Introduction to Unix

Frank G. Fiamingo

Linda DeBula

Linda Condron

University Technology Services

The Ohio State University

September 23, 1998

© 1996-1998 University Technology Services, The Ohio State University, Baker Systems Engineering
Building, 1971 Neil Avenue, Columbus, OH 43210.

All rights reserved. Redistribution and use, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Neither the name of the University nor the names of its contributors may be used to endorse or promote
products or services derived from this document without specific prior written permission.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. THIS PUBLICATION MAY
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

UNIX is a registered trademark of The Open Group, AT&T is a trademark of American Telephone and
Telegraph, Inc.

This publication is provided “as is” without warranty of any kind. This publication may include
technical inaccuracies or typographical errors.

Copyright and URLSs revised September 1998

The authors’ email addresses are:

Frank Fiamingo fiamingo.1@osu.edu
Linda DeBula debula.2@osu.edu
Linda Condron condron.1@osu.edu

This document can be obtained via:
http://wks.uts.ohio-state.edu/unix_course/unix.html
or
ftp://wks.uts.ohio-state.edu/unix_course/unix_book.ps

2 0 1998 University Technology Services, The Ohio State University Introduction to Unix

Table of Contents

1 HISTOrY Of UNIX ..o
2 UNIX STIUCTUIE .ot
2.1 The Operating SYSIEMuuiiiiiiiiiiiiiiieeeee e 9
2.2 The File SYSIEMooviiiiii i e e 11
2.3 Unix Directories, Files and INOdes ... 12
2.4 UNIX Programsoooooioiiiiiiiiiiiiiie e 13
3 Getting Startedoooveeiiii e 14
% R oo o |1 T N IO PPPPPPPRRPRPPPR 14
3.1.1 Terminal TYPE ..cooovviieeeeeeee e 14
3.1.2 PASSWOIUS ...euuiiiiiieieeeeeee ettt e e e e e e eeeeeaenees 15
3. 1.3 EXItING oo 15
314 1deNtitY .uoeeiiee e —————— 16
3.2 Unix Command Line StruCtureooeeevviieiiiiiiiiineeeeeeeeeeeeeeee 16
3.3 CoNtrol KEYS ..ot 17
3.4 stty -terminal controlccoooiiiiiiii e 17
3.5 Getting HeIP .o 19
3.6 Directory Navigation and Controlcccccceeeeiiiiiiiiiiiiiiiiinnee, 20
3.6.1 pwd - print working directorycccccccevviiiiiiiiinnnnns 21
3.6.2 cd-change direCtoryuuuuveiiiiiiiieeeeeeeeieeeeeeiiiiiees 21
3.6.3 mkdir - make a direCtorycccccveeviiiiiiiiiiniis 22
3.6.4 rmdir - remove dire€Ctorycceeeeevviieeiiiiiccccee e 22
3.6.5 Is-list directory CONtentscooevvvvveivniiiininieeeeeeeenn. 23
3.7 File Maintenance Commandsccccceeieeiiieeeeeeereeeeeeeeeeeeneennnnns 25
3.7.1 cp-copy afile i 26
3.7.2 mv-move afile ..o 26
3.7.3 rm-remove afileoooooooiiiiiiiiiiiii 27
3.7.4 File PErmiSSiONScccooiiiiiiiiiiiiiiiiiiiieeeee e 27
3.7.5 chmod - change file permissionsccccceeeeviieeeennen. 28
3.7.6 chown - change ownershipcccccceiiiieeeeiiiis 29
3.7.7 chgrp - change groupccccceeeeiiiieieeeeeeeeeeeeeeeeiias 29
3.8 Display COmMMAaNASuuiiiiiiieeieeei e 30
3.8.1 echo-echo astatementccccceeeeeieiiiieeeiinieeeeeeiies 30

Introduction to Unix 00 1998 University Technology Services, The Ohio State University

3.8.2 cat-concatenate afilecoooeeeiiiiieii 31

3.8.3 more, less, and pg - page through afile 31
3.8.4 head - display the start of a filecccceeeeiiiiiiinnnnnnns 32
3.8.5 tail - display the end of afilecccccooovviviiiiiiiiiinnnnnnn. 32
4 System Resources & Printingccooeviiiiiiiiiie e, 33
4.1 SYSIEM RESOUITES ...ceviiiieeieiiie et e e e eeaa s 33
4.1.1 df - summarize disk block and file usage 34
4.1.2 du - report disk Space iN USEccceeveeeiiieeeeeeniieiiieeinnns 34
4.1.3 ps - show status of active proCessescccceevvveeeeeeenn. 35
4.1.4 Kill - terminate @ ProCESSvvvreeiereriiiiieeeeaeeaiiannanans 36
4.1.5 WwWho - liSt CUITENT USEIS ...coooiiiiiiiiieeeeeeee e 37
4.1.6 whereis - report program locationscccceeeeeeeeene. 37
4.1.7 which - report the command foundcccuvvneeee. 38
4.1.8 hostname/uname - name of machineccceueee.e. 38
4.1.9 script - record your screen /Oceeiiiiiiieeeiiiineeene, 38
4.1.10 date - current date and timeeevceeiiiieiieeeeeeenenenne, 40
4.2 Print COMMANASuuuiiiiiiiiiiiiiieieeeeeee e e eeees 41
4.2.1 |Ip/lpr - submita print Jobccccoeiiiiiiiis 41
4.2.2 |Ipstat/lpq - check the status of a printjob 42
4.2.3 cancel/lprm - cancel a print jobccccceeeeiiiiiieeeennnnnn. 42
4.2.4 pr- prepare files for printingcccoeeeeeeeeeiiiiiieeieiiinn, 43
5 SNEIIS oo 45
51 BUIlt-iN COMMANTAS ...ovviiiiiiiiieee e 46
5.1 SH oo 46
5.1.2 CSh i 47
5.2 Environment Variables ... 48
5.3 The Bourne Shell, Sh ... 49
54 The C Shell, CSN e 50
55 JOD CONMIOl ... 51
o T 11 (o] Y/ 52
5.7 Changing your Shell ..., 54
6 Special Unix FEAtUIeSccociiiiiiiii i 55
6.1 File DESCIIPLOIS .eeviiiiiiiiiiaee ettt e e e e e eeeeeaeenes 55
6.2 [1 (= =T [= Tox 1o o SO 55
B.2.1 €SN o ——————— 56
B.2.2 SN oo ——————————— 57
6.3 Other Special Command SymbolScccceiiiiiiiiiiis 58
6.4 WIld CArdsueeiiiiiiiiiiiiiiiiecee e 58
7 TEXE PrOCESSING .uuuiiiiieiiie ettt e 59
7.1 Regular EXpression SYNtaxccccceevviviiiieeeeieiiiiieeeeeeeiinseeeeennns 59
7.2 Text Processing CoOmMmMANdScccuuvumrmiimiriiiiieeeeaeea e 61
2.1 QU et 61
T.2.2 SEA e 65

00 1998 University Technology Services, The Ohio State University Introduction to Unix

7.2.3 awk, NaWK, QawKcceiiiiiiiiiiiii e 67

8 Other Useful Commandscccoeiieiiiiiiiii e 70
8.1 Working With FIleSooiiiiii e 70
8.1.1 cmp - compare file CONENLSevvveiiiiiiiiiiiiiiieiiiiinn, 71
8.1.2 diff - differences infilesccccommiiiiiiiii 72
8.1.3 cut-selectpartsofalineccccceeeeiiiiiiiiiiiiiiiiiiiiiiies 73
8.1.4 paste - merge filesccccoviiiiiiiiiiii 74
8.1.5 touch-create afileccccccccvvvviiiiiiiiiii, 76
8.1.6 wc-countwordsinafileccoooiiiiiiiiiiiii, 77
8.1.7 In-linkto anotherfilecccooveviiiiiiiiiiiiieeeeeeeee, 78
8.1.8 sort - sort file contentscccceeeeeeiiieiiieeeeieeeee 79
8.1.9 tee - copy command OULPULcceeeeeeeeriieeiiiiiiiiiiiinnn 82
8.1.10 uniq - remove duplicate linesocooeiiiiiiiiiiiiieeen. 84
8.1.11 strings - find ASCII StriNgSccooeeviviieeeeceee e 85
8.1.12 file - file tyPe .ceeeeeeeee 86
8.1.13 tr - translate characterscccccvvvvvvveviiiiiiiiieee e, 86
8.1.14 find - fiNd fileS ...ovvvveiiiiieee 89
8.2 File Archiving, Compression and Conversionccccoee..... 91
8.2.1 File COMPIeSSIONcoovviiiiiiiieeiiiiiiiee e 91
8.2.2 tar-archive filesccoooviiiiiiiiii, 93
8.2.3 uuencode/uudecode - encode afileccoeeeiiiiininnn. 94
8.2.4 dd - block copy and convertccccvvviiiiiiiiiiiiinennn. 95
8.2.5 od-octaldump ofafilecccccoeveeeiiieiiiii 96
8.3 Remote CONNECLIONSuvuuiiiiiiiieie e 98
8.3.1 TELNET and FTP - remote login and file transfer protocols 98
8.3.2 finger - get information about userscc......... 100
8.3.3 Remote COMMANAScouuvvvummiiiiiieeeeee e 101
9 Shell Programmingcooooiiiiiiiiiceice e 103
9.1 Shell SCrIPLS ..ooeiiiieeeee e 103
9.2 Setting Parameter Valuescoovverieiiiiiiiiiiiiie e eeeeeeeeeeeiinnns 103
9.3 (@ 11T] 1] o PP URPPPRN 104
9.4 VarabIes ..o 105
9.5 Parameter SUBbSHIIULIONcccooviiiiieiiiirie e 107
9.6 Here DOCUMENTiiiii e 109
9.7 INteractive INPULoooiiiiiii e 110
0.7. 1 Sh 110
0.7.2 CSh o 110
9.8 FUNCLIONS ... 111
9.9 Control COMMANASouvuviiiiiiiiie e 113
9.9.1 Conditional ifoiiiiiiiiii s 113
9.9. 1.1 Sh oo ———— 113
9.9.1.2 CSN oo 114
9.9.2 Conditional switch and caseccccceeveevvviiiiineeeennnns 115
9.9.2. 1 Sh oo ——— 115

Introduction to Unix 00 1998 University Technology Services, The Ohio State University

9.9.2.2 CSN oo 116

9.9.3 forandforeachcccovviiiiiiiiiiiiii s 117
9.9.3. 1 Sh oo 117
9.9.3.2 CSh i 117
9.9.4 WhHIlE oo 118
9.9 4.1 Sh oo 118
9.9.4.2 CSh ooiiiiie e 119
9.9.5 UNLI weviiiiiiiiie e 119
0.9.6 LBST .eiiiiiiiiiiieeiiie s 120
9.9.7 C Shell Logical and Relational Operators 122
EAITOrS oo 123
10.1 Configuring YOUr Vi SESSIONccooiiiiiieiiiiieieieeiiiiiin e 124
10.2 Configuring YOur €macs SESSIONcceeeeeeeeiiiiiiiiiiiiiiiiinnne 125
10.3 Vi Quick Reference GUIdEccooeevvviiiiieiiiiiiiee e, 126
10.4 emacs Quick Reference Guidecccevviiiiiiiiiiiiiiee e, 127
Unix Command SUMMAIYcoouiiiiiiiiieceii e 128
11.1 UNiX COMMANAS .oeviiiiiiiiieee et e e e e e e e e e e e e eeeeeaneeennnns 128
A Short Unix Bibliography ... 131
12.1 Highly Recommended ...ttt 131
12.2 ASSOred OtNEIS ...ccoeeiieieiie et 131

00 1998 University Technology Services, The Ohio State University Introduction to Unix

CHAPTER 1 HiStOl'y of Unix

1965 Bell Laboratories joins with MIT and General Electric in the development effort for the new
operating system, Multics, which would provide multi-user, multi-processor, and multi-level
(hierarchical) file system, among its many forward-looking features.

1969 AT&T was unhappy with the progress and drops out of the Multics project. Some of the Bell

Labs programmers who had worked on this project, Ken Thompson, Dennis Ritchie, Rudd Canaday
and Doug Mcllroy designed and implemented the first version of the Unix File System on a PDP-7
along with a few utilities. It was given the name UNIX by Brian Kernighan as a pun on Multics.

1970,Jan 1 time zero for UNIX

1971 The system now runs on a PDP-11, with 16Kbytes of memory, including 8Kbytes for user
programs and a 512Kbyte disk.

Its first real use is as a text processing tool for the patent department at Bell Labs. That utilization
justified further research and development by the programming group. UNIX caught on among
programmers because it was designed with these features:

e programmers environment

« simple user interface

« simple utilities that can be combined to perform powerful functions

« hierarchical file system

« simple interface to devices consistent with file format

e multi-user, multi-process system

« architecture independent and transparent to the user.

1973 Unix is re-written mostly in C, a new language developed by Dennis Ritchie. Being written in
this high-level language greatly decreased the effort needed to port it to new machines.

1974 Thompson and Ritchie publish a paper in the Communications of the ACM describing the
new Unix OS. This generates enthusiasm in the Academic community which sees a potentially grea
teaching tool for studying programming systems development. Since AT&T is prevented from

marketing the product due to the 1956 Consent Decree they license it to Universities for educationa
purposes and to commercial entities.

1977 There are now about 500 Unix sites world-wide.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 7

History of Unix

1980 BSD 4.1 (Berkeley Software Development)
1983 SunOS, BSD 4.2, SysV

1984 There are now about 100,000 Unix sites running on many different hardware platforms, of
vastly different capabilities.

1988 AT&T and Sun Microsystems jointly develop System V Release 4 (SVR4). This would later
be developed into UnixWare and Solaris 2.

1993 Novell buys UNIX from AT&T
1994 Novell gives the nam&NIX" to X/OPEN

1995 Santa Cruz Operations buys UnixWare from Novelll. Santa Cruz Operations and
Hewlett-Packard announce that they will jointly develop a 64-bit version of Unix.

1996 International Data Corporation forecasts that in 1997 there will be 3 million Unix systems
shipped world-wide.

8 00 1998 University Technology Services, The Ohio State University Introduction to Unix

The Operating System

CHAPTER 2 Unix Structure

2.1 The Operating System

Unix is a layered operating system. The innermost layer is the hardware that provides the services fc
the OS. The operating system, referred to in Unix akeheel, interacts directly with the hardware

and provides the services to the user programs. These user programs don’t need to know anythir
about the hardware. They just need to know how to interact with the kernel and it's up to the kernel
to provide the desired service. One of the big appeals of Unix to programmers has been that mo:
well written user programs are independent of the underlying hardware, making them readily portable
to new systems.

