the-dft-matrix-and-computation-time/


We will now check this out by comparing the two 
methods.


There are lots of other methods/algorithms but 
the C&T one is the most widely used.




If you need to go faster, the lesson here is that 
you need to some thing similar – find an algorithm 

that will significantly reduce the number of 
calculations (mostly multiplies).




You also need to know how the computer 

language you are using “does things”.




Matlab for example is optimized for matrix 
manipulations – so it behooves you to beat your 

algorithm into something that uses matrices.




This process is called vectorization, and like 
algorithm development and the C&T development 

is NOT ALGORITHMIC and requires lots of 
practice to develop.




http://www.matlabtips.com/optimizing-your-
code/


General advice for speeding up your code.




http://stackoverflow.com/questions/12951453/
in-matlab-when-is-it-optimal-to-use-bsxfun


“Singleton expansion”




e.g. when you need to apply elements of a 1xN 
vector to the N columns of an MxN matrix.




Example – subtract mean of each column from 

each column.






bsxfun:  AMRb=bsxfun(@minus,A,mean(A));




Repmat: 
AMRr=A-repmat(mean(A),size(A,1),1);






http://blogs.mathworks.com/loren/2008/08/04/
comparing-repmat-and-bsxfun-performance/



