
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929

�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 13, 10/8/13

OLNY SRMAT POELPE CAN RAED TIHS

I cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I
was rdanieg. The phaonmneal pweor of the hmuan mnid.

Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, it
deosn't mttaer in waht oredr the ltteers in a wrod are, the
olny iprmoatnt tihng is taht the frist and lsat ltteer be in

the rghit pclae. The rset can be a taotl mses and you can
sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as
a wlohe. Amzanig huh? yaeh and I awlyas tghuhot slpeling

was ipmorantt!

Tihs deos not wrok for the cetupmor!

Basics of the Unix/Linux
Environment

Shells

What is a shell?

As far as Unix is concerned, the shell is just
another program.

As far as the user in concerned, it is the
traditional command line user interface with the

Unix operating system…it interprets your typing.

What is a shell?

Just as there are many flavors of Unix and Unix-
like systems, there are many types of shells.

If you don’t like any of the shells in existence, this

is Unix – write your own!

Common shells

Bourne Shell sh

Bourne Again Shell bash

(current default on MAC OS X)

C Shell csh

TENEX C Shell
 tcsh

(This is the default shell at CERI)

Korn Shell ksh

(mix between two shell families above)

sh

bash

ksh
csh

tcsh

Bourne

Shell

Bourne
Again

Shell

TENEX

C shell

C Shell

Korn

Shell

Common shells

sh

Bourne shell

The original Unix shell.

Pro: Flexible and powerful scripting shell.

Con: Not interactive or particularly user friendly.

csh

C shell

designed for the BSD Unix system.

syntax closely follows C programming.

Pro: easy for C programmers to learn and comes

with many interactive features such as file
completion, aliases, history.

Con: not as flexible or powerful a scripting

language as sh or bash.

ksh

Korn shell

derived from the Bourne shell so has a shared
syntax.

job control taken from the C shell.

bash

Bourne-Again shell

Combines the “best” of sh, ksh, and csh.

Default shell (out of the box) on Linux and Mac

OSX operating systems.

Pro: Flexible and powerful scripting language with
all the interactive features of csh plus command

completion.

This shell is great for complicated GMT scripts.

tcsh

TENEX C shell

Default shell of the CERI unix environment.

Pro: User friendly on the command line.

Con: It is not as suitable for long and involved

scripts.

It is perfectly OK for most daily geophysics work
on the command line & most faculty here use it on

a daily basis so there are many experts around.

Basics of the Unix/Linux
Environment

Features bash and tcsh Shells

Useful features of tcsh & bash

-file completion-

key the tab key, or the escape key twice, to

“complete” the name of a long file.

Say I have a file named
largest-deadliest-eqs-last-100-years.ai!

I can type just enough so the system can continue
(i.e. there are no options for the next letter –

assume I also have a file lapilona.dat)

$ls lar<tab> will produce this!
$ls largest-deadliest-eqs-last-100-years.ai

Useful features of tcsh & bash

-file completion-

Say I have 2 files file named

ls largest-deadliest-eqs-last-50-years.ai!
ls largest-deadliest-eqs-last-100-years.ai!

Actually I can type just enough so it can continue
on its own for a while

$ls lar<tab> will produce this!
$ls largest-deadliest-eqs-last-!

At which point it gets stuck. I help it along

$ls largest-deadliest-eqs-last-1<tab>
$ls largest-deadliest-eqs-last-100-years.ai

Useful features of tcsh & bash

history command

list the previous commands entered during the
active session.

148:> history!
. . . !
 145 21:30 pwd!
 146 21:30 DEM!
 147 21:30 cd srtm!
 148 21:30 history!

!

Useful features of tcsh & bash

-history “feature”-

Shell keeps “history” of commands

up and down arrow keys: allow you to move up
and down through previous commands.

right and left arrow keys: allow you to edit
command lines (backspace to remove, type at
cursor to insert) without starting from scratch.

Useful features of tcsh & bash

bang (“!”) command/shortcut

Bang is used to search backward through your
Bash/tcsh history until it finds a command that
matches the string that follows the bang and

returns/executes it.

!

bang (“!”) command/shortcut

!!: reruns the last command in the history list.

% vi foo.c bar.c!
% !! !
Becomes:

% vi foo.c bar.c!

!vi: reruns the last command in the history file
beginning with “vi”.

% vi foo.c bar.c!
% ls!
% !vi !
Becomes:

% vi foo.c bar.c!

bang (“!”) command/shortcut

!XXX<CR> returns the command numbered XXX
in the history list. It runs it after you enter the

<CR>.)

148:> history!
. . . !
 145 21:30 pwd!
 146 21:30 DEM!
 147 21:30 cd srtm!
 148 21:30 history!
149:> !146!
DEM!
/gaia/home/rsmalley/dem!
150:>!

bang (“!”) command

!-X: returns the command X back in the history
list and runs it at the <CR>.

151:> history!
. . . !
 147 21:30 cd srtm!
 148 21:30 cd ~!
 149 21:30 history!
 150 21:46 DEM!
 151 21:55 history!
152:> !-4!
cd ~!
/gaia/home/rsmalley!
153:> !

bang (“!”) command/shortcut is actually
more general – use it to return commands
from history and do something with them.

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Getting stuff from the last command:

!

Get the last argument (“$”)from command :

% svn ci !$!

Becomes:

% svn ci bar.c!

Various shells have options that can affect this.

Be careful with shells that let you share history
among “instances” (if you have 5 terminals open you have a shell running

in each one. Each running copy is an “instance”). You can also have
shells running in the “background” (almost never needed with

modern gui’s, was essential with single terminal).

Some shells also allow bang commands to be
expanded with tabs or expanded and reloaded

on the command line for further editing when you
press return.

bang (“!”) command/shortcut.

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Getting stuff from the last command:

!
All arguments (“*”, special definition):

% svn ci !*!

Becomes:

% svn ci foo.c bar.c!

bang (“!”) command/shortcut.

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Getting arguments from the last command:

!
First argument (“:N”):

!
% svn ci !!:1!

Becomes:

!
% svn ci foo.c!

bang (“!”) command/shortcut

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Accessing command lines by pattern: (saw this
already, but now with ./, need to go to first
letter)

Full line:

% !./f!

Becomes:

% ./foo -f foo.conf!
!

bang (“!”) command/shortcut

!
% ls -d a*.f!
atantest.f!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Accessing command lines by pattern and
command substitution:

This:

% vi `!ls` !

Becomes:

% vi `ls -d a*.f`!

Which becomes:

% vi atantest.f!
!

bang (“!”) command/shortcut

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Accessing command lines by pattern:

All args : % ./bar !./f:*!
Becomes: % ./bar -f foo.conf!
!

We are looking for the command that begins with
“./f”, and then we want (the colon, “:”) all of its
arguments (the splat, “*”)

bang (“!”) command/shortcut

Notice how this makes perfect sense under the
Unix philosophy.

Make a tool and (mis/ab)use it.

(the basic commands are really very simple, but in
tricky combination they become very powerful -

and confusing.)

Most normal people are not going to use all these
shortcuts, they are just too complicated.

I showed them, however, to present additional

application and appreciation of the Unix
philosophy.