User programs interact with the kernel through a set of stasglatdm calls These system calls
request services to be provided by the kernel. Such services would include accessing a file: ope
close, read, write, link, or execute a file; starting or updating accounting records; changing ownershif
of a file or directory; changing to a new directory; creating, suspending, or killing a process; enabling
access to hardware devices; and setting limits on system resources.

Unix is amulti-user, multi-tasking operating system. You can have many users logged into a
system simultaneously, each running many programs. It's the kernel’s job to keep each process an
user separate and to regulate access to system hardware, including cpu, memory, disk and other |,
devices.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 9

Unix Structure

FIGURE 2.1 Unix System Structure

Programs

Hardware

System Calls

10 00 1998 University Technology Services, The Ohio State University Introduction to Unix

The File System

2.2 The File System

The Unix file system looks like an inverted tree structure. You start wittothelirectory, denoted
by /, at the top and work down through sub-directories underneath it.

FIGURE 2.2 Unix File Structure

bin dev etc lib tmp usr home

/\ N
ttya cuaO

bin lib local

passwd group

sh date csh
condron frank lindadb
source mail bin
xntp traceroute

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 11

Unix Structure

Each node is either file or adirectory of files, where the latter can contain other files and
directories. You specify a file or directory by jiigth name, either the full, or absolute, path name or

the one relative to a location. The full path name starts with the root, /, and follows the branches of
the file system, each separated by /, until you reach the desired file, e.g.:

/home/condron/source/xntp

A relative path name specifies the path relative to another, usually the current working directory that
you are at. Two special directory entries should be introduced now:

the current directory

the parent of the current directory

So if I'm at /home/frank and wish to specify the path above in a relative fashion | could use:

../condron/source/xntp

This indicates that | should first go up one directory level, then come down througbnitien
directory, followed by theourcedirectory and then tentp.

2.3 Unix Directories, Files and Inodes

Everydirectory andfile is listed in its parent directory. In the case of the root directory, that parent

is itself. A directory is a file that contains a table listing the files contained within it, giving file
names to thewode numbers in the list. An inode is a special file designed to be read by the kernel to
learn the information about each file. It specifies the permissions on the file, ownership, date of
creation and of last access and change, and the physical location of the data blocks on the disk
containing the file.

The system does not require any particular structure for the data in the file itself. The file can be
ASCII or binary or a combination, and may represent text data, a shell script, compiled object code
for a program, directory table, junk, or anything you would like.

There’s no header, trailer, label informatiorE®F character as part of the file.

12 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Unix Programs

2.4 Unix Programs

A program, or command, interacts with the kernel to provide the environment and perform the
functions called for by the user. A program can be: an executable shell file, known as a shell script; ¢
built-in shell command; or a source compiled, object code file.

Theshellis a command line interpreter. The user interacts with the kernel through the shell. You can
write ASCII (text) scripts to be acted upon by a shell.

System programs are usually binary, having been compiled from C source code. These are located
places likgbin, /usr/bin, /usr/local/bin, /usr/ucb, etc. They provide the functions that you normally
think of when you think of Unix. Some of these ahecsh date who, more, and there are many
others.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 13

Getting Started

CHAPTER 3 Getting Started

3.1 Logging in

After connecting with a Unix system, a user is prompted fogia username, thenmassword The

login username is the user's unique name on the system. The password is a changeable code known
only to the user. At thimgin prompt, the user should enter the username; giabsword prompt,

the current password should be typed.

Note: Unix is case sensitiveTherefore, théogin andpasswordshould be typed exactly as issued;
the login, at least, will normally be in lower case.

3.1.1 Terminal Type

Most systems are set up so the user is by default prompted for a terminal type, which should be set to
match the terminal in use before proceeding. Most computers work if you chbb38'." Users
connecting using a Sun workstation may want to gga"; those using an X-Terminal may want to

use kterms" or "xterm".

The terminal type indicates to the Unix system how to interact with the session just opened.

Should you need to reset the terminal type, enter the command:

setenv TERM<term type> - if using the C-shell (see Chapter 4.)
(On some systems, e.g. MAGNUS, it's also necessary to typgetenv TERMCAP)
-Or-

TERM=<term type-; export TERM - if using the Bourne shell (see Chapter 4.)

where ¢erm type is the terminal type, such @00, that you would like set.

14 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Logging in

3.1.2 Passwords

When your account is issued, you will be given an initial password. It is important for system and
personal security that the password for your account be changed to something of your choosing. Th
command for changing a passwordpasswd. You will be asked both for your old password and to
type your new selected password twice. If you mistype your old password or do not type your new
password the same way twice, the system will indicate that the password has not been changed.

Some system administrators have installed programs that check for appropriateness of password (is
cryptic enough for reasonable system security). A password change may be rejected by this progran

When choosing a password, it is important that it be something that could not be guessed -- either b
somebody unknown to you trying to break in, or by an acquaintance who knows you. Suggestions fo
choosing and using a password follow:
Don't use a word (or words) in any language
use a proper name
use information that can be found in your wallet
use information commonly known about you (car license, pet name, etc)
use control characters. Some systems can't handle them
write your password anywhere
ever give your password to *anybody*
Do use a mixture of character types (alphabetic, numeric, special)
use a mixture of upper case and lower case
use at least 6 characters
choose a password you can remember
change your password often
make sure nobody is looking over your shoulder when you are entering your password

3.1.3 Exiting
"D - indicates end of data stream; can log a user off. The latter is disabled on many systems
AC - interrupt
logout - leave the system
exit - leave the shell

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 15

Getting Started

3.1.4 Identity

The system identifies you by the user and group numhemsrid and groupid, respectively)
assigned to you by your system administrator. You don’t normally need to know your userid or
groupid as the system translates usernameserid, and groupname groupid automatically. You
probably already know your username; it's the name you logon with. The groupname is not as
obvious, and indeed, you may belong to more than one group. Your primary group is the one
associated with your username in the password database file, as set up by your system administrator.
Similarly, there is a group database file where the system administrator can assign you rights to
additional groups on the system.

In the examples belo® is your shell prompt; you don't type this in.
You can determine your userid and the list of groups you belong to withd thed groups
commands. On some systeitislisplays your user and primary group information, e.g.:
% id
uid=1101(frank) gid=10(staff)
on other systems it also displays information for any additional groups you belong to:
% id
uid=1101(frank) gid=10(staff) groups=10(staff),5(operator),14(sysadmin),110(uts)
Thegroupscommand displays the group information for all the groups you belong to, e.qg.:

% groups
staff sysadmin uts operator

3.2 Unix Command Line Structure

A commandis a program that tells the Unix system to do something. It has the form:

command §ptiong [argument$
where arargument indicates on what the command is to perform its action, usually a file or series of
files. An option modifies the command, changing the way it performs.

Commands are case sensitivemmandandCommandare not the same.

Options are generally preceded by a hyphgngnd for most commands, more than one option can be
strung together, in the form:

command -[option][option][option]
e.g..

Is-alR
will perform a long list on all files in the current directory and recursively perform the list through all
sub-directories.
For most commands you can separate the options, preceding each with a hyphen, e.g.:

command-optionl -option2 -option3

16 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Keys

as in:

Is-a-I-R
Some commands have options that require parameters. Options requiring parameters are usual
specified separately, e.g.:

Ipr -Pprinter3 -# 2 file
will send 2 copies of file to printer3.
These are the standard conventions for commands. However, not all Unix commands will follow the
standard. Some don’t require the hyphen before options and some won't let you group options

together, i.e. they may require that each option be preceded by a hyphen and separated by whitespe
from other options and arguments.

Options and syntax for a command are listed inmhe pagefor the command.

3.3 Control Keys

Control keys are used to perform special functions on the command line or within an editor. You
type these by holding down ti@ontrol key and some othdéwrey simultaneously. This is usually
represented &K ey. Control-S would be written a8S. With control keys upper and lower case are
the same, sOS is the same &%s. This particular example isstop signal and tells the terminal to
stop accepting input. It will remain that way until you typstaat signal,Q.

Control-U is normally the line-kill * signal for your terminal. When typed it erases the entire input
line.

In thevi editor you can type a control key into your text file by first tygivgfollowed by the control
character desired, so to typld into a document typ&/"H .

3.4 stty - terminal control

stty reports or sets terminal control options. Ttig™is an abbreviation that harks back to the days
of teletypewriters, which were associated with transmission of telegraph messages, and which wer
models for early computer terminals.

For new users, the most important use of gttg command is setting the erase function to the
appropriate key on their terminal. For systems programmers or shell script writstsy toenmand
provides an invaluable tool for configuring many aspects of I1/O control for a given device, including
the following:

- erase and line-kill characters

- data transmission speed

- parity checking on data transmission

- hardware flow control

- newline (NL) versus carriage return plus linefeed (CR-LF)

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 17

Getting Started

- interpreting tab characters
- edited versus raw input
- mapping of upper case to lower case

This command is very system specific, so consultriha pagesfor the details of thetty command
on your system.

Syntax
stty [options]

Options
(none) report the terminal settings
all (or-a) report on all options
echoe echo ERASE as BS-space-BS
dec set modes suitable for Digital Equipment Corporation operating systems (which
distinguishes between ERASE and BACKSPACE) (Not available on all systems)
kill set the LINE-KILL character
erase set the ERASE character
intr set the INTERRUPT character
Examples

You can display and change your terminal control settings witsttqeommand. To display aHg)
of the current line settings:
% stty -a
speed 38400 baud, 24 rows, 80 columns
parenb -parodd cs7 -cstopb -hupcl cread -clocal -crtscts
-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr -igncr icrnl -iuclc
ixon -ixany -ixoff imaxbel
isig iexten icanon -xcase echo echoe echok -echonl -nofish -tostop
echoctl -echoprt echoke
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel
erase kill werase rprnt flush Inext susp intr quit stop eof
A ANJ AW AR MO AV AZIAY AC N AS/AQ D

You can change settings usistty, e.g., to change the erase character fi@r{the delete key) toH :

% stty erase "H

This will set the terminal options for the current session only. To have this done for you
automatically each time you login, it can be inserted intoltiggn or .profile file that we’ll look at
later.

18 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Getting Help

3.5 Getting Help

The Unix manual, usually calledan pages is available on-line to explain the usage of the Unix
system and commands. To use a man page, type the conmmamidat the system prompt followed
by the command for which you need information.

Syntax

man [options] command_name

Common Options

-k keyword list command synopsis line for all keyword matches
-M path path to man pages
-a show all matching man pages (SVR4)

Examples

You can usenan to provide a one line synopsis of any commands that contain the keyword that you
want to search on with thek" option, e.g. to search on the keywgakssword type:
% man -k password
passwd (5) - password file
passwd (1) - change password information

The number in parentheses indicates the section of the man pages where these references were fou
You can then access the man page (by default it will give you the lower numbered entry, but you car
use a command line option to specify a different one) with:

% man passwd

PASSWD(1) USER COMMANDS PASSWD(1)
NAME
passwd - change password information
SYNOPSIS
passwd [-e login_shell] [username]
DESCRIPTION

passwd changes (or sets) a user's password.

passwd prompts twice for the new password, without displaying

it. This is to allow for the possibility of typing mistakes.

Only the user and the super-user can change the user's password.
OPTIONS

-e Change the user's login shell.

Here we’ve paraphrased and truncated the output for space and copyright concerns.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 19

Getting Started

3.6 Directory Navigation and Control

The Unix file system is set up like a tree branching out from the root. Thredhéirectory of the

system is symbolized by the forward slash (/). System and user directories are organized under the

root. The user does not have a root directory in Unix; users generally log into theloomen
directory. Users can then create other directories undehthrae The following table summarizes
some directory navigation commands.

TABLE 3.1 Navigation and Directory Control Commands

Command/Syntax

What it will do

cd [directonyj

change directory

Is [options] [directory or file]

list directory contents ofile permissions

mkdir [options]directory

make adirectory

pwd

print working (current) directory

rmdir [options]directory

remove airectory

If you're familiar with DOS the following table comparing similar commands might help to provide

the proper reference frame.

TABLE 3.2 Unix vs DOS Navigation and Directory Control Commands
Command Unix DOS
list directory contents Is dir
make directory mkdir md & mkdir
change directory cd cd & chdir
delete (remove) directory rmdir rd & rmdir
return to user's home directory cd cad\
location in path pwd cd
(present working directory)

20 00 1998 University Technology Services, The Ohio State University

Introduction to Unix

Directory Navigation and Control

3.6.1 pwd - print working directory

At any time you can determine where you are in the file system hierarchy wittvdhprint working
directory, command, e.g.:

% pwd
/home/frank/src

3.6.2 cd - change directory

You can change to a new directory with ttee change directory, command:d will accept both
absolute and relative path names.

Syntax
cd[directory]

Examples
cd (alsochdir in some shells) change directory
cd changes to user's home directory
cd/ changes directory to the system's root
cd.. goes up one directory level
cd../. goes up two directory levels
cd /full/path/name/from/root changes directory to absolute path named (note the leading slash)
cd path/from/current/location changes directory to path relative to current location (no leading
slash)
cd ~username/directory changes directory to the named username's indicated directory

(Note: the~is not valid in the Bourne shell; see Chapter 5.)

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 21

Getting Started

3.6.3 mkdir - make a directory

You extend your home hierarchy by making sub-directories underneath it. This is done with the
mkdir, make directory, command. Again, you specify either the full or relative path of the directory:

Syntax

mkdir [options] directory

Common Options

-p create the intermediate (parent) directories, as needed
-m mode access permissions (SVR4). (We'll look at modes later in this Chapter).
Examples

% mkdir /home/frank/data

or, if your present working directory is /home/frank the following would be equivalent:
% mkdir data

3.6.4 rmdir - remove directory

A directory needs to be empty before you can remove it. If it's not, you need to remove the files first.
Also, you can’t remove a directory if it is your present working directory; you must first change out
of it.

Syntax

rmdir directory

Examples

To remove the empty directory /home/frank/data while in /home/frank use:
% rmdir data

or

% rmdir /home/frank/data

22 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Directory Navigation and Control

3.6.5 Is - list directory contents

The command to list your directories and filelsisWith options it can provide information about the
size, type of file, permissions, dates of file creation, change and access.

Syntax
Is [options] [argument]

Common Options

When no argument is used, the listing will be of the current directory. There are many very useful
options for the Is command. A listing of many of them follows. When using the command, string the
desired options together preceded By "

-a lists all files, including those beginning with a dgt (
-d lists only names of directories, not the files in the directory
-F indicates type of entry with a trailing symbol:
directories /
sockets =
symbolic links @
executables *
-g displays Unix group assigned to the file, requires the -l option (BSD only)
-or- on an SVR4 machine, e.g. Solaris, this option has the opposite effect
-L if the file is a symbolic link, lists the information for the file or directory the link

references, not the information for the link itself

-1 long listing: lists the mode, link information, owner, size, last modification (time). If
the file is a symbolic link, an arrow (-->) precedes the pathname of the linked-to file.

