
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929

�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 19, 10/31/13

MATLAB

Optimization

For the most part we can quickly write sloppy
code and get away with it.

Sooner or later, however, you will attempt a
problem that takes more time than you have

available.

A simple way to get into this situation is trying to
do something in “real-time”.

E.G. – you want to process GPS orbits for every
day, within X days, so the community of GPS

researchers can process their GPS data.

If it takes you longer than one day to do the
calculation, the situation is hopeless.

The hurrier you go the behinder you get.

How to fix this?

Buy a bigger, faster, computer.

The HPC is this idea on steroids.

Buy 1,000 compters!

If you are lucky (e.g. Blaine) your problem will be
amenable to having more computers.

You have to do lots of independent calculations
(you have to do the same thing lots of times, and

they don’t depend on one another. Send one
calculation to each computer.)

Blaine will talk more about this on Tuesday.

Today we are going to look at what you can do in
terms of programming to speed up your

calculations.

As the size of the problems you want to do tends
to grow faster than you can buy computers, a
good algorithm can make-or-break whether or

not you can do it.

A good example of this is Fourier Analysis –
calculating the Fourier or inverse Fourier

transform.

(actually on the computer one is calculating the
“Discrete Fourier Transform”, involving discrete
frequencies [Fourier Series, periodic], discrete
time samples [, and finite precision arithmetic]).

The basic DFT formula is

Where xn are terms in the N point long time domain
time series and Xk is the kth term of N terms in the

frequency domain representation.

!

What “is” the exponential?

Basically it is (cos(θ)+ i sin(θ)).

“straightforward” calculation of the DFT

To see what is actually going on, don’t be so fancy
and go back to first presentation of Fourier Series

(which actually goes the “other” way, what the

inverse Fourier transform does, making the signal
in the real [time, space, etc.] domain from the

frequency domain representation).

So assume for now we have the a’s and b’s.

Note the indices.

For each element n of our real space sequence,
we are summing over index k, which represents a

weighted sum of the sin or cos at k different
frequencies.

The set of cos and
sine terms form a set

of basis functions
that can be used to
represent any other

16 point long
sequence

(function).

Returning to the equation – note that each of the
trig terms in the sum is basically the dot/inner
product of the sequence of the weights with a
sequence of trig terms at a fixed n and varying

frequency (k2π).

Next remember that the dot/inner product can be
written as the multiplication of a 1xN vector times a

Nx1 vector.

So if we make a matrix where each column has the
kth sin or cos basis vector, and multiply that by a

vector with the weights, we can generate the
whole sequence of the xn.

Draw on board.

The problem with this straightforward, naïve,
implementation is that as N gets larger the amount

of time it takes gets even larger.

The time goes as N2 the number of points in the
sequence.

This is generally considered to be non-

computable.

This “problem” can be “solved” by “parallelizing”
the operations by

doing each dot product (they are independent)

simultaneously on its own processor.

This is the buy a bigger computer method.

As N goes up you need N2 dollars to do this.

Lots of effort therefore went into finding an
algorithm to significantly reduce the number of

calculations.

In 1965, Cooley and Tukey of Bell Labs published
such an algorithm and Fourier processing has
become a fundamental element of numerical

methods.

The method published by C&T was originally
invented by C.F. Gauss around 1805 but without

computers it was not very useful.

(Same with linear algebra, which was a theoretical
lagoon of math until computers came along and
could evaluate 1000x1000 matrices – and as we

have seen the DFT can be cast in a linear algebra
form.

We now beat problems into forms amenable to
linear algebra and Foruier analysis to do them

efficiently on the comptuer.)

The C&T algorithm was reinvented a number of
times between Gauss and C&T, but computer
technology was either not ready when it was

published or the inventors kept it a trade secret
(read – oil companies, big commercial advantage

being able to process seismic reflection data).

C&T let the cat out of the bag and changed the
world.

We are not going to derive it completely, but give
the outline.

The C&T algorithm, one of many types of

algorithm now known to speed up the discrete
Fourier transform, is of the “divide-and-conquer”

type.

So how does it work?

Return to our original definition of the DFT and
assume we have an even number or points (if not

add a point!).

Now notice (pull our of your you-know-what)
that we can break this into two sums, each using

every other point.

And factoring out the common term in the second
sum (and rearranging the stuff in the exponent)

we have

Skipping all the details, if we start out with a
sequence that is a power of two long (if not – pad

with zeros till it is) we can continue the above
process until each sum (of which there will now be

N/2) has only 1 element.

Pictorially the first step looks like

So now we just have to go backwards putting it all
together – graphically

These two figures show the same set of
operations, on the left the input is in order and

the output is scrambled (decimation in
frequency), on right the input is scrambled and

the output is in order (decimation in time).

The basic operation is called a “butterfly”

Analyzing this algorithm it is found to require

O(N log2N) multiplies

(the arithmetic operation that counts – it is
SLOW).

This is not very significant for small N, but is very

important for large N.

http://blogs.mathworks.com/steve/2012/05/01/
the-dft-matrix-and-computation-time/

We will now check this out by comparing the two
methods.

There are lots of other methods/algorithms but
the C&T one is the most widely used.

If you need to go faster, the lesson here is that
you need to some thing similar – find an algorithm

that will significantly reduce the number of
calculations (mostly multiplies).

You also need to know how the computer

language you are using “does things”.

Matlab for example is optimized for matrix
manipulations – so it behooves you to beat your

algorithm into something that uses matrices.

This process is called vectorization, and like
algorithm development and the C&T development

is NOT ALGORITHMIC and requires lots of
practice to develop.

http://www.matlabtips.com/optimizing-your-
code/

General advice for speeding up your code.

http://stackoverflow.com/questions/12951453/
in-matlab-when-is-it-optimal-to-use-bsxfun

“Singleton expansion”

e.g. when you need to apply elements of a 1xN
vector to the N columns of an MxN matrix.

Example – subtract mean of each column from

each column.

bsxfun: AMRb=bsxfun(@minus,A,mean(A));

Repmat:
AMRr=A-repmat(mean(A),size(A,1),1);

http://blogs.mathworks.com/loren/2008/08/04/
comparing-repmat-and-bsxfun-performance/