When you Google for help with Unix the answers/
examples are usually maximally Unixified, so you

will have to figure it out.

bang (“!”) command/shortcut

you can also view the command that bang finds
without immediately executing it.

�
!cat:p<CR>!

Now, instead of executing the command it finds,
bang prints the command to Standard OUT for

you to look at.

bang (“!”) command/shortcut

!cat:p<CR>!

That's not all though, it also copies the command
to the end of your history (even though it was not

executed).

This is useful because if you do want to execute
that command, you can now use the bang bang

shortcut to run it (bang bang runs the last thing in
history).

How typically Unix.

bang (“!”) command/shortcut

$!cat:p<CR>!
cat tst.sh!
$!! | grep "hello”<CR>!

�
Here, the most recent command containing cat is
printed, and copied to the end of your history.

Then, that command is executed with its results
being piped into the grep command, which has

been specified to print those lines containing the
string "hello”.

(We are following Unix philosophy)

bang (“!”) command/shortcut

To find a lot of this “neat” stuff, I GOOGLEd

“unix bang command”

you will not find it in the man pages

147:> man !!
No manual entry for !.!
148:>!

Modify last command in history list using caret or
circumflex accent, “^”, to fix typos or make small

changes.

Replaces text inside first two carets with that

between second and third.

(can sometimes skip closing caret as shown below in second example.)

$ ls trk1.kml!
trk1.kml!
$ ^1^2^!
ls trk2.kml!
trk2.kml!
$!!:p!
ls trk2.kml!
$ ^2^1!
ls trk1.kml!
trk1.kml!
$!

First it shows it to you and executes
the edited command. !

Basics of the UNIX/Linux
Environment

Environment (esoteric and essential)

The UNIX Environment

(general and CERI specific)

Mitch/Bob/Deshone have set up the basic CERI
environment on both the Macs and Suns so that

everyone can access the standard UNIX tools and
geophysics packages available on the UNIX

systems at CERI.

The UNIX Environment

But what does this mean?

Many UNIX utilities, including the shell, need
information about you and what you're doing in

order to do a reasonable job.

What kinds of information?

Well, to start with, a lot of programs (particularly
editors) need to know what kind of terminal

you're using.

Your environment is composed of a number of

 environment variables

which provide this important information to the
operating system.

Rather than forcing you to type this (hard to
remember, where does one find it?) information

with every command

!

such as (% mail -editor vi -term aardvark48)!

UNIX uses environment variables to store

information that you'd rather not worry about.

For example, the TERM environment variable tells programs what
kind of terminal you're using. Any programs that care about your

terminal type know (or ought to know) that they can read this
variable, find your terminal type, and act accordingly.

UNIX commands receive information from three
potential sources.

-Arguments on the command line

-Data coming down their standard input channel.

-The environment. When a command is started, it

is sent a list of environment variables by the
shell.

Since you generally want the computer to behave
the same way everyday, these

environment variables

 are setup and stored in

configuration files

 that are accessed automatically at login.

What are your environment variables?

The commands env, or

setenv with no parameters,

print the current environment variables to the

Standard Out.

141:> env!
USER=rsmalley!
LOGNAME=rsmalley!
HOME=/gaia/home/rsmalley!
PATH=.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs:/gaia/home/rsmalley/gg:/gaia/home/
rsmalley/gg/com:/gaia/home/rsmalley/gg/gamit/bin:/gaia/home/
rsmalley/gg/kf/bin:/gaia/dunedain/d2/gps/bin:/gaia/smeagol/local/
passcal.2006/bin:/gaia/smeagol/local/gmt/GMT4.2.1/bin:/usr/sbin:/
usr/local/teTeX/bin/sparc-sun-solaris2.8:/gaia/home/rsmalley/
bin:/opt/local/sbin:/opt/sfw/bin:/usr/bin:/usr/ccs/bin:/usr/
local/bin:/opt/SUNWspro/SC5.0/bin:/opt/local/bin:/usr/bin:/usr/
dt/bin:/usr/openwin/bin:/bin:/usr/ucb:/gaia/smeagol/local/bin:/
net/gps4/d1/Noah/rbh/usr/PROGRAMS.330/bin:/gaia/home/rsmalley/X/
bin:/gaia/home/rsmalley/X/com:/gaia/home/rsmalley/record_reading/
bin:/gaia/home/rsmalley/record_reading/scripts!
MAIL=/var/mail//rsmalley!
SHELL=/usr/bin/tcsh!
TZ=US/Central!
LC_CTYPE=en_US.ISO8859-1!
LC_COLLATE=en_US.ISO8859-1!
!

LC_TIME=en_US.ISO8859-1!
LC_NUMERIC=en_US.ISO8859-1!
LC_MONETARY=en_US.ISO8859-1!
LC_MESSAGES=C!
SSH_CLIENT=75.66.47.230 50561 22!
SSH_CONNECTION=75.66.47.230 50561 141.225.157.63 22!
SSH_TTY=/dev/pts/12!
TERM=xterm!
HOSTTYPE=sun4!
VENDOR=sun!
OSTYPE=solaris!
MACHTYPE=sparc!
SHLVL=1!
PWD=/gaia/home/rsmalley!
GROUP=user!
HOST=alpaca.ceri.memphis.edu!
REMOTEHOST=c-75-66-47-230.hsd1.tn.comcast.net!
MANPATH=/gaia/smeagol/local/passcal.2006/man:/gaia/smeagol/local/
gmt/GMT4.2.1/man:/ceri/local/man:/usr/dt/man:/usr/man:/usr/
openwin/share/man:/usr/local/man:/opt/SUNWspro/man:/opt/sfw/man:/
usr/local/teTeX/man:/gaia/smeagol/local/man!
LD_LIBRARY_PATH=/gaia/smeagol/local/gmt/lib:/gaia/opt/SUNWspro/
lib:/gaia/opt/SUNWspro/SC5.0/lib:/usr/lib:/usr/openwin/lib!
!
!

LM_LICENSE_FILE=/gaia/opt/licenses/licenses_combined!
EDITOR=vi!
AB2_DEFAULTSERVER=http://stilgar.ceri.memphis.edu:8888!
PRINTER=3892!

You get all the stuff shown so far automatically.

If you can figure it out, you can change it to suit
yourself.

(But when you break-it, don’t ask [or humbly ask] the system

managers for help. If you were smart enough to break it, you’re
smart enough to fix it.)

GMTHOME=/gaia/smeagol/local/gmt/GMT4.2.1!
NETCDFHOME=/gaia/smeagol/local/gmt!
GMT_GRIDDIR=/gaia/smeagol/local/gmt/GMT4.2.1/share/dbase!
GMT_IMGDIR=/gaia/smeagol/local/gmt/GMT4.2.1/DATA/img!
GMT_DATADIR=/gaia/smeagol/local/gmt/GMT4.2.1/DATA/misc!
CWD=/gaia/home/rsmalley!
HELP_DIR=/gaia/home/rsmalley/gg/help/!
INSTITUTE=uom!
RECORD_READING=/gaia/home/rsmalley/record_reading!
RECORD_READING_BIN=/gaia/home/rsmalley/record_reading/bin!
RECORD_READING_SCR=/gaia/home/rsmalley/record_reading/scripts!
RECORD_READING_SRC=/gaia/home/rsmalley/record_reading/src!
latestrtvel=rtvel4_9305_5bv19!
LATESTRTVEL=rtvel4_9305_5bv19!
ANONFTP=/gaia/midtown/mid4/smalley/public_ftp!
ANONFTP_IN=/gaia/midtown/mid4/smalley/public_ftpinbox!
SACDIR=/gaia/tesuji/d1/local/sac!
SACXWINDOWS=x11!
SACAUX=/gaia/tesuji/d1/local/sac/aux!
SACSUNWINDOWS=0!
GPSHOME=/gaia/dunedain/d2/gps!