Themode fieldis given by thel option and consists of 10 characters. The first character is one of
the following:

CHARACTER IF ENTRY IS A

d directory

- plain file

b block-type special file

c character-type special file
I symbolic link

S socket

The next 9 characters are in 3 sets of 3 characters each. They indiddéeabeess permissions
the first 3 characters refer to the permissions forutlee the next three for the users in the Unix
group assigned to the file, and the last 3 to the permissionsotf@r users on the system.
Designations are as follows:

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 23

Getting Started

read permission
write permission

|><E—=

Nno permission

There are a few less commonly used permission designations for special circumstances.

explained in the man page fler
Examples

To list the files in a directory:

% Is

demofiles frank

execute permission

linda

To list all files in a directory, including the hidden (dot) files try:

% ls -a
.cshrc .history

.emacs Jogin

To get a long listing:
% Is -al

total 24

drwxr-sr-x 5 workshop acs

drwxr-xr-x 6 root sys
-rwxr-xr-x 1 workshop acs
1 workshop acs
1 workshop acs
-rwxr-xr-x 1 workshop acs
-rw-r--r-- 1 workshop acs
-rwxr-xr-x 1 workshop acs

-PW------- 1 workshop acs

drwx------ 3 workshop acs
drwx------ 2 workshop acs
drwx------ 3 workshop acs

.plan .rhosts frank

.profile demofiles linda

512 Jun 711:12.
512 May 29 09:59 ..

532 May 20 15:31 .cshrc
525 May 20 21:29 .emacs
622 May 24 12:13 .history

238 May 14 09:44 .login
273 May 22 23:53 .plan

413 May 14 09:36 .profile
49 May 20 20:23 .rhosts

512 May 24 11:18 demofiles

512 May 21 10:48 frank

512 May 24 10:59 linda

24 00 1998 University Technology Services, The Ohio State University

These are

Introduction to Unix

File Maintenance Commands

3.7 File Maintenance Commands

To create, copy, remove and change permissions on files you can use the following commands.

TABLE 3.3 File Maintenance Commands
Command/Syntax What it will do
chgrp [options]group file change the group of the file
chmod[options]file change file or directory access permissions
chown [options]owner file change the ownership of a file; can only be done by the superuser
cp [options]filel file2 copyfilel intofile2; file2 shouldn't already exist. This command creates
or overwritedile2.
mv [options]filel file2 movefilel into file2
rm [options]file remove (delete) a file or directoryr fecursively deletes the directory

and its contents}i(prompts before removing files)

If you're familiar with DOS the following table comparing similar commands might help to provide
the proper reference frame.

TABLE 3.4 Unix vs DOS File Maintenance Commands
Command Unix DOS
copy file cp copy
move file mv move (not supported on all versions of DOS
rename file mv rename & ren
delete (remove) file rm erase & del
display file to screen
entire file | cat type
one page at a time more, less, pg type/p (not supported on all versions of DOS

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 25

Getting Started

3.7.1 cp - copy afile
Copy the contents of one file to another with¢peommand.

Syntax

cp [options] old_filename new_filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)
-r recursively copy a directory

Examples
% cp old_filename new_filename
You now have two copies of the file, each with identical contents. They are completely independent

of each other and you can edit and modify either as needed. They each have their own inode, data
blocks, and directory table entries.

3.7.2 mv - move afile
Rename a file with the move comman.

Syntax

mv [options] old_filename new_filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)
-f don’t prompt, even when copying over an existing target file (oversijles

Examples
% mv old_filename new_filename
You now have a file calledew_filenameand the fileold_filenameis gone. Actually all you've

done is to update the directory table entry to give the file a new name. The contents of the file remain
where they were.

26 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Maintenance Commands

3.7.3 rm -remove a file

Remove a file with them, remove, command.

Syntax

rm [options] filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)

-r recursively remove a directory, first removing the files and subdirectories
beneath it
-f don’t prompt for confirmation (overrides -i)
Examples

% rm old_filename

A listing of the directory will now show that the file no longer exists. Actually, all you've done is to
remove the directory table entry and mark the inode as unused. The file contents are still on the dis}
but the system now has no way of identifying those data blocks with a file name. There is no
command toUnremove"' a file that has been removed in this way. For this reason many novice users
alias their remove command to ben"-i", where the-i option prompts them to answer yes or no
before the file is removed. Such aliases are normally placed icshe file for the C shell; see
Chapter 5)

3.7.4 File Permissions

Each file, directory, and executable has permissions set for wheadnwrite, and/orexecuteit.

To find the permissions assigned to a file, Ilheommand with thel option should be used. Also,
using the-g option with ‘Is -I" will help when it is necessary to know the group for which the
permissions are set (BSD only).

When using thels -Ig" command on a filel§ -I on SysV), the output will appear as follows:

-rWXr-X--- user unixgroup size Month nn hh:mm filename
The area above designated by letters and dasteg-k---) is the area showing the file type and
permissions as defined in the previous Section. Therefore, a permission string, for example, of

-rwxr-x--- allows theuser (owner) of the file to read, write, and execute it; those imtivegroup of
the file can read and executedthers cannot access it at all.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 27

Getting Started

3.7.5 chmod - change file permissions

The command to change permissions on an item (file, directory, etwnisd (change mode). The
syntax involves using the command with three digits (representingsdrgéowner,u) permissions,

the group (g) permissions, andther (0) user's permissions) followed by the argument (which may
be a file name or list of files and directories). Or by using symbolic representation for the
permissions and who they apply to.

Each of the permission types is represented by either a numeric equivalent:

read=4, write=2, execute=1

or a single letter:
read=r, write=w, execute=x
A permission o# orr would specifyread permissions. If the permissions desired are read and write,

the 4 (representing read) and the 2 (representing write) are added together to make a permission of 6.
Therefore, a permission setting of 6 would allow read and write permissions.

Alternatively, you could use symbolic notation which uses the one letter representation for who and
for the permissions and an operator, where the operator can be:

+ add permissions
- remove permissions
= set permissions

So to set read and write for the owner we could usew" in symbolic notation.

Syntax

chmodnnn [argument list] numeric mode
chmod[who]op[perm] [argument list] symbolic mode

wherennn are the three numbers representisgy, group, andother permissionswho is any ofu, g,
o, or a (all) andperm is any ofr, w, Xx. In symbolic notation you can separate permission
specifications by commas, as shown in the example below.

Common Options

-f force (no error message is generated if the change is unsuccessful)
-R recursively descend through the directory structure and change the modes
Examples

If the permission desired for filel iser. read, write, executgroup: read, execute, other: read,
execute, the command to use would be

chmod 755 filel or chmod u=rwx,go=rx filel

28 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Maintenance Commands

Reminder: When giving permissions ggroup andother to use a file, it is necessary to allow at least
execute permission to the directories for the path in which the file is located. The easiest way to dc
this is to be in the directory for which permissions need to be granted:

chmod 711 . or chmod u=rw,+x . or chmod u=rwx,go=x .

where the dot.) indicateghis directory.

3.7.6 chown - change ownership

Ownership of a file can be changed with giwn command. On most versions of Unix this can
only be done by the super-user, i.e. a normal user can’t give away ownership of thethfies.is
used as below, wheterepresents the shell prompt for the super-user:

Syntax
chown|[options] user[:group] file (SVR4)
chown[options] user[.group] file (BSD)

Common Options

-R recursively descend through the directory structure
-f force, and don't report any errors
Examples

chown new_owner file

3.7.7 chgrp - change group

Anyone can change the group of files they own, to another group they belong to, witigthe
command.

Syntax
chgrp [options] group file

Common Options

-R recursively descend through the directory structure
-f force, and don'’t report any errors
Examples

% chgrp new_group file

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 29

Getting Started

3.8 Display Commands

There are a number of commands you can usksfday or view a file. Some of these are editors
which we will look at later. Here we will illustrate some of the commands normally used to display a
file.

TABLE 3.5 Display Commands
Command/Syntax What it will do
cat [options]file concatenate (list) a file
echoltext string] echo the text string to stdout
head[-numberfile display the first 10 (or number of) lines of a file
more (or lessor pg) [options]file page through a text file
tail [options]file display the last few lines (or parts) of a file

3.8.1 echo - echo a statement

Theechocommand is used to repeat, or echo, the argument you give it back to the standard output
device. It normally ends with a line-feed, but you can specify an option to prevent this.

Syntax
echo(string]

Common Options

-n don’t print <new-line> (BSD, shell built-in)
\c don'’t print <new-line> (SVR4)
\On wheren is the 8-bit ASCII character code (SVR4)
\t tab (SVR4)
\f form-feed (SVR4)
\n new-line (SVR4)
\v vertical tab (SVR4)
Examples
% echo Hello Class or echo "Hello Class"

To prevent the line feed:

% echo -n Hello Class or echo "Hello Class \c"
where the style to use in the last example depends @tlfoeommand in use.

The \x options must be within pairs of single or double quotes, with or without other string characters.

30 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Display Commands

3.8.2 cat - concatenate a file
Display the contents of a file with the concatenate comneatd,

Syntax

cat[options] [file]

Common Options

-n precede each line with a line number

-v display non-printing characters, except tabs, new-lines, and form-feeds

-e display $ at the end of each line (prior to new-line) (when usedwiftion)
Examples

% cat filename

You can list a series of files on the command line,atavill concatenate them, starting each in turn,
immediately after completing the previous one, e.g.:

% cat filel file2 file3

3.8.3 more, less, and pg - page through a file

more, less andpg let you page through the contents of a file one screenful at a time. These may not
all be available on your Unix system. They allow you to back up through the previous pages and
search for words, etc.

Syntax

more [options] [+/pattern] [filename]
less[options] [+/pattern] [filename]
pg [options] [+/pattern] [filename]

Options
more less pg Action
-C -C -C clear display before displaying
-i ignore case
-W default default don’t exit at end of input, but prompt and wait
-lines -lines # of lines/screenful
+/pattern +/pattern +/pattern search for the pattern

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 31

Getting Started

Internal Controls

more displays (one screen at a time) the file requested
<space bar> to view next screen
<return> or<CR> to view one more line
q to quit viewing the file
h help
b go back up one screenful
/word search foword in the remainder of the file
See theman pagefor additional options
less similar tomore see thenan pagefor options
pg the SVR4 equivalent ohore (page)

3.8.4 head - display the start of a file
headdisplays the head, or start, of the file.

Syntax

head[options] file

Common Options

-n number number of lines to display, counting from the top of the file
-number same as above
Examples

By default head displays the first 10 lines. You can display more with the fumber”, or
"-number" options, e.g., to display the first 40 lines:

% head -40 filename or head -n 40 filename
3.8.5 tail - display the end of a file
tail displays the tail, or end, of the file.

Syntax
tail [options] file
Common Options
-number number of lines to display, counting from the bottom of the file

Examples

The default is to display the last 10 lines, but you can specify different line or byte numbers, or a
different starting point within the file. To display the last 30 lines of a file usentimeber style:

% tail -30 filename

32 00 1998 University Technology Services, The Ohio State University Introduction to Unix

System Resources

CHAPTER 4

System Resources &

Printing

4.1 System Resources

Commands to report or manage system resources.

TABLE 4.1

System Resource Commands

Command/Syntax

What it will do

chsh(passwd -e/)susername login_shel

change the user’s login shell (often only by the superuser)

date[options]

report the current date and time

df [options] [resource]

report the summary of disk blocks and inodes free and in use

du [options] directoryor file]

report amount of disk space in use+

hostname/uname

display or set (super-user only) the name of the current machine

kill [options] [-SIGNAL] [pid#] [%job]

send a signal to the process with the process id number (pid#) or jo
control number (%n). The default signal is to kill the process.

O

man [options]Jcommand

show the manuahgan) page for a command

passwdoptions] set or change your password

ps[options] show status of active processes

script file saves everything that appears on the screen to fileexittis executed
stty [options] set or display terminal control options

whereis[options]command

report the binary, source, and man page locations for the command
named

which command

reports the path to the command or the shell alias in use

who orw

report who is logged in and what processes are running

Introduction to Unix

00 1998 University Technology Services, The Ohio State University

33

System Resources & Printing

4.1.1 df - summarize disk block and file usage

df is used to report the number of disk blocks and inodes used and free for each file system. The
output format and valid options are very specific to the OS and program version in use.

Syntax

df [options] [resource]

Common Options

- local file systems only (SVR4)

-k report in kilobytes (SVR4)
Examples

{unix prompt 1} df
Filesystem kbytes used avail capacity Mounted on
/dev/sdOa 20895 19224 0 102% /
/dev/sdOh 319055 131293 155857 46% /usr
/dev/sdlg 637726 348809 225145 61% /usr/local
/dev/sdla 240111 165489 50611 77%

/home/guardian
peri:/usr/local/backup

1952573 976558 780758 56%
/usr/local/backup

peri:/home/peri 726884 391189 263007 60% /home/peri

peri:/usr/spool/mail 192383 1081 172064 1%
/var/spool/mail

peri:/acs/peri/2 723934 521604 129937 80% /acs/peri/2

4.1.2 du - report disk space in use
du reports the amount of disk space in use for the files or directories you specify.

Syntax

du [options] [directory or file]

Common Options

-a display disk usage for each file, not just subdirectories
-S display a summary total only
-k report in kilobytes (SVR4)

34 00 1998 University Technology Services, The Ohio State University Introduction to Unix

System Resources

Examples
{unix prompt 3} du
1 J.elm
1 Mail
1 /News
20 .Juc
86

{unix prompt 4} du -a uc

7 uc/unixgrep.txt
uc/editors.txt
uc/.emacs
uc/.exrc
uc/telnet.ftp
uc/uniqg.tee.txt
20 uc

N~ = S

4.1.3 ps - show status of active processes

ps is used to report on processes currently running on the system. The output format and valic
options are very specific to the OS and program version in use.

