
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929

�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 17, 10/24/13

MATLAB

Intro writing GUI’s

What is a GUI?

Graphical User Interface

(Aside - what is “wysiwyg”?)

MatLab provides a tool called the

Graphical User Interface Development
Environment

(GUIDE)

A GUI used to create GUI’s.

You can also be a masochist and write the code
from scratch.

A GUI should be consistent and easily
understood.

(if you need the manual, there’s a bug in the program or a flaw in the gui. Non-UNIX philosophy!)

Provide the user with the ability to use a program
without having to worry about commands to run

the actual program.

Possible components of a GUI -

Pushbuttons

Sliders

List boxes

Menus

Interactive Graphics

….etc

3 Essential Parts of a GUI –

1

Graphical Components

pushbuttons, edit boxes, sliders, labels, menus,

etc…

Static Components

Frames, text strings,…

Both created using the MATLAB function
uicontrol.

3 Essential Parts –

2

Figures – components are contained in figures.

3

Callbacks – The functions which perform the
required action when a component is “pushed”.

GUIDE Properties

Allows the user to drag and drop components
that he/she wants in the “layout” area of the GUI.

All “guide” GUI’s start with an opening function.

Callback is performed before user has access

to GUI.

GUIDE stores GUIs in two files, which are
generated the first time you save or run the GUI:

– .fig file - contains a complete description of the
GUI figure layout and the components of the GUI.

Changes to this file are made in the Layout Editor

– .m file - contains the code that controls the
GUI.

You program callbacks in this file using the M-file
Editor.

Creating a GUI

Typical stages of creating a GUI are:

1.  Designing the GUI

2. Laying out the GUI

Using the Layout Editor

3. Programming the GUI

Writing callbacks in the M-file Editor

4. Saving and Running the GUI

Assessing the Value of Your GUI

Ask yourself two basic questions when designing
your GUI.

- Do the users always know where they are?

- Do they always know where to go next?

Constantly answering these two questions will
help you keep in perspective the goal of your

GUI.

Callback function

The “meat” of the GUI process.

Opening function is first callback in every “guide”
generated GUI.

Usually used to generate data used in GUI.

Callbacks define what will happen when a figure

component is selected.

You must write the callback code!!!!

Summary

At command prompt type “guide”.

Lay out your GUI in the layout editor.

Define data in Opening Function.

Edit/Align your components using

- Tools Menu

- Align

- View menu

- Property Inspector

Write the Callbacks

(This is the most difficult aspect when creating GUI’s)

Layout Area

A
lig

nm
en

t T
oo

l

M

en
u

E
di

to
r

Ta
b

O
rd

er
 E

di
to

r

To

ol
ba

r E
di

to
r

M
-F

ile
 E

di
to

r

Pr

op
er

ty
 In

sp
ec

to
r

O
bj

ec
t B

ro
ws

er

R
un

 B
ut

to
n

C
om

po
ne

nt

Pa
le

tt
e

Figure Resize Tab

Components
of GUIDE GUI
interface

Writing Callbacks (the hard part).

A callback is a sequence of commands (function)
that are execute when a graphics

object is activated.

Callbacks are stored in the GUI’s m-file.

Callbacks are a property of a graphics object
(e.g. CreateFnc, ButtonDwnFnc,

Callback, DeleteFnc).

(Also called an “event handler” in some programming languages.)

A callback is usually made of the following stages:

1.  Get handle of object initiating the action

(the object provides event / information / values).

2. Get handles of objects being affected

(the object thatwhose properties are to be changed).

3. Getting necessary information / values.

4. Doing some calculations and processing.

5. Setting relevant object properties to effect
action.

Let's create a GUI that plots a function that we
can interactively specify.

We first lay out the basic controls for our

program, selected from the menu along the left
side:

axes,

static text,

edit box,

and a button.

Define and place the axis, static text (will have the prompt

for the function), edit text (to interactively enter the function), and a
button to do the plot.