Plus you can add our own stuff (above).

Unless you are running Linux (in which case you
are the system manager), you can forget about

setting up most of this as the system managers do
it for you.

There are a few environment variables, however,

that you need to know about and/or set up
yourself.

HOME*

This environment variable controls what UNIX
commands consider your (base) home directory.

This is how “cd“ and “~” know which directory to

refer to

% echo $HOME!
/gaia/home/rsmalley !

To refer to the value of an environment variable
put a $ in front of the name.

*these environment variables should not be changed by the user

The $ therefore has a special meaning to the
shell.

(As do the characters “ ~, !, /, *,?,^,\ “
all of which we have already seen.

By the time we are done we will have used up most
of the non alpha-numeric characters with special

meanings.)

SHELL*

This variable stores your default shell

% echo !
!
/usr/bin/tcsh!

Seems pretty simple!

$ echo $SHELL!
/bin/bash!
$ /bin/csh!
> echo $SHELL!
/bin/bash!

How to find your SHELL

Start csh

OOPS!

$ echo $SHELL!
/bin/bash!
$ /bin/csh!
> echo $SHELL!
/bin/bash!
> echo $0!
/bin/csh!
>!

0 is the shell variable
containing the name of

the program that is
running - the shell. The

shell is just another
program to UNIX. $0 is

value of shell variable 0).

SHELL

How to really find your shell

Start bash (inside csh, inside
bash)

$ echo $SHELL!
/bin/bash!
$ /bin/csh!
> echo $SHELL!
/bin/bash!
> echo $0!
/bin/csh!
> ps -p $$!
PID TTY TIME CMD!
91456 ttys003 0:00.02 -bin/csh!
> /bin/tcsh!
>> echo $SHELL!
/bin/bash!
> echo $0!
/bin/tcsh!
> ps -p $$!
PID TTY TIME CMD!
91467 ttys003 0:00.03 -bin/tcsh!
> exit!
exit!
> exit!
exit!
$ echo $0!
-bash!

SHELL

How to really find your shell

$ is the shell variable containing
the process id (pid), $$ is value of

of shell variable $ (very UNIX).

$ $SHELL!

What happens if we enter $SHELL all by itself?

$ /bin/bash!

The shell sees

Since a shell variable is just a character string, it
replaces the $SHELL with the character string.

So if the shell variable is a command or otherwise

interpretable by the shell it will try to do it.

Can also id the shell by the prompts

($, >, etc., once you know which is which).

These examples also show that the shell is just

another program – the only thing special about it
is that it is the program that is started
automatically for you when you login.

Finally, What is my shell?

This seems to be the best way to find out.

% echo $0!

Works for csh, tcsh, sh, and bash.

($0 does not refer to the shell in general, this is
one of the UNIX “standards” that $0 is the

program you are running!!

[which in this case is the shell – perfect UNIX
logic]).

"people who have trouble with typing commands
should not be using a computer.”

Response of the UNIX community to criticism that

UNIX ignored the needs of the unsophisticated
user.

Environment variables are managed by your
shell.

The difference between

environment variables

and regular

shell variables

is that

a shell variable is local to a particular instance of
the shell (such as your current shell or a shell

script), while environment variables are
"inherited" by any program you start, including

another shell.

That is, the new process gets its own copy of
these variables, which it can read, modify, and

pass on in turn to its own children.

In fact, every UNIX process (not just the shell)
passes its environment variables to its child

processes.

Example (very important) environment variable,
what it is used for, and how to maintain it (you will

probably need to do this at some point).

PATH

To see the value of the environment variable
PATH, echo it to the screen.

PATH

This environment variable tells the shell where to

find executable files

%echo $PATH!
.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs:/gaia/home/rsmalley/gg:/gaia/home/
rsmalley/gg/com:/gaia/home/rsmalley/gg/gamit/bin:/gaia/home/
rsmalley/gg/kf/bin:/gaia/dunedain/d2/gps/bin:/gaia/smeagol/local/
passcal.2006/bin:/gaia/smeagol/local/gmt/GMT4.2.1/bin:/usr/sbin:/
usr/local/teTeX/bin/sparc-sun-solaris2.8:/gaia/home/rsmalley/
bin:/opt/local/sbin:/opt/sfw/bin:/usr/bin:/usr/ccs/bin:/usr/
local/bin:/opt/SUNWspro/SC5.0/bin:/opt/local/bin:/usr/bin:/usr/
dt/bin:/usr/openwin/bin:/bin:/usr/ucb:/gaia/smeagol/local/bin:/
net/gps4/d1/Noah/rbh/usr/PROGRAMS.330/bin:/gaia/home/rsmalley/X/
bin:/gaia/home/rsmalley/X/com:/gaia/home/rsmalley/record_reading/
bin:/gaia/home/rsmalley/record_reading/scripts!
!

The “:” is used to separate each full path name in
sh, bash (space for csh, tcsh).

!

When you run a command (from the terminal or a
shell script), your shell looks through each

directory in your PATH variable , in order, until it
finds the first instance of an executable file with

the name of the command.

It then runs the command.

%echo $PATH!
.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs: etc.!

My path starts with dot (“.”).

This is convenient (or else you have to type the
relative path ./myprog to execute programs in
the working directory) but this is considered a

security weakness.

Next I have a number of my directories where I’ve
written Fortran or C programs and shell scripts.

In the “standard” UNIX organization that you will
see in most books, one is supposed to put all

your executable programs in your

“~/bin” directory

and all your shell scripts in your

“~/scripts” directory.

You will probably not find many people (or
systems) that do this anymore.

So how does this work?

If you are working a program to do least squares
analysis and decide to call it “ls” what will

happen when you enter the command “ls”?

It depends.

What happens depends on your path.

Remember that to UNIX, everything outside the
kernel (including the shell) is just a file.

Some of these files are executable (programs).

When the shell goes looking through your path
for an executable file (has to have executable set
in file permissions) named “ls”, it will run the first

one it finds.

If the directory containing your least squares
program (executable file), “ls”, is in your path

Before

the directory containing the UNIX list command,
“ls”, it will run your program and you will not be

able (at least simply) to get a listing of your
directory! �

(How to solve this? Have to give full path to the
system ls, /bin/ls for example. You need to

know where the system ls lives.)

If the directory containing your least squares
program, “ls”, is in your path

after

the directory containing the UNIX list command,
“ls”, it will run the UNIX ls command and you will
not be able (at least simply) to run your program!

(How to solve this? Give full path to your program
ls, e.g. ~/myprogs/ls or relative path ./

ls, ../myprogs/ls etc.