Syntax

ps[options]

Common Options

BSD SVR4

-a -e all processes, all users

-e environment/everything

-g process group leaders as well

-l -l long format

-u -u user user oriented report

-X -e even processes not executed from terminals
-f full listing

-W report first 132 characters per line

note -- Because thes command is highly system-specific, it is recommended that you consult the
man pagesof your system for details of options and interpretatiopsafutput.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 35

System Resources & Printing

Examples

{unix prompt 5} ps
PID TT STAT TIME COMMAND
15549 p0 IW 0:00 -tcsh (tcsh)
15588 p0 IW 0:00 man nice
15594 p0 IW 0:00 sh -c less /tmp/man15588
15595 p0 IW 0:00 less /tmp/man15588
15486 p1 S 0:00 -tcsh (tcsh)
15599 p1 T 0:00 emacs unixgrep.txt
15600 p1 R 0:00 ps

4.1.4 Kill - terminate a process
kill sends a signal to a process, usually to terminate it.

Syntax

kill [-signal] process-id

Common Options

-l displays the available kill signals:

Examples

{unix prompt 9} kill -I
HUP INT QUIT ILL TRAP IOT EMT FPE KILL BUS SEGV SYS PIPE ALRM TERM URG STOP
TSTP CONT CHLD TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH LOST USR1 USR2

The-KILL signal, also specified a8 (because it is 9th on the above list), is the most commonly
usedkill signal. Once seen, it can’t be ignored by the program whereas the other signals can.

{unix prompt 10} kill -9 15599
[1] + Killed emacs unixgrep.txt

36 00 1998 University Technology Services, The Ohio State University Introduction to Unix

System Resources

4.1.5 who - list current users
who reports who is logged in at the present time.

Syntax

who [am i]

Examples

beauty condron>who

wmtell ttypl Apr 21 20:15 (apple.acs.ohio-s)
fowalk ttyp2 Apr2123:21 (worf.acs.ohio-st)
stwang ttyp3 Apr2123:22 (127.99.25.8)
david ttyp4 Apr2122:27 (slipl-61.acs.ohi)
tgardner ttyp5 Apr 21 23:07 (picard.acs.ohio-)
awallace ttyp6 Apr 21 23:00 (ts31-4.homenet.o)
gtl27 ttyp7 Apr 21 23:24 (data.acs.ohio-st)
ccchang ttyp8 Apr 21 23:32 (slip3-10.acs.ohi)
condron ttypc Apr 21 23:38 (Icondron-mac.acs)
dgildman ttype Apr 21 22:30 (slip3-36.acs.ohi)
fcbetz ttyg2 Apr2121:12 (ts24-10.homenet.)

beauty condron>who am i
beauty!condron ttypc Apr 21 23:38 (Icondron-mac.acs)

4.1.6 whereis - report program locations
whereisreports the filenames of source, binary, and manual page files associated with command(s).

Syntax

whereis [options] command(s)

Common Options

-b report binary files only

-m report manual sections only

-S report source files only
Examples

brigadier: condron [69]> whereis Mall
Mail: /usr/ucb/Mail /usr/lib/Mail.help /usr/lib/Mail.rc /usr/man/manl/Mail.1

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 37

System Resources & Printing

brigadier: condron [70]> whereis -b Malil
Mail: /usr/ucb/Mail /usr/lib/Mail.help /usr/lib/Mail.rc

brigadier: condron [71]> whereis -m Mail
Mail: /Jusr/man/manl/Mail.1

4.1.7 which - report the command found

which will report the name of the file that is be executed when the command is invoked. This will be
the full path name or the alias that’s found first in your path.

Syntax

which command(s)

example--

brigadier: condron [73]> which Mail
/usr/ucb/Mail

4.1.8 hostname/uname - name of machine
hostname(uname -non SysV) reports the host name of the machine the user is logged into, e.g.:

brigadier: condron [91]> hostname
brigadier

unamehas additional options to print information about system hardware type and software version.

4.1.9 script - record your screen I/O
script creates a script of your session input and output. Usingctig command, you can capture
all the data transmission from and to your terminal screen untgxyidthe script program. This can

be useful during the programming-and-debugging process, to document the combination of things
you have tried, or to get a printed copy of it all for later perusal.

Syntax

script [-a] [file] <...> exit

Common Options

-a append the output to file
typescript is the name of the default file useddwyipt

You must remember to typxit to end your script session and close your typescript file.

38 00 1998 University Technology Services, The Ohio State University Introduction to Unix

System Resources

Examples

beauty condron>script
Script started, file is typescript
beauty condron>ps
PID TT STAT TIME COMMAND

23323 p8 S 0:00 -h -i (tcsh)
23327 p8 R 0:00 ps

18706 paS 0:00 -tcsh (tcsh)
23315paT 0:00 emacs
23321 paS 0:00 script
23322paS 0:00 script

3400 pb 1 0:00 -tcsh (tcsh)
beauty condron>kill -9 23315
beauty condron>date

Mon Apr 22 22:29:44 EDT 1996
beauty condron>exit

exit
Script done, file is typescript
[1] + Killed emacs

beauty condron>cat typescript

Script started on Mon Apr 22 22:28:36 1996

beauty condron>ps
PID TT STAT TIME COMMAND

23323 p8S 0:00 -h -i (tcsh)
23327 p8 R 0:00 ps

18706 paS 0:00 -tcsh (tcsh)
23315paT 0:00 emacs
23321 paS 0:00 script
23322 paS 0:00 script
3400 pb 1 0:00 -tcsh (tcsh)

beauty condron>kill -9 23315
beauty condron>date

Mon Apr 22 22:29:44 EDT 1996
beauty condron>exit

exit

script done on Mon Apr 22 22:30:02 1996

beauty condron>

Introduction to Unix 00 1998 University Technology Services, The Ohio State University

39

System Resources & Printing

4.1.10 date - current date and time

datedisplays the current data and time. A superuser can set the date and time.

Syntax

date[options] [+format]

Common Options
-u
+format

%a
%h
%]
%n
%t
%y
%D
%H
%M
%S
%T

Examples

beauty condron>date

use Universal Time (or Greenwich Mean Time)
specify the output format
weekday abbreviation, Sun to Sat
month abbreviation, Jan to Dec
day of year, 001 to 366
<new-line>

<TAB>

last 2 digits of year, 00 to 99
MM/DD/YY date

hour, 00 to 23

minute, 00 to 59

second, 00 to 59

HH:MM:SS time

Mon Jun 10 09:01:05 EDT 1996

beauty condron>date -u
Mon Jun 10 13:01:33 GMT 1996

beauty condron>date +%a%t%D

Mon

06/10/96

beauty condron>date '+%y: %'

96:162

40 00 1998 University Technology Services, The Ohio State University

Introduction to Unix

Print Commands

4.2 Print Commands

TABLE 4.2 Printing Commands
Command/Syntax What it will do
Ipg (Ipstad [options] show the status of print jobs
Ipr (Ip) [options]file print to defined printer
Iprm (cance) [options] remove a print job from the print queue
pr [options][file] filter the file and print it on the terminal

The print commands allow us to print files to standard ougmyitar to a line printerlp/lpr) while
filtering the output. Th&SD andSysV printer commands use different names and different options
to produce the same resultpr, Iprm, andlpq vslp, cancel andlpstatfor the BSD and SysV submit,
cancel, and check the status of a print job, respectively.

4.2.1 Ip/lpr - submit a print job
Ip andlpr submit the specified file, or standard input, to the printer daemon to be printed. Each job is
given a unique request-id that can be used to follow or cancel the job while it's in the queue.
Syntax
Ip [options] filename

Ipr [options] filename

Common Options

Ip lpr function

-n number -#fnumber number of copies

-t title -Ttitle title for job

-d destination -Pprinter printer name

-C (default) copy file to queue before printing
(default) -S don't copy file to queue before printing
-0 option additional options, e.g. nobanner

Files beginning with the strin@4! " are assumed to contain PostScript commands.
Examples

To print the file ssh.ps:

% Ip ssh.ps
request id is Ip-153 (1 file(s))

This submits the job to the queue for the default prilgemyvith the request-id Ip-153.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 41

System Resources & Printing

4.2.2 Ipstat/lpq - check the status of a print job
You can check the status of your print job with Ipstat or Ipqg.

Syntax

Ipstat[options]
Ipqg [options] [job#] [username]

Common Options

Ipstat Ipq function

-d (defaults to Ip) list system default destination

-S summarize print status

-t print all status information

-u [login-1D-list] user list

-V list printers known to the system

-p printer_dest -Pprinter_dest list status of printer, printer_dest
Examples

% Ipstat

Ip-153 frank 208068 Apr2915:140nlp

4.2.3 cancel/lprm - cancel a print job
Any user can cancel only heir own print jobs.

Syntax

cancel[request-ID] [printer]
Iprm [options] [job#] [username]

Common Options

cancel [prm function
-Pprinter specify printer
- all jobs for user
-u [login-ID-list] user list
Examples

To cancel the job submitted above:

% cancel Ip-153

42 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Print Commands

4.2.4 pr - prepare files for printing

pr prints header and trailer information surrounding the formatted file. You can specify the number
of pages, lines per page, columns, line spacing, page width, etc. to print, along with header and traile
information and how to treattab> characters.

Syntax

pr [options] file

Common Options

+page_number start printing with page page_number of the formatted input file
-column number of columns
-a modify -column option to fill columns in round-robin order
-d double spacing
-g[char][gap] tab spacing
-h header_string header for each page
-l lines lines per page
-t don’t print the header and trailer on each page
-w width width of page
Examples

The file containing the list of P. G. Wodehouse’s Lord Emsworth books could be printed, at 14 lines
per page (including 5 header and 5 (empty) trailer lines) below, where tpion specifies the
<tab> conversion style:

% pr -1 14 -e42 wodehouse

Apr 29 11:11 1996 wodehouse_emsworth_books Page 1

Something Fresh [1915] Uncle Dynamite [1948]
Leave it to Psmith [1923] Pigs Have Wings [1952]
Summer Lightning [1929] Cocktail Time [1958]
Heavy Weather [1933] Service with a Smile [1961]

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 43

System Resources & Printing

Apr 29 11:11 1996 wodehouse_emsworth_books Page 2

Blandings Castle and Elsewhere [1935] Galahad at Blandings [1965]
Uncle Fred in the Springtime [1939] A Pelican at Blandings [1969]
Full Moon [1947] Sunset at Blandings [1977]

44

00 1998 University Technology Services, The Ohio State University

Introduction to Unix

Print Commands

CHAPTER 5 Shells

The shell sits between you and the operating system, acting as a command interpreter. It reads yo
terminal input and translates the commands into actions taken by the system. The shell is analogol
tocommand.comn DOS. When you log into the system you are given a default shell. When the shell
starts up it reads its startup files and may set environment variables, command search paths, ar
command aliases, and executes any commands specified in these files.

The original shell was the Bourne shell, Every Unix platform will either have the Bourne shell, or

a Bourne compatible shell available. It has very good features for controlling input and output, but is
not well suited for the interactive user. To meet the latter need the GsheNas written and is now

found on most, but not all, Unix systems. It uses C type syntax, the language Unix is written in, but
has a more awkward input/output implementation. It has job control, so that you can reattach a jok
running in the background to the foreground. It also provides a history feature which allows you to
modify and repeat previously executed commands.

The default prompt for the Bourne shel$ifr #, for the root user). The default prompt for the C shell
is%.

Numerous other shells are available from the network. Almost all of them are based osheather

csh with extensions to provide job control $b, allow in-line editing of commands, page through
previously executed commands, provide command name completion and custom prompt, etc. Som
of the more well known of these may be on your favorite Unix system: the Kornksielby David

Korn and the Bourne Again SHdblash from the Free Software Foundations GNU project, both based
onsh, the T-C shelltcsh and the extended C sheal§he both based oosh Below we will describe

some of the features eh andcshso that you can get started.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 45

Shells

5.1 Built-in Commands

The shells have a numberhafilt-in , or native commands. These commands are executed directly in
the shell and don't have to call another program to be run. These built-in commands are different for
the different shells.

5.1.1 Sh
For the Bourne shell some of the more commonly used built-in commands are:

null command
source (read and execute) commands from a file

case case conditional loop

cd change the working directory (default is $HOME)

echo write a string to standard output

eval evaluate the given arguments and feed the result back to the shell
exec execute the given command, replacing the current shell

exit exit the current shell

export share the specified environment variable with subsequent shells
for for conditional loop

if if conditional loop

pwd print the current working directory

read read a line of input from stdin

set set variables for the shell

test evaluate an expression as true or false

trap trap for a typed signal and execute commands

umask set a default file permission mask for new files

unset unset shell variables

wait wait for a specified process to terminate

while while conditional loop

46 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Built-in Commands

5.1.2 Csh

alias

bg

cd

echo

eval

exec

exit

fg

foreach

glob

history

if

jobs

kill

limit

logout

nice command
nohup command
popd

pushd

rehash
repeat
set
setenv
source
stop
switch
umask
unalias
unset
unsetenv
wait
while

For the C shell the more commonly used built-in functions are:

assign a name to a function

put a job into the background

change the current working directory

write a string to stdout

evaluate the given arguments and feed the result back to the shell
execute the given command, replacing the current shell

exit the current shell

bring a job to the foreground

for conditional loop

do filename expansion on the list, but no "\" escapes are honored
print the command history of the shell

if conditional loop

list or control active jobs

kill the specified process

set limits on system resources

terminate the login shell

lower the scheduling priority of the processmmand

do not terminateommandwhen the shell exits

pop the directory stack and return to that directory

change to the new directory specified and add the current one to the directory
stack

recreate the hash table of paths to executable files
repeat a command the specified number of times
set a shell variable

set an environment variable for this and subsequent shells
source (read and execute) commands from a file
stop the specified background job

switch conditional loop

set a default file permission mask for new files
remove the specified alias name

unset shell variables

unset shell environment variables

wait for all background processes to terminate
while conditional loop

Introduction to Unix

00 1998 University Technology Services, The Ohio State University 47

Shells

5.2 Environment Variables

Environmental variables are used to provide information to the programs you use. You can have both
global environment andlocal shell variables Global environment variables are set by your login

shell and new programs and shells inherit the environment of their parent shell. Local shell variables
are used only by that shell and are not passed on to other processes. A child process cannot pass a
variable back to its parent process.

The current environment variables are displayed with &me/'"or "printenv' commands. Some
common ones are:

« DISPLAY The graphical display to use, e.g. nyssa:0.0

« EDITOR The path to your default editor, e.g. /usr/bin/vi

« GROUP Your login group, e.g. staff

e HOME Path to your home directory, e.g. /home/frank

e HOST The hostname of your system, e.g. nyssa

« IFS Internal field separators, usually any white space (defaults to tab, space
and <newline>)

« LOGNAME The name you login with, e.g. frank

e PATH Paths to be searched for commands, e.g. /usr/bin:/usr/ucb:/usr/local/bin

- PS1 The primary prompt string, Bourne shell only (defaults to $)

e PS2 The secondary prompt string, Bourne shell only (defaults to >)

e SHELL The login shell you're using, e.g. /usr/bin/csh

e TERM Your terminal type, e.g. xterm

« USER Your username, e.g. frank

Many environment variables will be set automatically when you login. You can modify them or define
others with entries in your startup files or at anytime within the shell. Some variables you might want
to change areATH andDISPLAY. ThePATH variable specifies the directories to be automatically
searched for the command you specify. Examples of this are in the shell startup scripts below.