Basic Elements of our GUI-

 axes: a place to draw.

 static text: text that is stuck/fixed/static on the
screen, the user can't edit it.

 edit box: a white box that the user can type input
into.

 button: performs an action when user clicks on it.

The Property Inspector

 When you double-click on a control, it brings up
a window listing all the properties of that control

(font, position, size, etc.)

Tag - the name of the control in the code. best to
rename it to something identifiable ("PlotButton"

vs "button1”)

String - the text that appears on the control

ForegroundColor - color of the text

BackgroundColor - color of the control

Enter text string for
pushbutton

Enter tag for
pushbutton

Running

If you press the green arrow at the top of the GUI
editor, it will save your current

version and run the program.

The first time you run it, it will ask you to

name the program.

Our figure looks about right, but it doesn't do
anything yet.

We have to define a callback for the button so it
will plot the function when we press it.

Pile of windows – GUIDE design window, m file
with code for GUI, window with running GUI.

Buttons “work” (respond when click in them), can enter text.

But nothing happens.

Have to write callback routine to specify what
happens.

Writing Callbacks

As noted, when you run the program, it creates
two files.

your_gui.fig -- contains the layout of your
controls

your_gui.m -- contains code that defines a
callback function for each of your controls

We generally don't mess with the initialization code
in the m-file.

We will probably leave many of the control
callbacks blank.

Writing Callbacks

In our example, we just need to locate the
function for the button.

This is why it is important to have a good Tag so
we can keep our controls straight.

You can also right-click on the control and select
View Callback.

Writing Callbacks

Initially the button callback looks like this.

!
% --- Executes on button press in PlotFunction.!
function PlotFunction_Callback(hObject, eventdata, handles)!
% hObject handle to PlotFunction (see GCBO)!
% eventdata reserved - to be defined in a future version of
MATLAB!
% handles structure with handles and user data (see GUIDATA)!
!

We can delete the comments and type code.

Note every function has the parameter handles.

This contains all the controls:
handles.PlotButton, handles.edit1,

handles.axes1, …

We can add variables to handles to make them
available to all functions:

handles.x = 42;!

Writing Callbacks

 We can look up any property of a control with
the get function.

Similarly, we can change any property with the set
function.

 This is where things get complicated.!

Writing Callbacks

We need two callbacks.

 1) We want to get the String typed into the edit
box

2) and plot it.

function EnterFN_Callback(hObject, eventdata, handles)!
. . . !
function EnterFN_CreateFcn(hObject, eventdata, handles)!

Look at properties
inspector and m file to see
how things match up.

1) We want to get the string typed into the edit
box

Blue produced by guide, have to add the black
(one line). Variable handles.EnterFn created

here.

function EnterFN_Callback(hObject, eventdata, handles)!
% hObject handle to EnterFN (see GCBO)!
% eventdata reserved - to be defined in a future version of
MATLAB!
% handles structure with handles and user data (see GUIDATA)!
 !
% Hints: get(hObject,'String') returns contents of EnterFN as
text!
% str2double(get(hObject,'String')) returns contents of
EnterFN as a double!
handles.EnterFn=get(hObject,'String');!

2) and plot it.

Blue produced by guide, have to add the stuff in
black (a couple of lines). Variable

handles.EnterFn created by us, while
handles.axes1 created by guide.

% --- Executes on button press in PlotFunction.!
function PlotFunction_Callback(hObject, eventdata, handles)!
% hObject handle to PlotFunction (see GCBO)!
% eventdata reserved - to be defined in a future version of
MATLAB!
% handles structure with handles and user data (see GUIDATA)!
x=-10:.01:10!
s = get(handles.EnterFN, 'String');!
y = eval(s); %eval just evaluates the given string!
handles.axes1; %Subsequent commands draw on axes1.!
plot(x, y);!
grid;!

Final result.