Can’t solve this with the “\” we saw before since
this undoes an alias. It does not change the path.

which

Command that shows what the shell finds for the
command name.

!
$ which ls!
/bin/ls!

Or if you have redefined ls and it is found in your
path first

!
$ which ls!
/user/smalleyb/in/ls!

To run a specific executable file – give its full path.

$ /bin/ls!
! ! ! ! !Public!
Adobe SVG 3.0 Installer Log !Sites!
Desktop ! ! ! !bin . . .

More examples.

Can use all the tricks in specifying paths.

Run from one directory up.

$ pwd!
/Users/smalley/bin!
$../hello.sh!
Hello!
$!

If the file is in the working directory, and that
directory is not in your path, use the dot.

$./hello.sh!
Hello!
$!

This behavior is not a “bug”, it is considered to be
desirable and an example of the POWER of

UNIX.

(This is also where the security problem comes in when dot is in your path. If someone
compromises your system and puts a malicious file in your directory with the name “ls”
and you have dot in your path and don’t notice the file “ls” and enter “ls” to get a list,

you execute the bad file instead.)

How you make your path is up to you.

Will see how to do it next.

Modifying your environment

Modifying your environment

If you mess up modifying the environment in your
current window – you may “break” your current

window (shell).

This is generally not a problem on the sun, mac,
etc.

The environment is local to that window/shell.

Just close it and open another window.

How to change/set shell and environment
variables.

In csh/tcsh use commands

set for regular (local) shell variables and

setenv for environment (global) variables.

set term = xterm!
setenv TERM = xterm!

We already mentioned the difference between
regular shell and environment variables.

(you have to know that xterm is something that
the shell will understand.)

If you need to deal with this level of UNIX, go

find a wizard

(Bob Debula, Mitch Withers).

This syntax is also specific to csh/tcsh.

set term = xterm!
setenv TERM = xterm!

(note that since UNIX is case sensetive this is two
environment variables. A local one “term” and a

global one “TERM”).

To do the same thing in bash.

term=xterm!
TERM=xterm!

Note that there are NO SPACES on either side of
the equals sign here.

How do we tell the difference between a regular
shell variable and an environment variable in bash.

(there is really no difference within an instance of a shell).

(set with no parameters lists shell variables, env also lists

environment variables. In csh - setenv with no parameters lists
environment variables,)

In sh/bash, when we define a variable, it is a
regular shell variable.

To make it an environment variable (one that is
inherited) you export it.

term=xterm!
TERM=xterm!
EXPORT term!
EXPORT TERM!

setenv:

The csh/tcsh command to change environment
settings.

Can be run on the command line,

from within a local configuration file

(.cshrc or .login),

or in a shell script.

When run it without specifying an environment
variable, it will print all environment variables to

the screen

How to change/set your path in csh/tcsh.

% setenv PATH {$PATH}:/gaia/home/rsmalley/scripts!
!

This adds the (text string that is the) name of the
directory

!

‘/gaia/home/rsmalley/scripts’!
!

to the end of the current environment variable
PATH associated with the active shell.

When UNIX starts, you automatically get a path
environment variable (it may be, but probably is

not, empty) and this is the best candidate for the
one you will have to change.

The environment variable is just a text string.

The shell interprets it.

setenv:

% setenv PATH /gaia/home/rsmalley/scripts:{$PATH} !

!
Operationally it adds the the directory

/gaia/home/rsmalley/scripts!

to the path, this time at the beginning.

What are the braces “{“ “}” for?

They delimit the shell variable used with the $.

They are needed when characters that could be

in a variable name follow it without a space.

!
SANJUAN=/volumes/seismicdata/panda/sanjuan!
!

… ${SANJUAN}_disk1 or …{$SANJUAN}_disk1!
!

expands to /volumes/seismicdata/panda/sanjuan_disk1!
!

while

!
… $SANJUAN_disk1!
!

tries to expand a variable named SANJUAN_disk1!
!

Which probably does not exist.!

setenv:

% setenv PATH /gaia/home/rsmalley/scripts:{$PATH} !

!
Note PATH is used twice. On the right with the $ it

refers to the current value of the environment
variable.

On the left it refers to the name of the

environment variable that is being set to the string
on the right (including the old value).

setenv:

% setenv PATH /gaia/home/rsmalley/scripts:{$PATH} !

!

In this case it will append the current value of
PATH to the new information and put everything

in a new version of PATH.

(sort of like vari=vari+1 in Fortran, Matlab, c,
etc. This is not a mathematical algebraic

equation.)

If you don’t write any of your own programs (or
always use the path to the program/file) you will
not have to change your path from the default.

!
(The default path at CERI will give you the path

to the tcsh (and other) shell(s), and the paths to
the tools such as MATLAB, SAC GMT, and some

others.)

Modifying your default environment.

We already saw that you can always change things
in your current environment [and that of any new

child process] using the setenv command.

But it will get old changing everything to the way
you want it each time you log in/open a new

window/start a new shell.

And this being UNIX, there is a (easy) way to set
up your own personal environment.

Modifying your default environment.

The setup of your personal environment
(personal changes/preferences for how you

want the shell to work for you) in csh and tcsh is
stored in the file named

.cshrc

(there is also a file .login, but it is not likely you will
have to change it (it get’s used when you log in,

not each time you start a shell) – so I’ll mention it
for completeness, but let’s ignore it.)

When to make your own environment variables.

Anytime you want a global definition of
something.

417:> grep rtvel .cshrc!
setenv latestrtvel rtvel4_9305_5bv19!
setenv LATESTRTVEL $latestrtvel!

Modifying your default environment variable
PATH using the .cshrc (.bashrc) file.

We are now doing brain surgery on ourselves.

In a mirror.

This is dangerous.

So--

Make a back up of the current, working .cshrc
(.bashrc) file before you change it.

Have a second terminal window open in case you
mess your file up so completely and break your

active window.

This way you have another window open to delete
the offending file and restore things from the
backup file. (Unless you run the command to change it in a window, the

environment is static once a window is open.)

You want this window open BEFORE you make
the change, as any window opened after the file is
saved will use the modified, bad, .cshrc (.bashrc)

file.

For your path, you will see something like this in
your .cshrc file.

!
set path = (. ~ ~/bin ~/shells ~/dem ~/defm ~/defm/src $path)!

Which uses the set command (local) rather than

the setenv command (global).

The man page for set says

var = value set assigns value to var, where value is

one of:

word - A single word (or quoted string).

(wordlist) - A space-separated list of words
enclosed in parentheses.

Ex. using the command set with the environment
variable path also sets the environment variable

PATH (tcsh).

265:> set path = ($path ~/ESCI7205)!

Now look at the environment variable PATH (using a
script I wrote to put out each entry on a separate line)

266:> ExaminePath.sh!
.!
/gaia/home/rsmalley!
/gaia/home/rsmalley/bin!
. . .!
!
/gaia/home/rsmalley/record_reading/scripts!
/gaia/home/rsmalley/ESCI7205!
267:>

The ESCI7205 entry was not there before.

When you set path, it also changes PATH.

When you setenv PATH, is also changes path.

They seem to track.