You set aglobal environment variablewith a command similar to the following for the C shell:

% setenv NAME value
and for Bourne shell:

$ NAME=value; export NAME
You can list your global environmental variables withghgor printenvcommands. You unset them
with theunseten(C shell) orunset(Bourne shell) commands.

To set docal shell variableuse thesetcommand with the syntax below for C shell. Without options
setdisplays all the local variables.

% set name=value
For the Bourne shell set the variable with the syntax:

$ name=value

The current value of the variable is accessed viaghamé', or "${name}', notation.

48 00 1998 University Technology Services, The Ohio State University Introduction to Unix

The Bourne Shell, sh

5.3 The Bourne Shell, sh

Shuses the startup filprofile in your home directory. There may also be a system-wide startup file,
e.g./etc/profile. If so, the system-wide one will be sourced (executed) before your local one.

A simple.profile could be the following:

PATH=/usr/bin:/usr/ucb:/usr/local/bin:. # set the PATH

export PATH # so that PATH is available to subshells
Set a prompt

PS1="{"hostname’ "'whoami'} " # set the prompt, default is "$"

functions

Is() { /bin/ls -sbF "$@";}

o {Is -al "$@";}

Set the terminal type

stty erase "H # set Control-H to be the erase key
eval ‘tset -Q -s -m ":?xterm” # prompt for the terminal type, assume xterm
#

umask 077

Whenever & symbol is encountered the remainder of that line is treated as a commentP AT the
variable each directory is separated by a calpar(d the dot.{ specifies that the current directory is
in your path. If the latter is not set it's a simple matter to execute a program in the current directory
by typing:

Jprogram_name

It's actually a good idea not to have dgtii your path, as you may inadvertently execute a program
you didn’t intend to when yoed to different directories.

A variable set inprofile is set only in the login shell unless yaxport' it or source .profile from
another shell. In the above exampI&TH is exported to any subshells. You can source a file with
the built-in " command o&h, i.e.:

. .l.profile
You can make your own functions. In the above example the furictiesults in an 4 -al' being
done on the specified files or directories.

With sttythe erase character is set to Control-H (“H), which is usually the Backspace key.

The tsetcommand prompts for the terminal type, and assuxtesm” if we just hit <CR>. This
command is run with the shell built-iayal which takes the result from the tset command and uses it
as an argument for the shell. In this case tBedption to tset sets theERM and TERMCAP
variables and exports them.

The last line in the example runs tmmaskcommand with the option such that any files or directories
you create will not have read/write/execute permissiogroup andother.

For further information abowth type 'man sH' at the shell prompt.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 49

Shells

5.4 The C Shell, csh

Csh uses the startup filegshrc and.login. Some versions use a system-wide startup file, e.g.
/etc/csh.login Your.login file is sourced (executed) only when you login. Yashrcfile is sourced
every time you start ash, including when you login. It has many similar featuregptofile, but a
different style of doing things. Here we use $kéor setenvcommands to initialize a variable, where
setis used for this shell argktenvfor this and any subshells. The environment variabd&ER,
TERM, andPATH, are automatically imported to and exported from uker, term, and path
variables of thesh Sosetenvdoesn’t need to be done for these. The C shell uses the syitiool,
indicate the user’'s home directory in a path, ag.icshrg or to specify another user’s login directory,
as in~username/.cshrc

Predefined variables used by the C shell include:

e argv The list of arguments of the current shell

« cwd The current working directory

« history Sets the size of the history list to save

« home The home directory of the user; starts with SHOME

« ignoreeof When set ignore EOF ("D) from terminals

e noclobber When set prevent output redirection from overwriting existing files

« noglob When set prevent filename expansion with wildcard pattern matching

+ path The command search path; starts with $SPATH

* prompt Set the command line prompt (default is %)

« savehist number of lines to save in the history list to save in the .history file

+ shell The full pathname of the current shell; starts with $SSHELL

e Status The exit status of the last command (O=normal exit, 1=failed
command)

« term Your terminal type, starts with STERM

e user Your username, starts with SUSER

A simple.cshrccould be:
set path=(/usr/bin /usr/ucb /usr/local/bin ~/bin.) # set the path

set prompt = "{'hostname* ‘whoami‘ 1} " # set the primary prompt; default is "%"

set noclobber # don’t redirect output to existing files

set ignoreeof # ignore EOF (D) for this shell

set history=100 savehist=50 # keep a history list and save it between logins
aliases

alias h history # alias h to "history"

alias Is "/usr/bin/ls -sbF" # alias Is to "Is -sbF"

alias Il Is -al # alias Il to "Is -sbFal" (combining these options with those for "Is" above)
alias cd ’'cd \I*;pwd’ # alias cd so that it prints the current working directory after the change
umask 077

50 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Job Control

Some new features here that we didn't seepnofile are noclobber, ignoreeof and history.
Noclobber indicates that output will not be redirected to existing files, whinereeofspecifies that
EOF ("D) will not cause the login shell to exit and log you off the system.

With the history feature you can recall previously executed commands and re-execute them, with
changes if desired.

An alias allows you to use the specifiaias name instead of the full command. In ths? Example

above, typing I§" will result in "/usr/bin/ls -sbF being executed. You can tell whicls™command
is in your path with the built-ivhich command, i.e.:
which Is
Is: aliased to /usr/bin/ls -sbF
A simple.login could be:
.login
stty erase "H # set Control-H to be the erase key
set noglob # prevent wild card pattern matching
eval ‘tset -Q -s -m ":?xterm” # prompt for the terminal type, assume "xterm"
unset noglob # re-enable wild card pattern matching

Setting and unsettingpglob aroundsetprevents it from being confused by asyfilename wild card
pattern matching or expansion.

Should you make any changes to your startup files you can initiate the change by sourcing the change
file. Forcshyou do this with the built-isourcecommand, i.e.:

source .cshrc
For further information about csh typm&n csh at the shell prompt.

5.5 Job Control

With the C shellcsh and many newer shells including some newer Bourne shells, you can put jobs
into the background at anytime by appendi&g to the command, as witsh. After submitting a
command you can also do this by typify (Control-Z) to suspend the job and thég™to put it into

the background. To bring it back to the foreground tygé "

You can have many jobs running in the background. When they are in the background they are n
longer connected to the keyboard for input, but they may still display output to the terminal,
interspersing with whatever else is typed or displayed by your current job. You may want to redirect
I/O to or from files for the job you intend to background. Your keyboard is connected only to the
current, foreground, job.

The built-injobscommand allows you to list your background jobs. You can udéltltmmmand to

kill a background job. With th&n notation you can reference thi background job with either of
these commands, replacimgwith the job number from the output @ibs So kill the second
background job withKill %2" and bring the third job to the foreground wifly %3'.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 51

Shells

5.6 History

The C shell, the Korn shell and some other more advanced shells, retain information about the former
commands you've executed in the shell. How history is done will depend on the shell used. Here

we’ll describe the C shell history features.

You can use thhistory andsavehistvariables to set the number of previously executed commands

to keep track of in this shell and how many to retain between logins, respectively. You could put a

line such as the following irtshrcto save the last 100 commands in this shell and the last 50 through

the next login.

set history=100 savehist=50
The shell keeps track of the history list and saves-.listory between logins.

You can use the built-ihistory command to recall previous commands, e.g. to print the last 10:

% history 10

52 cd workshop
53 Is

54 cd unix_intro
55 Is

56 pwd

57 date

58 w

59 alias

60 history

61 history 10

You can repeat the last command by tyding
% !
53 Is
54 cd unix_intro
55 Is
56 pwd
57 date
58 w
59 alias
60 history
61 history 10
62 history 10

52 00 1998 University Technology Services, The Ohio State University

Introduction to Unix

History

You can repeat any numbered command by prefacing the number!wélga

% 157
date
Tue Apr 9 09:55:31 EDT 1996

Or repeat a command starting with any string by prefacing the starting unique part of the string with a
I, e.0.:

% !da

date

Tue Apr 9 09:55:31 EDT 1996

When the shell evaluates the command line it first checks for history substitution before it interprets
anything else. Should you want to use one of these special characters in a shell command you wi
need to escape, or quote it first, with a \ before the character, i.e. \I. The history substitution
characters are summarized in the following table.

TABLE 5.1 C Shell History Substitution

Command Substitution Function

I repeat last command

In repeat command number

I-n repeat command n from last

Istr repeat command that started with stritg
I?str? repeat command witktr anywhere on the line
1?str?% select the first argument that hstd in it

I repeat the last command, generally used with a modifier

In select thenth argument from the last command (n=0 is the command name)
I'n-m select thenth throughmth arguments from the last command

N select the first argument from the last command (same as !:1)

I$ select the last argument from the last command

I* select all arguments to the previous command

I:n* select thenth through last arguments from the previous command

I:n- select thenth through next to last arguments from the previous command
Astrifstr2” replacestrl with str2 in its first occurrence in the previous command
In:s/strl/str2/ substitutestrl with str2 in its first occurrence in theth command, ending with@

substitute globally

Additional editing modifiers are described in than page

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 53

Shells

5.7 Changing your Shell

To change your shell you can usually use tiesH' or "passwd -ecommands. The option flag, here

-e, may vary from system to systers ¢n BSD based systems), so checkntla@ pageon your system

for proper usage. Sometimes this feature is disabled. If you can’t change your shell check with your
System Administrator.

The new shell must be the full path name for a valid shell on the system. Which shells are available
to you will vary from system to system. The full path name of a shell may also vary. Normally,
though, the Bourne and C shells are standard, and available as:

/bin/sh

/bin/csh
Some systems will also have the Korn shell standard, normally as:

/bin/ksh
Some shells that are quite popular, but not normally distributed by the OS vendors are bash and tcsh.
These might be placed in /bin or a locally defined directory, e.g. /usr/local/bin or /opt/local/bin. Should
you choose a shell not standard to the OS make sure that this shell, and all login shells available on the
system, are listed in the filetc/shells If this file exists and your shell is not listed in this file the file
transfer protocol daemofipd, will not let you connect to this machine. If this file does not exist only
accounts with "standard" shells are allowed to connedtpria

You can always try out a shell before you set it as your default shell. To do this just type in the shell
name as you would any other command.

54 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Descriptors

CHAPTER 6 Special Unix Features

One of the most important contributions Unix has made to Operating Systems is the provision of
many utilities for doing common tasks or obtaining desired information. Another is the standard way
in which data is stored and transmitted in Unix systems. This allows data to be transnztiie,

the terminal screen, or a program,frlam a file, the keyboard, or a program; always in a uniform
manner. The standardized handling of data supports two important features of Unix utilities: 1/0
redirection and piping.

With output redirection, the output of a command is redirected to a file rather than to the terminal
screen. Withnput redirection, the input to a command is given via a file rather than the keyboard.
Other tricks are possible with input and output redirection as well, as you will see pijgiid, the

output of a command can be used as input (piped) to a subsequent command. In this chapter we disct
many of the features and utilities available to Unix users.

6.1 File Descriptors

There are 3 standard file descriptors:

e stdin 0 Standard input to the program
« stdout 1 Standard output from the program
e stderr 2 Standard error output from the program

Normally input is from the keyboard or a file. Output, both stdout and stderr, normally go to the
terminal, but you can redirect one or both of these to one or more files.

You can also specify additional file descriptors, designating them by a number 3 through 9, and
redirect 1/0O through them.

6.2 File Redirection

Output redirection takes the output of a command and places it into a named file. Input redirection
reads the file as input to the command. The following table summarizes the redirection options.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 55

Special Unix Features

TABLE 6.1 File Redirection
Symbol Redirection
> output redirect
>| same as above, but overridexclobber option ofcsh
>> append output
>> same as above, but overridexclobber option oncshand creates the file it

it doesn’t already exist.
| pipe output to another command

< input redirection

<<String read from standard input untiBtring" is encountered as the only thing on the lipe.
Also known as altere document (see Chapter 8).

<<\String same as above, but don’t allow shell substitutions

An example of output redirection is:

cat filel file2 > file3
The above command concatendit=l thenfile2 and redirects (sends) the outpufite3. If file3
doesn't already exist it is created. If it does exist it will either be truncated to zero length before the
new contents are inserted, or the command will be rejected,nbttiebber option of thecshis set.
(See theshin Chapter 4). The original fileBlel andfile2, remain intact as separate entities.

Output is appended to a file in the form:

cat filel >> file2
This command appends the contentdilefl to the end of what already existsfile2. (Does not
overwritefile2).

Input is redirected from a file in the form:

program < file
This command takes the input fsmogramfrom file.

To pipe output to another command use the form:
command | command

This command makes the output of the first command the input of the second command.

6.2.1 Csh
>& file redirect stdout and stderr fite
>>& append stdout and stderrfiie
|& command pipe stdout and stderr twmmand

To redirect stdout and stderr to two separate files you need to first redirect stdout in a sub-shell, as in:

% (command > out_file) >& err_file

56 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Redirection

6.2.2 Sh
2> file direct stderr tdile
> file 2>&1 direct both stdout and stderrfite
>> file 2>&1 append both stdout and stderfite
2>&1 | command pipe stdout and stderr twmmand

To redirect stdout and stderr to two separate files you can do:

$ command 1> out_file 2> err_file

or, since the redirection defaults to stdout:

$ command > out_file 2> err_file

With the Bourne shell you can specify other file descriptors (3 through 9) and redirect output through
them. This is done with the form:

n>&m redirect file descripton to file descriptom

We used the above to send stderr (2) to the same place as std@w&(1,)ywvhen we wanted to have
error messages and normal messages to fje iostead of the terminal. If we wanted only the error
messages to go to the file we could do this by using a place holder file descriptor, 3. We’'ll first
redirect 3 to 2, then redirect 2 to 1, and finally, we’ll redirect 1 to 3:

$ (command 3>&2 2>&1 1>&3) > file

This sends stderr to 3 then to 1, and stdout to 3, which is redirected to 2. So, in effect, we've reverse
file descriptors 1 and 2 from their normal meaning. We might use this in the following example:

$ (cat file 3>&2 2>&1 1>&3) > errfile

So iffile is read the information is discarded from the command output, fikgt dan’t be read the
error message is put @rrfile for your later use.