I’ve not been able to find documentation on how
this works. (I think one is for sh/bash and one for csh/tcsh)

But this is what you will see in both the

universal .cshrc (/etc/.cshrc), and if you make
changes, in your own .cshrc file.

It has been copied down through the ages.

After changing your path in the current shell.

First see what your path is.

266:> ExaminePath.sh!
.!
/gaia/home/rsmalley!
/gaia/home/rsmalley/bin!
. . .!
!
/gaia/home/rsmalley/record_reading/scripts!
267:> !

.cshrc (csh resource script)

configuration file (aka dot file)

setenv PATH .:/gaia/home/rsmalley/bin:$PATH!
setenv PATH ${PATH}:/gaia/home/rsmalley/record_reading/bin!
setenv PATH {$PATH}:/gaia/home/rsmalley/record_reading/scripts!
setenv PRINTER 3892!
alias cd 'cd \!*;echo $cwd’!
alias home "cd ~"!
alias del 'rm -i’!
set history=500!
set ignoreeof!
set savehist=500!
set filec!

.bashrc (bash resource script)

configuration file (aka dot file)

Slightly different

PATH=.:/Users/robertsmalley:/Users/robertsmalley/bin:$PATH!

Or (usually – so children inherit it)

export PATH=.:/Users/robertsmalley:/Users/robertsmalley/bin:$PATH!
!
export PATH=$PATH:/Users/robertsmalley/gamit_globk_10.4/com:/Users/robertsmalley/gamit_globk_10.4/gamit/bin:/Users/robertsmalley/gamit_globk_10.4/kf/bin!

Once you have made changes to your .cshrc
(.bashrc) (and saved them), which is just a file, how do

you have them activated in your current window/
shell?

(at this point they will be activated in any new shell/window/login)

You could log out and then log back in (not very
efficient as you loose your history, but it works),

or open a new window (ditto) and work there.

Use the source command with the .cshrc
(.bashrc) file as input. (don’t need the input

redirect “<“)

151:> source .cshrc!
152:> !

source: executes configuration files

If you change your configuration file, you will need
to execute source in all open terminal windows for

the changes to take effect. The changes
automatically will take effect when new terminal

windows/shells are opened.

Say you have edited the .cshrc file.

%nedit ~/.cshrc!
%source ~/.cshrc!

The default .cshrc file that everyone at CERI gets
when they login, open a window, or start a shell is

stored (on the SUN) in the file

/etc/.cshrc

And on the Mac in the file

/etc/csh.cshrc

After that the shell looks in your home directory
for a .cshrc, which is used to expand upon and/or

override the CERI values.

HOST*: environment variable with the name of the
machine you are currently logged into.

REMOTEHOST*: environment variable with the
name of the machine you are sitting in front of, if
different (e.g. you are in the class on a PC and
have used the program ssh to log into a sun at

CERI.).

!
161:> echo $HOST $REMOTEHOST!
alpaca.ceri.memphis.edu!
162:> !

SSH_CLIENT: the IP (internet protocol) address
and port of the HOST machine.

SSH_CONNECTION: the IP addresses and ports
of the HOST machine and the REMOTEHOST

machine.

!
162:> echo $SSH_CLIENT $SSH_CONNECTION!
75.66.47.230 51704 22 75.66.47.230 51704 141.225.157.63 22!
163:>!

If you want to get as much info as you can about
the IP addresses. (Can also put in the name and

get the address.)

169:> nslookup 141.225.157.63!
Server: dns1.memphis.edu!
Address: 141.225.253.21!
!
Name: alpaca.ceri.memphis.edu!
Address: 141.225.157.63!
!
170:> nslookup 75.66.47.230 !
Server: dns1.memphis.edu!
Address: 141.225.253.21!
!
Name: c-75-66-47-230.hsd1.tn.comcast.net!
Address: 75.66.47.230!
!
171:>!

Aside ---

How to destroy your input data file and how to

prevent doing that (i.e. accidently doing it).

First – look at file.

262:> more flong.dat!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
6!
7!
8!
9!
10!
263:>!

Sort it, using the sort command.

263:> sort flong.dat!
1!
10!
10!
2!
3!
4!
5!
6!
6!
7!
7!
8!
8!
9!
9!
264:>!

So far OK.

Say we want to save the sorted output to a file.
Use redirection.

!
264:> sort flong.dat > flong.dat!
265:> more flong.dat!
266:>!

We just erased our file!

Say we want to save the sorted output to a file.
Use redirection.

!
264:> sort flong.dat > flong.dat!
265:> more flong.dat!
266:>!

We just erased our file!

UNIX says we will need an output file, and (unless
your sys admin has done the non-UNIX

philosophy action of setting “no-clobber”) it has
permission to clobber a pre-existing output file –
so it does. It then goes looking for the input file ,

which it cannot find because it just erased it!!

(Notice that this is not consistent with the PATH=$PATH:/mybin or x=x+1 model!)

(consistency is the hob-goblin of little minds)

It sorts nothing (the now empty input file) and
puts it into the output file.

It sees no reason to complain, warn you, etc.

You are an adult, this behavior is “obvious” from
the operating principles of UNIX.

(and if you had not figured that out by logically
thinking everything through like a lawyer, you

have now been told!)

Bet you erase a few files before you learn this.

Say we want to save the sorted output to a file.
Use redirection.

!
264:> sort flong.dat > flong.dat!
flong.dat: File exists.!

UNIX says we will need an output file but your sys
admin has done the non-UNIX philosophy action

of defining “no-clobber” to protect you from
yourself so UNIX cannot make the output file

(since it cannot erase the pesky file with the same
name).!

Having no-clobber set prevents you from
inadvertently erasing existing files

It protects you from yourself.

Very non-UNIX philosophy.

(and no-clobber typically only works from the

terminal, in a shell script it will gladly clobber your
file.)!

Say we want to save the sorted output to a file.
Use redirection.

!
264:> sort flong.dat > flong.dat!
flong.dat: File exists.!
265:> sort flong.dat >! flong.dat!
266:> more flong.dat!
267:>!

But if you insist, you can still erase your input file!

The >! says to redirect the output to the file
flong.dat and clobber a file with that name if
you need to (i.e. a file with that name exists).!

Tricky distinctions in sh and bash

set is a shell command to set the value of a shell
attribute variable; these are internal variables

used by the shell program.�
�

env is a program that runs another program with
modified environment variables.

Tricky distinctions

The major difference is that the env command will
never modify the shell's own environment (only

that of the child process), while set will.

set can also change settings like brace expansion
within the shell.�

�
You might also want to look at export, which

changes the environment variables for all future
commands.

Tricky distinctions

Enter the commands set and env and look at the
differences (it will help if you sort the output of

env)

(e.g. - noclobber is a shell attribute variable, not
an environment variable – it is “set” and “unset”

using set)

How to set/clear noclobber

!
-bash 532 ~ # set -o | grep noclobber!
noclobber !off!
-bash 533 ~ # set -o noclobber!
-bash 534 ~ # set -o | grep noclobber!
noclobber !on!
-bash 535 ~ # set +o noclobber!
-bash 536 ~ # set -o | grep noclobber!
noclobber !off!
-bash 537 ~ # !

Basics of the UNIX/Linux
Environment

Aliases

Alias

The alias and unalias commands allow you to
rename, or define/undefine

“shortcuts” (including mental), for commands.

Their use parallels their name – you are using
another name, that is easier to type/remember,

for something.

You can set an alias in your shell interactively (you
will only have it locally and in child processes)

or set in your configuration files (.cshrc/.bashrc)
so it is available every time you login, start a
shell or open a new terminal window (which

starts a shell for that terminal window).

Typical UNIX think.

When to make/use aliases.

Anytime you find yourself typing the same
command over and over, you could make an alias.

Anytime you prefer to type a command “your

way”.

Typical UNIX think.

When to make/use aliases.

Anytime you find yourself mis-typing the same
thing over and over, you could make an alias

(“mroe” is usually aliased to the more command

for example {why learn to type?}.

The original, interactive spelling corrector!).

Example aliases taken from .cshrc on CERI SUN
system (so you get these automatically).

alias settitlebar !'echo -n "^[]2;$CWD^G"’!
alias cd 'chdir \!* && cwdcmd && settitlebar’!
alias howmuch !'du -sk .’!
alias a !alias!
alias h !'history'!
alias u !unalias!
alias m !more!
alias mroe more!
alias l 'ls -F'!
alias c !clear!
alias src !source!

Example aliases taken from my SUN .cshrc file.

alias mjday '/gaia/dunedain/d2/gps/oldbin/mjday’!
alias home "cd ~”!
alias x 'chmod +x’!
alias dir 'ls -lt | more'!
alias hp "lpr -Php_3890 "!
alias tek "lpr -P3904_tek"!
alias nb "lpr -P3892_grad "!
alias nbcolor "lpr -P3892_hpcolor ”!
alias DEM !"cd $home/dem”!
alias ssh_yang 'ssh -l gps yang.soest.hawaii.edu’!
alias ftp_jpl 'ftp bodhi.jpl.nasa.gov'!
alias matlab_term 'matlab -nodesktop –nosplash’!

You can find all the aliases that are defined by
using the command alias without any arguments.

Basics of the UNIX/Linux
Environment

Dealing with file names with special
characters

Say I have a file named “!”. (this is probably
because I used >! at some time while in bash, but

this syntax is for tcsh not bash, so I redirected my
output to a file called !)

!
$ rm !!
remove !? Y!

That was easy.

What about a file named “-”

!

Make a file named “-” with touch command

(use man to see what the touch command does)

> touch -!
> ls!
- f2.dat HW hw1a.txt SCRIPTS!
f1.dat f_1_2_3.dat hw1.txt NOTES SRC!
!

Try to remove it.

!
> rm - !
usage: rm [-fiRr] file ...!

What is the problem? (you tell me.)

We have to let the shell know that the “-” is NOT a
switch.

Use the “-” switch all by itself.

!
> rm - -!
rm: remove - (yes/no)? Y!
> !

Remember that filenames can have any character
but the “/” (used to define the path), so sooner

or later you are going to get a file name that will be
hard or dangerous to reference.

You will have to be especially careful/creative if

you get a file named “*” as

%rm *!

can be disastrous

(and the more privileges you have and the higher up you are in the directory structure,

the more disastrous it is.)

Basics of the UNIX/Linux
Environment

File Permissions

Every user on a UNIX system has a unique
username, and is a member of at least one group

(the primary group for that user).

A user can also be a member of one or more other
groups.

Only the administrator can create new groups or

add/delete group members (one of the
shortcomings of the system).

Every file (directories are files) on the system has
an owner, and also an associated group.

Every file also has a set of permission flags which

specify separate read, write and execute
permissions for the

'user' (owner),

'group',

and 'other’

(everyone else with an account on the computer)

Permissions

Read

ability to read the file (r).

Write

ability to write or overwrite the file (w).

Execute

ability to execute or run the file and allow others

to view directories (x).

(if a directory is not executable, non-owner’s cannot cd into it or

see what is in it at all.)

How to view the ownership & permissions of
files/direcories (review)

ls -l: lists long format

> ls -l!
total 2201712!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*!
-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt!
-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out!
Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst!
Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

Permissions!

How to view the ownership & permissions of
files/direcories (review)

ls -l: lists long format

> ls -l!
total 2201712!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*!
-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt!
-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out!
Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst!
Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

 Owner!

How to view the ownership & permissions of
files/direcories (review)

ls -l: lists long format

> ls -l!
total 2201712!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*!
-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt!
-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out!
Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst!
Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

 Group!

Changing owners and groups.

If you create a file, you are the owner/user.

Mitch and Bob have the SUN and Mac systems
set up to automatically set the group to ‘user’, or

all users of the CERI UNIX system.

Default permissions on the SUN are

rw-r--r--

(numerically 644)

And on the Mac are (seem to be)

rwx------

(numerically 700)

chmod

Command to change file or directory permissions
(change mode in the normal UNIX philosophy of

naming commands).

%chmod ugo+x hello.sh!
%ls -lF hello.sh!
-rwxr-xr-x 1 rsmalley user 21 Sep 16 08:36 hello.sh*!
!
go-x Removes execute privilages from group and other!
o+r Adds read privilages to other!

Flags (or numerical values) allows you to set the
permissions. Using wildcards you can set

permissions globally within a directory, and with
the –r flag all subdirectories.

Changing Permissions

you can also use octal values (numbers) to
change ownership

644 represents u=rw; go=r

755 represents u=rwx; go=rx

(using this puts you is a special eunuch class)

Basics of the UNIX/Linux Environment

Manipulating & Printing Files

Printing Commands

lpr: submit files for printing

% lpr -P3892_grad file.txt!

Printing Commands

lpq: show printer queue status useful to find out
if other jobs are before yours.

!
!
%lpq -P3892_grad!
3892_grad is ready and printing!
Rank Owner Job File(s) Total Size!
active hdeshon 146 junk.pdf 108544 bytes!

Identifies the job.

lprm: cancel print job (by number)

%lprm -P3892_grad 146!

lpstat: printer status information

useful for finding out printer names on Macs,

which are not necessarily the same as on the SUN
system

!
%lpstat –a!
_3876langston accepting requests since Wed Aug 27 13:11:36 2008!
hp_color_LaserJet_4600 accepting requests since Mon Aug 4 ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! !11:50:47 2008!

CERI Printers

Long Building (3892 Central)

3892_grad -- B & W printer in Mac Lab

3892_hpcolor -- Color printer in Mac Lab

3892_hpxlfp -- Poster printer in Mac Lab

3892_Mitch -- B & W printer in Mitch's office

3892_colorps -- B & W printer in

CERI Printers

House 3 (3876 Central)

3876_langston --

3876_hpcolor -- Color printer

3876_grad –

3876_bodin –

3876_powell –

CERI Printers

(Continued)

House 2 (3890 Central)

3890_hpcolor – Color printer in copier room

3890_copy – B & W printer in copier room

3890_sheila – B & W printer in Michelle's office

House 0 (3918 Central)

3918_usgs –

CERI Printers

(Continued)

House 1 (3904 Central)

3904_tek -- Color printer

3904_tekdup -- Color printer !