You can close file descriptors when you're done with them:

m<&- closes an input file descriptor
<&- closes stdin

m>&- closes an output file descriptor
>&- closes stdout

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 57

Special Unix Features

6.3 Other Special Command Symbols

In addition to file redirection symbols there are a number of other special symbols you can use on a
command line. These include:

command separator

& run the command in the background

&& run the command following this only if the previous command completes
successfully, e.qg.:
grepstring file && catfile

Il run the command following only if the previous command did not complete
successfully, e.g.:

grep string file || echo "String not found."

0) the commands within the parentheses are executed in a subshell. The output
of the subshell can be manipulated as above.

literal quotation marks. Don’t allow any special meaning to any characters
within these quotations.

\ escape the following character (take it literally)

regular quotation marks. Allow variable and command substitution with
theses quotations (does not disabnd\ within the string).

‘command take the output of this command and substitute it as an argument(s) on the
command line

everything following until <newline> is a comment

The\ character can also be used to escaperlegvline> character so that you can continue a long
command on more than one physical line of text.

6.4 Wild Cards

The shell and some text processing programs will afleta-characters orwild cards, and replace
them with pattern matches. For filenames thresta-charactersand their uses are:

? match any single character at the indicated position

* match any string of zero or more characters

[abc...] match any of the enclosed characters

[a-€] match any characters in the range a,b,c,d,e

['def] match any characters not one of the enclosed charasitensly
{abc,bcd,cde} match any set of characters separated by comma (,) (no sgabas)ly

~ home directory of the current useshonly
~user home directory of the specified useshonly

58 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Regular Expression Syntax

CHAPTER 7 Text Processing

7.1 Regular Expression Syntax

Some text processing programs, suclgeep egrep sed awk andvi, let you search on patterns
instead of fixed strings. These text patterns are knowagagar expressions You form a regular
expression by combining normal characters and special characters, also kmoeta-akaracters
with the rules below. With these regular expressions you cgratiern matching on text data.
Regular expressions come in three different forms:

e Anchors which tie the pattern to a location on the line
« Character sets which match a character at a single position
« Modifiers which specify how many times to repeat the previous expression

Regular expression syntax is as follows. Some programs will accept all of these, others may only
accept some.

matchany single character except <newline>

* matchzero or moreinstances of the single character (or meta-character)
immediately preceding it

[abc] match any of the characters enclosed

[a-d] match any character in the enclosed range

["exp] match any charact&ot in the following expression

~abc the regular expression must start atlibginning of the line(Anchor)

abc$ the regular expression must end atehd of the line(Anchor)

\ treat the next character literally. This is normally used to escape the meaning
of special characters such dsand *".

\{n,m\} match the regular expression preceding this a minimum numbeiroés

and a maximum ain times (0 through 255 are allowed for n and m). {he

and\} sets should be thought of as single operators. In this case the
preceding the bracket does not escape its special meaning, but rather turns on
a new one.

\<abc\> will match the enclosed regular expression as long as it is a separate word.
Word boundaries are defined as beginning with a <newline> or anything
except a letter, digit or underscorg ¢r ending with the same or a end-of-line
character. Again the and\> sets should be thought of as single operators.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 59

Text Processing

\(abc\) saves the enclosed pattern in a buffer. Up to nine patterns can be saved for
each line. You can reference these latter withriteharacter set. Again the
\(and\) sets should be thought of as single operators.

\n wheren is between 1 and 9. This matches the nth expression previously
saved for this line. Expressions are numbered starting from the lefin The
should be thought of as a single operator.

& print the previous search pattern (used in the replacement string)

There are a few meta-characters used onigvdyandegrep These are:

match one or more of the preceding expression
match zero or more of the preceding expression
| separator. Match either the preceding or following expression.
() group the regular expressions within and apply the match to the set.

Some examples of the more commonly usgglilar expressionsare:

regular

expression matches

cat the stringat

.at any occurrence of a letter, followeddty such as cat, rat, mat, bat, fat, hat
Xy*z any occurrence of ax, followed by zero or morg's, followed by a.
"cat cat at the beginning of the line

cat$ cat at the end of the line

* any occurrence of an asterisk

[cClat cat or Cat

[ra-zA-Z] any occurrence of a non-alphabetic character

[0-9]% any line ending with a number

[A-Z][A-Z]* one or more upper case letters

[A-Z]* zero or more upper case letters (In other words, anything.)

60 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

7.2 Text Processing Commands

TABLE 7.1 Text Processing Commands

Command/Syntax What it will do

awk/nawk[options]file scan for patterns in a file and process the results

grep/egrep/fgregoptions] 'search strindjle search the argument (in this case probably a file) for all occurrences
of the search string, and list them.

sed[options]file stream editor for editing files from a script or from the command |line

7.2.1 grep
This section provides an introduction to the useeglilar expressionsandgrep.

Thegreputility is used to search for generalized regular expressions occurring in Unix files. Regular
expressions, such as those shown above, are best specified in apostrophes (or single quotes) wt
specified in thegrep utility. Theegreputility provides searching capability using an extended set of
meta-characters. The syntax of gneputility, some of the available options, and a few examples are
shown below.

Syntax
grep [options] regexp [file[s]]

Common Options

-i ignore case

-C report only a count of the number of lines containing matches, not the
matches themselves

-V invert the search, displaying only lines that do not match

-n display the line number along with the line on which a match was found

-S work silently, reporting only the final status:

0, for match(es) found
1, for no matches
2, for errors
-l list flenames, but not lines, in which matches were found

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 61

Text Processing

Examples

Consider the following file:

{unix prompt 5} cat num.list

1 15 fifteen
2 14 fourteen
3 13 thirteen
4 12 twelve
5 11 eleven
6 10 ten

7 9 nine

8 8 eight

9 7 seven
10 6 six

11 5 five

12 4 four

13 3 three
14 2 two

15 1 one

Here are somgrep examples using this file. In the first we’ll search for the nuriber

{unix prompt 6} grep '15' num.list
1 15 fifteen
15 1 one

Now we’ll use the “c" option to count the number of lines matching the search criterion:
{unix prompt 7} grep -c '15' num.list
2
Here we’ll be a little more general in our search, selecting for all lines containing the character
followed by either ofl, 2 or 5:
{unix prompt 8} grep '1[125]' num.list

1 15 fifteen
4 12 twelve
5 11 eleven
11 5 five
12 4 four
15 1 one

62 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

Now we’ll search for all lines thdtegin with aspace

{unix prompt 9} grep " ' num.list

1

© 00 N O ol A WDN

15
14
13
12
11
10
9
8
7

fifteen
fourteen
thirteen
twelve
eleven
ten

nine

eight

seven

Or all lines thadon’t begin with aspace

{unix prompt 10} grep "N[*] num.list

10
11
12
13
14
15

The latter could also be done by using-theption with the original search string, e.g.:

6

R N W b~ O

SiX
five
four
three
two
one

{unix prompt 11} grep -v '* ' num.list

10
11
12
13
14
15

Here we search for all lines tHaggin with the characters through 9

6

R N W b~ O

SiX
five
four
three
two
one

{unix prompt 12} grep "\[1-9]' num.list

10
11
12
13
14
15

6

R N W b~ O

SiX
five
four
three
two
one

Introduction to Unix

00 1998 University Technology Services, The Ohio State University

63

Text Processing

This example will search for any instances fifllowed byzero or more occurrences o

{unix prompt 13} grep 'te*' num.list

15 fifteen
2 14 fourteen
3 13 thirteen
4 12 twelve
6 10 ten
8 8 eight
13 3 three
14 2 two

This example will search for any instances fifllowed byone or moreoccurrences of:

{unix prompt 14} grep ‘tee* num.list

1 15 fifteen

2 14 fourteen
3 13 thirteen
6 10 ten

We can also take our input from a program, rather than a file. Here we report on any lines output by
thewho program that begin with the letter

{unix prompt 15} who | grep "I
Icondron ttypO Dec 102:41 (Ilcondron-pc.acs.)

64 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

7.2.2 sed

The non-interactive, stream edit@ed edits the input stream, line by line, making the specified
changes, and sends the result to standard output.

Syntax

sed[options] edit_command [file]

The format for the editing commands are:

[addressl[,address2]|[function][arguments]

where the addresses are optional and can be separated from the function by spaces or tabs. T
function is required. The arguments may be optional or required, depending on the function in use.

Line-number Addressesare decimal line numbers, starting from the first input line and incremented
by one for each. If multiple input files are given the counter continues cumulatively through the files.
The last input line can be specified with ti§ €haracter.

Context Addressesare the regular expression patterns enclosed in slashes (/).

Commands can have 0, 1, or 2 comma-separated addresses with the following affects:

of addresses lines affected

0 every line of input

1 only lines matching the address

2 first line matching the first address and all lines until, and including, the line
matching the second address. The process is then repeated on subsequent
lines.

Substitution functions allow context searches and are specified in the form:

s/regular_expression_pattern/replacement_string/flag

and should be quoted with single quotes (’) if additional options or functions are specified. These
patterns are identical to context addresses, except that while they are normally enclosed in slashes (
any normal character is allowed to function as the delimiter, other than <space> and <newline>.
The replacement string is not a regular expression pattern; characters do not have special meanin
here, except:

& substitute the string specified by regular_expression_pattern
\n substitute the nth string matched by regular_expression_pattern enclosed in
\(, "\)’ pairs.

These special characters can be escaped with a backslash (\) to remove their special meaning.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 65

Text Processing

Common Options

-e script edit script

-n don't print the default output, but only those lines specified by p or s///p
functions

-f script_file take the edit scripts from the file, script_file

Valid flags on the substitution functions include:

d delete the pattern
g globally substitute the pattern
p print the line

Examples

This example changes all incidents of a compnhen{o a comma followed by a spage hen doing
output:

% cat filey | sed s/,/\ /g

The following example removes all incidentslofpreceded by a spacdn in filey:

% cat filey | sed s/ Jr/lg

To perform multiple operations on the input precede each operation witke ¢padit) option and
guote the strings. For example, to filter for lines containing "Date: " and "From: " and replace these
without the colon (3), try:

sed -e 's/Date: /Date /' -e 's/From: /From /'

To print only those lines of the file from the one beginning with "Date:" up to, and including, the one
beginning with "Name:" try:

sed -n '/"Date:/,/"Name:/p’
To print only the first 10 lines of the input (a replacemenh&ag:
sed -n 1,10p

66 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

7.2.3 awk, nawk, gawk

awk is a pattern scanning and processing language. Its name comes from the last initials of the thre
authors: Alfred. V. Aho, Brian. W. Kernighan, and Peter. J. Weinbergesk is new awk, a newer
version of the program, argwk is gnu awk, from the Free Software Foundation. Each version is a
little different. Here we’ll confine ourselves to simple examples which should be the same for all
versions. On some O&svk is reallynawk.

awk searches its input for patterns and performs the specified operation on each line, or fields of the
line, that contain those patterns. You can specify the pattern matching statemamisdither on
the command line, or by putting them in a file and usingftpeogram_file option.

Syntax

awk program ([file]

whereprogram is composed of one or more:

pattern { action }

fields. Each input line is checked for a pattern match with the indicated action being taken on a
match. This continues through the full sequence of patterns, then the next line of input is checked.

Input is divided intorecords andfields. The defaultecord separator isnewline>, and the variable
NR keeps the record count. The defdidtd separator is whitespacgpacesandtabs, and the
variableNF keeps the field count. Input fieldS, and recordRS, separators can be set at any time to
match any single character. Output figdkS, and recordDRS, separators can also be changed to
any single character, as desiregh, wheren is an integer, is used to representibtte field of the
input record, whileb0 represents the entire input record.

BEGIN andEND are special patterns matching the beginning of input, before the first field is read,
and the end of input, after the last field is read, respectively.

Printing is allowed through thprint, and formatted prinprintf, statements.

Patterns may be regular expressions, arithmetic relational expressions, string-valued expressions
and boolean combinations of any of these. For the latter the patterns can be combined with thi
boolean operators below, using parentheses to define the combination:

| or
&& and
! not

Comma separated patterns definerirege for which the pattern is applicable, e.g.:
ffirst/,/last/

selects all lines starting with the one containiingt, and continuing inclusively, through the one
containinglast.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 67

Text Processing

To select lines 15 through 20 use the pattern range:

NR == 15, NR == 20
Regular expressiongnust be enclosed with slashes (/) and meta-characters can be escaped with the
backslash (\). Regular expressions can be grouped with the operators:

| or, to separate alternatives
+ one or more
? zero or one

A regular expression match can be either of:

~ contains the expression
I~ does not contain the expression

So the program:
$1 ~ /[Fflrank/

is true if the first field, $1, contains "Frank" or "frank" anywhere within the field. To match a field
identical to "Frank" or "frank" use:

$1 ~ /N[Fflrank$/

Relational expressionsare allowed using the relational operators:

< less than

<= less than or equal to
== equal to

>= greater than or equal to
I= not equal to

> greater than

Offhand you don’t know if variables are strings or numbers. If neither operand is known to be
numeric, than string comparisons are performed. Otherwise, a numeric comparison is done. In the
absence of any information to the contrary, a string comparison is done, so that:

$1> %2

will compare the string values. To ensure a numerical comparison do something similar to:
($1+0)>9%2

Themathematical functions exp, log and sqrt are built-in.

68 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

Some othebuilt-in functions include:

index(s,t) returns the position of strirgwheret first occurs, or O if it doesn’t
length(s) returns the length of strirgy
substr(s,m,n) returns then-character substring ef beginning at positiom

Arrays are declared automatically when they are used, e.g.:

arrfi] = $1
assigns the first field of the current input record to the ith element of the array.

Flow control statements usiifgelse, while, andfor are allowed witlC type syntax:
for (i=1; i <= NF; i++) {actions}
while (i<=NF) {actions}

if (i<NF) {actions}

Common Options

-f program_file read the commands from program_file
-Fc use charactaras the field separator character
Examples

% cat filex | tr a-z A-Z | awk -F: {printf ("7TR %-6s %-9s %-24s \n",$1,$2,$3)}'>upload.file

catsfilex, which is formatted as follows:

nfb791:99999999:smith
7ax791:999999999:jones
8ab792:99999999:chen
8aa791:999999999:mcnulty

changes all lower case characters to upper case wittr thidity, and formats the file into the
following which is written into the fileipload.file:

7R NFB791 99999999 SMITH

7R 7AX791 999999999 JONES
7R 8AB792 99999999 CHEN

7R 8AA791 999999999 MCNULTY

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 69

Other Useful Commands

CHAPTER 8

Other Useful Commands

8.1 Working With Files

This section will describe a number of commands that you might find useful in examining and
manipulating the contents of your files.