3904_hallway -- B & W printer

3904_brother --

Data Analysis in Geophysics �
ESCI 7205 �

Bob Smalley

Easiest way to get started

1) Find system with GMT already set up

2) Get working program (shell script) from
someone else and modify (hack) it.

Lots examples in

- Tutorial

- available on www

- available from your “friends”

What goes on in GMT

Sources of operational parameters/job control

i)  command line options/switches or program
defaults

ii) carried over from execution of previous
commands

iii) from your .gmtdefaults file

(looks first in working directory, then in your home directory, finally the system, program
defaults)

Sources of operational parameters/job control

Why a defaults file?

- too many parameters to require setting all
explicitly (powerful)

- customize – can have different defaults in

different directories

Basic GMT use

Most GMT programs

read input from terminal (stdin) or files, and

write output to terminal (stdout) (a few write to
files)

– follow UNIX philosophy.

To write output to files one can use UNIX
redirection (else goes to screen - uselessly):

GMTprogram switches >> Outputfile!

Most GMT programs will accept input-file names
and pipes in lieu of stdin

GMTprogram input-file switches > outputfile!
!
GMTprogram switches < input-file > outputfile!
!
Someprogram | GMTprogram1 | GMTprogram2 > outputfile!

Many GMT programs will also accept input
redirection (in-line input) – reads whatever

follows -- up to character string XXX -- as input.

GMTprogram switches << END > output-file !
.1 .1 !
.2 .2 !
END!

Can also do with “command substitution”:

GMTprogram switches << FIN > output-file !
`someprogram swithches < input-file…`!
FIN!
!
echo `someprogram swithches < input-file…` | GMTprogram switches
> output-file !

Some GMT programs require input-file names

(usually when need more than one input file, or

input usually so big that one would be forced to
pipe or redirect input all the time, or binary file,

etc.)

GMT and scripts

GMT commands act much like regular UNIX
commands.

Generally, commands are enacted within a shell
script so that they may be combined with other

UNIX commands such as awk (nawk, gawk).

bash and csh are the most commonly
encountered shells in academia and passing down

GMT scripts is how much of seismology gets
illustrated

Use Comments!

Comments are very popular to forget but if you
don’t comment your script, 2 years later you may
not remember what you were doing (especially if

you write tight UNIX code [as compact as possible] that
took 20 iterations to get "correct").

Spaces and blank lines make your script
readable. While it may take more paper if you

print it, it only takes two bytes to make new line or
a space.

Keeping track of your scripts

You will be glad (someday) if you set up
directories and subdirectories to keep your

maps, data, and scripts organized.

Mitch suggests have something like this in ~/GMT!

csh/ data/ ps/ scratch/ sh/!

There is a directory for csh scripts, for sh scripts,
for data files, for postscript files, and for scratch

files.

OK lets look at some “simple” examples:

Plot x1/2 from 0 to 100 as a dashed line, using red
triangles with green borders at x=n*10.

1) We start by making the basemap frame for a
linear x-y plot.

2) We want it to go from 0 to 100 in x, with ticks,

grid and annotation every 10, and from 0 to 10 in
y, with ticks, grid and annotation every 2.

3) The final plot should be 4 by 3 inches in size.

Note GMT does not make any helpful
assumptions such as

a) You want to plot the whole x and y range of the

data and

b) You want it to fit nicely on the page.

You have to specify EVERYTHNG (comes under
the excuse of being “powerful”)

Here's how we do it:

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
> plot.ps !

We will first look at how we specify to GMT how to

make the map/figure.

This is done using the command line options/
switches.

psbasemap

draws a map frame and sets up the map
parameters

(so they don’t have to be re-specified in later GMT program calls, although it is a good

idea – variables make it easy).

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
> plot.ps

Requirements 1 (projection) and 3 (axis sizes) are
specified to GMT together

1) We start by making the basemap frame for a

linear (the projection, or lack of one) x-y plot.

3) The final plot should be 4 by 3 inches in size.

psbasemap

The –J option selects the type of projection and
the scale.

In this case we want a linear x-y plot, or no
projection, which is specified by

x or X.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
> plot.ps

There are 25 projections available in GMT, each
specified by one letter (case sensitive to set

options).

There are no provisions for providing your own
projection.

(short of using the open source to roll your own.)

Requirements 1 and 3 are specified to GMT
together

The –J option also sets the axis scales (distance

per unit, x) or (axis length, X)

Where the “unit” is specified in .gmtdefaults or
explicitly – inches, i, or cm, c.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

2) We want it to go from 0 to 100 in x, with grid and
annotation every 10, and from 0 to 10 in y,

annotating every 1.

This is really two conditions

i) We want it to go from 0 to 100 in x, and from 0 to
10 in y.

Specified by the REGION (-R) option, which (in
the usual form) is

-Rxmin/xmax/ymin/ymax!

2) We want it to go from 0 to 100!

-Rxmin/xmax/ymin/ymax!
!

Notice that unlike MATLAB, GMT does not

make any assumptions about what you want

(such as the reasonable one that you just might want the region to show all the input

data).

You have to specify every detail. (i.e. powerful)

(why should the writers of gmt work hard when they can convince the user that it is

“better” if the users do!)

psbasemap -R10/100/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps

There are two forms for the –R option

1)  For projections where the boundaries follow
lines of latitude and longitude (“rectangle” on

sphere) – specify sides.

There are two forms for the –R option

2) For regions where the sides do not follow lines
of latitude and longitude (will make more sense
when we do map projections) - specify corners

by appending an “r” to end

The idea of a “region” to plot specified this way
breaks down for azimuthal projections

 (outside border of plot is a circle, you really want

to specify center and radius)

will see how to do this later.

2) We want ticks, grid and annotation in x every
10, and in y every 1.

This is specified by the –B option (Border?).

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

This is the most complicated GMT option.

Ticks and annotation – every 10 for x (first one)
and every 1 for y (second one).

If you wanted the same ticks and annotation for x

and y you would only have to specify it once.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

Not given in our specifications for the plot, but
controlled by the –B option, the plot title.

This is a little more complicated.

Labels are between colons, with

“.” for plot title,

nothing for x axis label,

“,” for y axis label.

If label/title is more than one word, has to be in
double quotes.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

If this sounds confusing you can look at the man
page for psbasemap for the full explanation

and more examples.

The man page for the –B option, however, is
practically incomprehensible.

The BUGS section of the man page states

“The -B option is somewhat complicated to
explain and comprehend. However, it is fairly

simple for most applications (see examples). “

Remaining options/switches

-P!

Sets the output to Portrait (long side vertical)
mode.

“Default” is Landscape (long side horizontal)
mode.

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

This option actually switches “states”.

Remaining options/switches

If .gmtdefaults defines portrait mode as the
default, then –P will send it to landscape.

(make a figure and see how it comes out, if you

don’t like the orientation stick in a –P).

So, what did we get for all our effort?

Good start – but usually we make plots to show
some sort of data

– so how do we do that?

So, what did we get for all our effort?

Now let’s look at a little more complicated
example:

Lets call it “full_court_press.sh”

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!
!

This is more than “a little more” complicated.

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

But it follows the UNIX philosophy – a bunch of
simple things stuck together to do something

more complex.

Gives you the idea that most useful GMT
produced figures are going to be a LOT of GMT

calls

Here’s what the output looks like

(actually the output is a ascii file containing a PostScript program, this is what it looks like
after displaying with GhostScript or GhostView to the screen or printing to a PostScript

printer).

Let’s look at it piece, by simple piece.

Set shell

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1,!
...!

Set shell to Bourne Shell.

Could also have set it to bash or csh

(change first line to #!/usr/bin/csh -f, this works because this script does not contain
anything that is specific to one shell script – such as variable name definition. Use -f,

fast, option which stops it from running your .cshrc).

Next piece.

Get (actually make) input data – part 1

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

sample1d, resamples (here interpolates) the input,
which in this case is redirected (<<) to being in-
line from the shell script (from the end of this
command line, which is somewhat far away, to

END) and pipes it to the next guy.

#!/bin/sh!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

We have to specify the resampling step (-I1,
which is steps of 1).

We will leave everything else at the default values.

(see man page if you want more info)

sample1d provides a list of numbers from 0 to 100
in steps of 1 to stnd out.

Next piece. Get (make) input data – part 2

We want x and sqrt(x)!

#!/bin/sh!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Pipe the re-sampled data into the program nawk.

nawk is a great tool for preprocessing data for

GMT.

Next piece.

Generate input data – part 2

#!/bin/sh!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

The nawk command says to print the first column
($1) and the square root of the first column

(sqrt($1)) of every line.

We will (break the UNIX philosophy and) make an intermediate file
as we will need the data more than once.

Next piece.

Plot it

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

The graphics part of GMT

psxy is the GMT program that plots points and
lines.

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

psxy accepts the “standard”/”global” options of
the GMT filters that produce PostScript output.

(one can put all the plot/map specifications into the first GMT call rather than use
psbasemap, everything we said before holds, so we don't have to re-say it.)

We already know what –R, -J, –B and –P do,

although the –B option here is a bit more
complicated looking.

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Output file $0.ps (is first instance so use >,
append in second instance so use >> – this takes

care of UNIX part)

Use \ to continue command on next line

Next piece.

...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
...!

So, what’s all that extra stuff on the –B?

Each of the letters controls a different feature/
aspect of the plotting of the axis

...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
...!

a is for annotation spacing

g is for grid spacing

WSne says to plot the annotation and ticks on the
West and South sides and ticks only on the north

and east sides.

(how would you put annotation without ticks?)

Next piece

Name the output file.

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Being lazy and disorganized - I don’t want to have

to type the output file name in lots of times nor
keep track of which shell script made which

postscript file in my directory.

Next piece

Name the output file.

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

So I want to find a short and easy way to name

the file, and I might want to associate the output
file name with the name of the shell script that

made it.

Enter UNIX argument passing to the rescue.

When you call a shell script, the system passes
predefined, pre-named “arguments” to the shell

script from the command line.

So if I enter

“myscript arg1 arg2”!

UNIX automatically gives me (in this case 3
arguments)

$0 ! !the name of the shell script!

$1 ! !the value of arg1 (character string)!

$2 ! !the value of arg2 !!

All I have to do to use these arguments in my
shell script (within some constraints) is stick them

in.

The Shell will expand them to their proper values.

So my output file will be named

“full_court_press.sh.ps”,

since $0 will get expanded to
“full_court_press.sh”

(the name of the shell script)

Next piece.

Draw a line -W5t15_15:0!
...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
. . .!

Make line 5 units thick (where units depends on
the device and default settings)

-W5t15_15:0 !

Can also specify color

-W5/0t15_15:0 for black line or

-W5/255/0/0t15_15:0 for red line

...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
. . .!

Make it dashed with dashes 15 units long followed
by 15 unit long open spaces -W5t15_15:0, and a

“phase offset” for the dashes of zero -
W5t15_15:0!

 compare to -W5t120_15:60 !
(line segments specified to be 120 long and then 15 blank, first line segment only 60 long

[phase])

What is “phase offset”

This format also works

W[width],[color],[texture]!

-W5,0,15_15:-!

-W5,255/0/0,15_15:-!

-W5,red,15_15:-!

!

Gives the same plot.

Generate input data w/out temporary file

Using nawk, one does not have to write programs
to make intermediate files in GMT input format,

but can go right to the source data file,

read it,

modify each line into GMT input format

and pipe this directly into the GMT program.

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | \!
psxy -R0/100/0/10 -JX4/2 -Ba20f10g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P -K > $0.ps!
0 0!
100 0!
END!

Generate input data

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | psxy \!
-R0/100/0/10 -JX4/2 -Ba20f10g10/a2g2WSne -W5t15_15:0 -Y2 -P -K \
> $0.ps!
0 0!
100 0!
END!

The nawk command says to print the first column
($1) and the square root of the first column

(sqrt($1)) of every line.

Then pipe the data straight to psxy for plotting.

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | psxy \ !
-R0/100/0/10 -JX4/2 -Ba20f10g10/a2g2WSne -W5t15_15:0 -Y2 -P –K \
> $0.ps!
0 0!
100 0!
END!

Note: sort of confusing since the stuff in blue is
associated with the first part (sample1d…).

Next piece. Misc. 1

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

-Y2 offset plot 2 units in the Y direction (else x
axis labels get cut off across bottom of plot)

Misc. 2

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

-K do not close PostScript file

(we will be adding to the plot so don’t close it.

Unless otherwise specified each gmt call will put
out both the header and trailer.)

-K do not close
PostScript file (don’t output

“showpage”) so more
PostScript can be

appended to the file

-O do not initialize
PostScript

(does not output PostScript header

stuff) so this can be
appended to existing

file (that hopefully
does not have a

showpage at the end).

1st needs -K omits the
trailer

Last needs -O omits the
header

2nd through next to last
needs both -K and –O
to omit both the header
and trailer

Misc. 3

Several common “gotchas”

– no showpage (can see on screen, but does not
print – actually prints a blank page) (error: have

a –K in last GMT call)

-  showpage in middle of file (error: forgot the –K
somewhere) – only get part of file on screen or in

final print or get ghostscript error message.

- Have header in middle of file (error: forgot –O
somewhere), get ghostscript error message.

Next piece.

Draw symbols every 10th point

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

 Resample our

temporary file –
taking every 10th
point (-I10). Pipe
output to psxy!

Next piece.

Draw symbols -St0.2!

...!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Draw symbols -S, make triangles, t, with a size
of 0.2 units (see man page for what dimension

size relates to), -St0.2!

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Fill the symbol, -G flag, with color red, -G255/0/0,
or -Gred!

Can also use color names (red, green, blue. There
are over 700 X-11 color names).

Next piece.

Draw symbols

Next piece.

Draw symbols

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Make the line outlining/drawing the symbols, -W
flag, that is 5 units wide, and draw outline in green

(R/G/B) -W5/0/255/0 or W5/green!

Colors specified in
R/G/B format

(intensity of Red, Green and Blue
color guns – primary colors for

additive system).

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Next piece.

Will append to previous plot so use –O to

prevent initialization of PostScript

(use when adding, so it does not start new plot)

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Next piece.

Append to previously started file using >>.

We’re done!

That wasn’t so bad now, was it?