TABLE 8.1

File utilities

Command/Syntax

What it will do

cmp[options]filel file2

compare two files and list where differences occur (text or binary file

cut [options] file(s)]

cut specified field(s)/character(s) from lines in file(s)

diff [options]filel file2

compare the two files and display the differences (text files only)

file [options]file

classify the file type

find directory [options] [actions]

find files matching a type or pattern

In [options]source_file target

link the source_fileto thetarget

paste[options]file

paste field(s) onto the lines fiie

sort [options]file

sort the lines of théle according to the options chosen

strings [options]file

report any sequence of 4 or more printable characters ending in <N
<NULL>. Usually used to search binary files for ASCII strings.

> or

tee[options]file

copy stdout to one or more files

touch [options] [datefile

create an empty file, or update the access time of an existing file

tr [options]stringl string2

translate the characters in stringl from stdin into those in string2 in s

tdout

uniq [options]file

remove repeated lines in a file

wec [options] file(s)]

display word (or character or line) count fite(s)

70 00 1998 University Technology Services, The Ohio State University

Introduction to Unix

Working With Files

8.1.1 cmp - compare file contents

The cmp command compares two files, and (without options) reports the location of the first
difference between them. It can deal with both binary and ASCII file comparisons. It does a
byte-by-byte comparison.

Syntax
cmp[options] filel file2 [skip1] [skip2]

Theskip numbers are the number of bytes to skip in each file before starting the comparison.

Common Options

-l report on each difference
-S report exit status only, not byte differences

Examples

Given the files mon.logins:and tues.logins:

ageorge ageorge
bsmith cbetts
Cbetts jchen
jchen jdoe
jmarsch jmarsch
Ikeres lkeres
mschmidt proy
sphillip sphillip
wyepp wyepp

The comparison of the two files yields:

% cmp mon.logins tues.logins
mon.logins tues.logins differ: char 9, line 2

The default it to report only the first difference found.

This command is useful in determining which version of a file should be kept when there is more than
one version.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 71

Other Useful Commands

8.1.2 diff - differences in files

Thediff command compares two files, directories, etc, and reports all differences between the two. It
deals only with ASCII files. It's output format is designed to report the changes necessary to convert
the first file into the second.

Syntax
diff [options] filel file2

Common Options

-b ignore trailing blanks
-i ignore the case of letters

-w ignore sspace> and ¢ab> characters

-e produce an output formatted for use with the edédr,

-r apply diff recursively through common sub-directories
Examples

For the mon.logins and tues.logins files abake difference between them is given by:

% diff mon.logins tues.logins
2d1
< bsmith
4a4
> jdoe
7c7
< mschmidt

> proy

Note that the output lists the differences as well as in which file the difference exists. Lines in the
first file are preceded by™, and those in the second file are preceded>ty "

72 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.3 cut - select parts of a line
Thecut command allows a portion of a file to be extracted for another use.

Syntax

cut [options] file

Common Options

-c character_list character positions to select (first character is 1)
-d delimiter field delimiter (defaults toFAB >)
-f field_list fields to select (first field is 1)

Both the character and field lists may contain comma-separated or blank-character-separate
numbers (in increasing order), and may contain a hypheto (ndicate a range. Any numbers
missing at either before (e.g. -5) or after (e.g. 5-) the hyphen indicates the full range starting with the
first, or ending with the last character or field, respectively. Blank-character-separated lists must be
enclosed in quotes. The field delimiter should be enclosed in quotes if it has special meaning to th
shell, e.g. when specifying apgace> or <TAB> character.

Examples

In these examples we will use the filsers

jdoe John Doe 4/15/96
Ismith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

If you only wanted the username and the user's real nan@jttbemmand could be used to get only
that information:

% cut -f 1,2 users

jdoe John Doe
Ismith Laura Smith
pchen Paul Chen
jhsu Jake Hsu

sphilip Sue Phillip

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 73

Other Useful Commands

The cut command can also be used with other options. -Chaption allows characters to be the
selected cut. To select the first 4 characters:

% cut -c 1-4 users

This yields:
jdoe
Ismi
pche
jhsu
sphi

thus cutting out only the first 4 characters of each line.

8.1.4 paste - merge files
Thepastecommand allows two files to be combined side-by-side. The default delimiter between the

columns in a paste is a tab, but options allow other delimiters to be used.
Syntax
paste[options] filel file2

Common Options

-d list list of delimiting characters
-S concatenate lines

The list ofdelimiters may include a single character such as a comma; a quoted string, such as a
space; or any of the following escape sequences:

\n <newline> character

\t <tab> character

\\ backslash character

\0 empty string (non-null character)

It may be necessary to quote delimiters with special meaning to the shell.

A hyphen €) in place of a file name is used to indicate that field should come from standard input.

74 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

Examples

Given the fileusers

jdoe John Doe 4/15/96
Ismith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

and the filephone

John Doe 555-6634
Laura Smith 555-3382
Paul Chen 555-0987
Jake Hsu 555-1235
Sue Phillip 555-7623

thepastecommand can be used in conjunction withdhecommand to create a new filssting, that
includes the username, real name, last login, and phone number of all the users. First, extract tr
phone numbers into a temporary filemp.file:
% cut -f2 phone > temp.file

555-6634

555-3382

555-0987

555-1235

555-7623

The result can then be pasted to the end of each lumsensand directed to the new filksting:

% paste users temp.file > listing

jdoe John Doe 4/15/96 237-6634
Ismith Laura Smith 3/12/96 878-3382
pchen Paul Chen 1/5/96 888-0987
jhsu Jake Hsu 4/17/96 545-1235
sphilip Sue Phillip 4/2/96 656-7623

This could also have been done on one line without the temporary file as:

% cut -f2 phone | paste users - > listing

with the same results. In this case the hyphgeis acting as a placeholder for an input field (namely,
the output of theut command).

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 75

Other Useful Commands

8.1.5 touch - create a file

The touch command can be used to create a new (empty) file or to update the last access date/time on
an existing file. The command is used primarily when a script requires the pre-existence of a file (for
example, to which to append information) or when the script is checking for last date or time a

function was performed.

Syntax

touch [options] [date_time] file
touch [options] [-t time] file

Common Options

-t time

change the access time of the file (SVR4 only)

don't create the file if it doesn't already exist

force the touch, regardless of read/write permissions
change the modification time of the file (SVR4 only)

use the time specified, not the current time (SVR4 only)

When setting the-t time" option it should be in the form:

[[CCIYY]IMMDDhhmm[.SS]
where:
CcC first two digits of the year
YY second two digits of the year
MM month, 01-12
DD day of month, 01-31
hh hour of day, 00-23
mm minute, 00-59
SS second, 00-61

The date_time options has the form:

MMDDhhmm[YY]

where these have the same meanings as above.

The date cannot be set to be before 1969 or after January 18, 2038.

Examples

To create a file:

% touch filename

76 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.6 wc - count words in a file

wc stands for "word count"; the command can be used to count the number of lines, characters, o
words in a file.

Syntax

wc [options] file

Common Options

-C count bytes

-m count characters (SVR4)
-l count lines

-w count words

If no options are specified it defaults tdwc".
Examples

Given the fileusers

jdoe John Doe 4/15/96
Ismith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

the result of using wc command is as follows:

% wc users
5 20 121 users

The first number indicates the number of lines in the file, the second number indicates the number o
words in the file, and the third number indicates the number of characters.

Using thewc command with one of the options, (ines;-w, words; or-c, characters) would result in
only one of the above. For examplec'-l users yields the following result:

5 users

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 77

Other Useful Commands

8.1.7 In - link to another file

TheIn command creates a "link" or an additional way to access (or gives an additional name to)
another file.

Syntax

In [options] source [target]
If not specifiedtarget defaults to a file of the same name in the present working directory.

Common Options

-f force a link regardless of target permissions; don’t report errors (SVR4 only)
-S make a symbolic link
Examples

A symbolic link is used to create a new path to another file or directory. If a group of users, for
example, is accustomed to using a command cellchag but the command has been rewritten and

is now calledchkit, creating a symbolic link so the users will automatically exechkie when they

enter the commanchkmagwill ease transition to the new command.

A symbolic link would be done in the following way:
% In -s chkit chkmag

The long listing for these two files is now as follows:

16 -rwxr-x--- 1 lindadb acs 15927 Apr 23 04:10 chkit
1 Irwxrwxrwx 1 lindadb acs 5 Apr 23 04:11 chkmag -> chkit

Note that while the permissions fdtkmagare open to all, since it is linkedc¢bkit, the permissions,
group and owner characteristics @ikit will be enforced whechkmagis run.

With a symbolic link, the link can exist without the file or directory it is linked to existing first.

A hard link can only be done to another file on the same file system, but not to a directory (except by
the superuser). A hard link creates a new directory entry pointing to the same inode as the original
file. The file linked to must exist before the hard link can be created. The file will not be deleted until
all the hard links to it are removed. To link the two files above with a hard link to each other do:

% In chkit chkmag

Then a long listing shows that threde number (742) is the same for each:

% Is -il chkit chkmag
742 -rwxr-x--- 2 lindadb acs 15927 Apr 23 04:10 chkit
742 -rwxr-x--- 2 lindadb acs 15927 Apr 23 04:10 chkmag

78 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.8 sort - sort file contents

Thesortcommand is used to order the lines of a file. Various options can be used to choose the orde
as well as the field on which a file is sorted. Without any options, the sort compares entire lines in the
file and outputs them in ASCII order (numbers first, upper case letters, then lower case letters).

Syntax
sort [options] [+posl [-pos2] file

Common Options

-b ignore leading blanks épace> & <tab>) when determining starting and
ending characters for the sort key

-d dictionary order, only letters, digitssgace> and ¢ab> are significant

-f fold upper case to lower case

-k keydef sort on the defined keys (not available on all systems)

-i ignore non-printable characters

-n numeric sort

-0 outfile output file

-r reverse the sort

-t char use char as the field separator character

-u unique; omit multiple copies of the same line (after the sort)

+posl fpos2] (old style) provides functionality similar to the "-k keydef" option.

For the+/-position entriesposlis the starting word number, beginning witandpos2is the ending
word number. Wherpos2is omitted the sort field continues through the end of the line. Both posl
andpos2can be written in the formv.c, wherew is the word number armis the character within the
word. Forc 0 specifies the delimiter preceding the first character,laiscthe first character of the
word. These entries can be followed by type modifiers nefgy. numeric,b to skip blanks, etc.

Thekeydeffield of the “k" option has the syntax:
start_field [type] [,end_field [type]]

where:

start_field, end_field define the keys to restrict the sort to a portion of the line

type modifies the sort, valid modifiers are given the single characters (bdfiMnr)
from the similar sort options, e.g. a tyipés equivalent to-b", but applies
only to the specified field

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 79

Other Useful Commands

Examples

In the fileusers

jdoe John Doe 4/15/96
Ismith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

sortusers yields the following:

jdoe John Doe 4/15/96
jhsu Jake Hsu 4/17/96
Ismith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
sphilip Sue Phillip 4/2/96

If, however, a listing sorted by last name is desired, use the option to specify which field to sort on
(fields are numbered starting at 0):

% sort +2 users:

pchen Paul Chen 1/5/96
jdoe John Doe 4/15/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

Ismith Laura Smith 3/12/96

To sort in reverse order:

% sort -r users:

sphilip Sue Phillip 4/2/96
pchen Paul Chen 1/5/96
Ismith Laura Smith 3/12/96
jhsu Jake Hsu 4/17/96
jdoe John Doe 4/15/96

80 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

A particularly usefukortoption is theu option, which eliminates any duplicate entries in a file while
ordering the file. For example, the file todays.logins:

sphillip

jchen

jdoe

Ikeres

jmarsch

ageorge

Ikeres

proy

jchen

shows a listing of each username that logged into the system today. If we want to know how many
unique users logged into the system today, using sort withuthtion will list each user only once.
(The command can then be piped inte™I" to get a number):
% sort -u todays.logins

ageorge

jchen

jdoe

jmarsch

Ikeres

proy

sphillip

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 81

Other Useful Commands

8.1.9 tee - copy command output
teesends standard in to specified files and also to standard out. It's often used in command pipelines.

Syntax

tee [options] [file[s]]

Common Options

-a append the output to the files
-i ignore interrupts

Examples

In this first example the output @fho is displayed on the screen and stored in theifiégs. file

brigadier: condron [55]> who | tee users.file
condron ttypO Apr 22 14:10 (Icondron-pc.acs.)
frank ttypl Apr2216:19 (nyssa)
condron ttyp9 Apr 22 15:52 (Icondron-mac.acs)

brigadier: condron [56]> cat users.file
condron ttypO Apr 22 14:10 (Icondron-pc.acs.)
frank ttypl Apr2216:19 (nyssa)
condron ttyp9 Apr 22 15:52 (Icondron-mac.acs)

In this next example the outputwho is sent to the filessers.aandusers.h It is also piped to the
wc command, which reports the line count.
brigadier: condron [57]> who | tee users.a users.b | wc -
3

brigadier: condron [58]> cat users.a
condron ttypO Apr 22 14:10 (Icondron-pc.acs.)
frank ttypl Apr2216:19 (nyssa)
condron ttyp9 Apr 22 15:52 (Icondron-mac.acs)

brigadier: condron [59]> cat users.b
condron ttypO Apr 22 14:10 (Icondron-pc.acs.)
frank ttypl Apr2216:19 (nyssa)
condron ttyp9 Apr 22 15:52 (Icondron-mac.acs)

82 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

In the following example a long directory listing is sent to thefiiiés.long It is also piped to the
grepcommand which reports which files were last modified in August.
brigadier: condron [60]> Is -I | tee files.long |grep Aug
1 drwxr-sr-x 2 condron 512 Aug 8 1995 News/
2 -rw-r--r-- 1 condron 1076 Aug 8 1995 magnus.cshrc
2 -rw-r--r-- 1 condron 1252 Aug 8 1995 magnus.login
brigadier: condron [63]> cat files.long
total 34
2 -rw-r--r-- 1 condron 1253 Oct 10 1995 #.login#
1 drwx------ 2 condron 512 Oct 17 1995 Mail/
1 drwxr-sr-x 2 condron 512 Aug 8 1995 News/
5 -rw-r--r-- 1 condron 4299 Apr 21 00:18 editors.txt
2 -rw-r--r-- 1 condron 1076 Aug 8 1995 magnus.cshrc
2 -rw-r--r-- 1 condron 1252 Aug 8 1995 magnus.login
7 -rw-r--r-- 1 condron 6436 Apr 21 23:50 resources.txt
4 -rw-r--r-- 1 condron 3094 Apr 18 18:24 telnet.ftp
1 drwxr-sr-x 2 condron 512 Apr 21 23:56 uc/
1 -rw-r--r-- 1 condron 1002 Apr 22 00:14 unig.tee.txt
1 -rw-r--r-- 1 condron 1001 Apr 20 15:05 unig.tee.txt~
7 -rw-r--r-- 1 condron 6194 Apr 15 20:18 unixgrep.txt

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 83

Other Useful Commands

8.1.10 unig - remove duplicate lines
uniq filters duplicate adjacent lines from a file.

Syntax

uniq [options] [+|-n] file [file.new]

Common Options

-d one copy of only the repeated lines
-u select only the lines not repeated
+n ignore the firsh characters
-sn same as above (SVR4 only)
-n skip the firstn fields, including any blanks @pace> & <tab>)
-f fields same as above (SVR4 only)
Examples

Consider the following file and example, in whighig removes the 4th line frofile and places the
result in a file calledile.new.
{unix prompt 1} cat file
1236
4536
7890
7890
{unix prompt 2} uniq file file.new
{unix prompt 3} cat file.new
1236
4536
7890

Below, the-n option of theunig command is used to skip the first 2 fielddile, and filter out lines
which are duplicates from the 3rd field onward.
{unix prompt 4} uniq -2 file
1236
7890

84 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.11 strings - find ASCII strings
To search a binary file for printable, ASCII, strings usedin@gs command. It searches for any
sequence of 4 or more ASCII characters terminated byeavkne> or null character. | find this
command useful for searching for file names and possible error messages within compiled program
that | don’t have source code for.
Syntax

strings [options] file

Common Options

-n number use number as the minimum string length, rather than 4 (SVR4 only)
-number same as above
-t format precede the string with the byte offset from the start of the file, where format
is one of:d = decimalo = octal,x = hexadecimal (SVR4 only)
-0 precede the string with the byte offset in decimal (BSD only)
Examples

% strings /bin/cut
SUNW_OST_OSCMD
no delimiter specified
invalid delimiter
b:c:d:f:ns
cut: -n may only be used with -b
cut: -d may only be used with -f
cut: -s may only be used with -f
no list specified
cut: cannot open %s
invalid range specifier
too many ranges specified
ranges must be increasing
invalid character in range
Internal error processing input
invalid multibyte character
unable to allocate enough memory
unable to allocate enough memory
cut:
usage: cut -b list [-n] [filename ...]
cut -c list [filename ...]
cut -f list [-d delim] [-s] [filename]

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 85

Other Useful Commands

8.1.12 file - file type

This programfile, examines the selected file and tries to determine what type of file it is. It does this
by reading the first few bytes of the file and comparing them with the taldécitmagic It can
determine ASCII text files, tar formatted files, compressed files, etc.

Syntax

file [options] [-m magic_file] [-f file_list] file

Common Options

-C check the magic file for errors in format

-f file_list file_list contains a list of files to examine

-h don't follow symboalic links (SVR4 only)

-L follow symbolic links (BSD only)

-m magic_file usemagic_file as the magic file instead of /etc/magic
Examples

Below we list the output from the commarfde'filename' for some representative files.

/etc/magic: ascii text

/usr/local/bin/gzip: Sun demand paged SPARC executable dynamically linked

/usr/bin/cut: ELF 32-bit MSB executable SPARC Version 1, dynamically linked, stripped
source.tar: USTAR tar archive

source.tar.Z: compressed data block compressed 16 bits

8.1.13 tr - translate characters
Thetr command translates characters from stdin to stdout.

Syntax
tr [options] stringl [string2]
With no options the characterssiringl are translated into the characterstnng2, character by

character in the string arrays. The first charactestrimgl is translated into the first character in
string2, etc.

A range of characters in a string is specified with a hyphen between the upper and lower characters of
the range, e.g. to specify all lower case alphabetic charactefaage ’

Repeated characters string2 can be represented with tHeg*h]’ notation, where character is
repeatedh times. Ifn is0 or absent it is assumed to be as large as needed tostratgh.

86 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

Characters can includectal (BSD and SVR4) ankttharacter (SVR4 only) notation. Hereottal"
is replaced by the one, two, or three octal integer sequence encoding the ASCII character an
"character" can be one of:
b back space
f form feed
n new line
r carriage return
t tab
% vertical tab

The SVR4 version ofr allows the operand:¢lass! in the string field whereclass can take on
character classification values, including:

alpha alphabetic characters
lower lower case alphabetic characters
upper upper case alphabetic characters

Common Options

-C complement the character sesinngl

-d delete the characters siringl

-S squeeze a string of repeated charactestringl to a single character
Examples

The following examples will use as input the file, a list of P. G. Wodehouse Jeeves & Wooster books.

The Inimitable Jeeves [1923] The Mating Season [1949]

Carry On, Jeeves [1925] Ring for Jeeves [1953]

Very Good, Jeeves [1930] Jeeves and the Feudal Spirit [1954]
Thank You, Jeeves [1934] Jeeves in the Offing [1960]

Right Ho, Jeeves [1934] Stiff Upper Lip, Jeeves [1963]

The Code of the Woosters [1938] Much Obliged, Jeeves [1971]

Joy in the Morning [1946] Aunts Aren't Gentlemen [1974]

To translate all lower case alphabetic characters to upper case we could use either of:
tr '[a-z] '[A-Z] or tr '[:lower:] "[:upper:]’

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 87

Other Useful Commands

% cat wodehouse | tr '[a-z] '[A-Z]
THE INIMITABLE JEEVES [1923]
CARRY ON, JEEVES [1925]
VERY GOOD, JEEVES [1930]
THANK YOU, JEEVES [1934]
RIGHT HO, JEEVES [1934]
THE CODE OF THE WOOSTERS [1938]
JOY IN THE MORNING [1946]

We could delete all numbers with:

% cat wodehouse | tr -d '[0-9]
The Inimitable Jeeves []
Carry On, Jeeves |]

Very Good, Jeeves |]

Thank You, Jeeves []

Right Ho, Jeeves []

The Code of the Woosters]
Joy in the Morning []

% cat wodehouse | tr -s 'erf’
The Inimitable Jeves [1923]
Cary On, Jeves [1925]
Very Good, Jeves [1930]
Thank You, Jeves [1934]
Right Ho, Jeves [1934]
The Code of the Woosters [1938]
Joy in the Morning [1946]

Sincetr reads from stdin we firgtat the file and pipe the output tg as in:

THE MATING SEASON [1949]
RING FOR JEEVES [1953]
JEEVES AND THE FEUDAL SPIRIT [1954]
JEEVES IN THE OFFING [1960]
STIFF UPPER LIP, JEEVES [1963]
MUCH OBLIGED, JEEVES [1971]
AUNTS AREN'T GENTLEMEN [1974]

The Mating Season []
Ring for Jeeves []
Jeeves and the Feudal Spirit []
Jeeves in the Offing []
Stiff Upper Lip, Jeeves []
Much Obliged, Jeeves []
Aunts Aren't Gentlemen []

To squeeze all multiple occurrences of the characters e, r, and f:

The Mating Season [1949]

Ring for Jeves [1953]
Jeves and the Feudal Spirit [1954]
Jeves in the Ofing [1960]
Stif Upper Lip, Jeves [1963]

Much Obliged, Jeves [1971]
Aunts Aren't Gentlemen [1974]

00 1998 University Technology Services, The Ohio State University

Introduction to Unix

Working With Files

8.1.14 find - find files

Thefind command will recursively search the indicated directory tree to find files matching a type or
pattern you specifyfind can then list the files or execute arbitrary commands based on the results.

Syntax

find directory [search options] [actions]

Common Options

For the time search options the notation in days;

+n
n
-Nn

more tham days
exactlyn days
less tham days

Some file characteristics thixtd can search for are:

time that the file was last accessed or changed

-atime n

-ctimen

-mtime n
-newer filename
-type type

b

- o O

p
f

-fstype type

-user username
-group groupname
-perm [-]Jmode
-execcommand

-namefilename

-Is
-print

access time, true if accessedays ago

change time, true if the files status was chamgéays ago
modified time, true if the files data was modifiedays ago
true if newer thdilename

type of file, wheretype can be:

block special file

character special file

directory

symbolic link

named pipe (fifo)

regular file

type of file system wheretype can be any valid file system type, eufs
(Unix File System) andfs (Network File System)

true if the file belongs to the ussrname
true if the file belongs to the grogupupname

permissions on the file, whar®deis the octal modes for tlehhmod
command. Whemodeis precede by the minus sign only the bits that are set
are compared.

executeommand The end oEommandis indicated by and escaped
semicolon\;). The command argumefg, replaces the current path name.

true if the file is namddename. Wildcard pattern matches are allowed if
the meta-character is escaped from the shell with a backglash (

always true. It prints a long listing of the current pathname.
print the pathnames found (default for SVR4, not for BSD)

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 89

Other Useful Commands

Complex expressions are allowed. Expressions should be grouped within parenthesis (escaping the
parenthesis with a backslash to prevent the shell from interpreting them). The exclamation!gymbol (
can be used tmegate an expression. The operatora: (and) and-o (or) are used to group
expressions.

Examples

find will recursively search through sub-directories, but for the purpose of these examples we will
just use the following files:

14 -rw-r--r-- 1 frank staff 6682 Feb 5 10:04 library

6 -r--r----- 1 frank staff 3034 Mar 16 1995 netfile

34 -rw-r--r-- 1frank staff 17351 Feb 5 10:04 standard
2 -rwxr-xr-x 1 frank staff 386 Apr 26 09:51 tr25*

To find all files newer than the file, library:

% find . -newer library -print
Jtr25

Istandard

To find all files with general read or execute permission set, and then to change the permissions on
those files to disallow this:

% find . \(-perm -004 -o -perm -001\) -exec chmod o-rx {}\; -exec Is -al {} \;
-TW-r=---- 1 frank staff 6682 Feb 5 10:04 ./library
-rwxr-x--- 1 frank staff 386 Apr 26 09:51 ./tr25
-rW-r----- 1frank staff 17351 Feb 5 10:04 ./standard

In this example the parentheses and semicolons are escaped with a backslash to prevent the shell from
interpreting them. The curly brackets are automatically replaced by the results from the previous
search and the semicolon ends the command.

We could search for any file name containing the string "ar" with:

% find . -name *ar* -Is
326584 7 -rw-r----- 1 frank staff 6682 Feb 5 10:04 ./library
326585 17 -rw-r----- 1 frank staff 17351 Feb 5 10:04 ./standard

where thels option prints out a long listing, including the inode numbers.

90 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Archiving, Compression and Conversion

8.2 File Archiving, Compression and

Conversion
TABLE 8.2 File Archiving, Compression and Conversion Commands
Command/Syntax What it will do

compress/uncompress/zdatptions]file[.Z] compress or uncompress a file. Compressed files are stored with a .Z
ending.

dd [if=infile] [of=oultfile] [operand=value] copy a file, converting between ASCII and EBCDIC or swapping
byte order, as specified

gzip'gunzip/zcafoptions]file[.gz] compress or uncompress a file. Compressed files are stored with a
.gzending

od [options]file octal dump a binary file, in octal, ASCII, hex, decimal, or character
mode.

tar key[options] file(s)] tape archiver--refer to man pages for details on creating, listing,|and
retrieving from archive files. Tar files can be stored on tape or disk.

uudecoddfile] decode a uuencoded file, recreating the original file

uuencodeffile] new_name encode binary file to 7-bit ASCII, useful when sending via email, to

be decoded as new_name at destination

8.2.1 File Compression

Thecompressommand is used to reduce the amount of disk space utilized by a file. When a file has
been compressed using tbempresscommand, a suffix ofZ is appended to the file name. The
ownership modes and access and modification times of the original file are presamethpress
restores the files originally compresseddoynpress

Syntax

compresgoptions] [file]
uncompresgoptions] [file.Z]
zcat[file.Z]

Common Options

-C write to standard output and don’t create or change any files

-f force compression of a file, even if it doesn’t reduce the size of the file or if
the target file (file.Z) already exists.

-v verbose. Report on the percentage reduction for the file.

zcatwrites to standard output. It is equivalentaacompress -t

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 91

Other Useful Commands

Examples

Given the files:

96 -rw-r--r-- 1lindadb acs 45452 Apr 24 09:13 logins.beauty
184 -rw-r--r-- 1lindadb acs 90957 Apr 24 09:13 logins.bottom
152 -rw-r--r-- 1lindadb acs 75218 Apr 24 09:13 logins.photon
168 -rw-r--r-- 1lindadb acs 85970 Apr 24 09:13 logins.top

These can be compressed with:

% compress logins.*

which creates the files:

24 -rw-r--r-- llindadb acs 8486 Apr 24 09:13 logins.beauty.Z
40 -rw-r--r-- 1lindadb acs 16407 Apr 24 09:13 logins.bottom.Z
24 -rw-r--r-- 1lindadb acs 10909 Apr 24 09:13 logins.photon.Z
32 -rw-r--r-- 1lindadb acs 16049 Apr 24 09:13 logins.top.Z

The original files are lost.

To display a compressed file, theatcommand is used:

% zcat logins.beauty.Z | head

beauty:01/22/94:#total logins,4338:#different UIDs,2290
beauty:01/23/94:#total logins,1864 #different UIDs,1074
beauty:01/24/94:#total logins,2317:#different UIDs,1242
beauty:01/25/94 #total logins,3673:#different UIDs,2215
beauty:01/26/94:#total logins,3532:#different UIDs,2216
beauty:01/27/94:#total logins,3096:#different UIDs,1984
beauty:01/28/94:#total logins,3724:#different UIDs,2212
beauty:01/29/94 #total logins,3460:#different UIDs,2161
beauty:01/30/94:#total logins,1408:#different UIDs,922

beauty:01/31/94:#total logins,2175:#different UIDs,1194

A display of the file using commands other tlzaatyields an unreadable, binary, output.

Theuncomprescommand is used to return the file to its original format:

% uncompress logins.*.Z ; Is -als logins.*
96 -rw-r--r-- 1 lindadb acs 45452 Apr 24 09:13 logins.beauty
184 -rw-r--r-- 1 lindadb acs 90957 Apr 24 09:13 logins.bottom
152 -rw-r--r-- 1 lindadb acs 75218 Apr 24 09:13 logins.photon
168 -rw-r--r-- 1 lindadb acs 85970 Apr 24 09:13 logins.top

92 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Archiving, Compression and Conversion

In addition to the standard Uncompress, uncompress, zadtilities there are a set @NU ones

freely available. These do an even better job of compression using a more efficient algorithm. The
GNU programs to provide similar functions to those above are often instaltgdpagunzip, and

zcat respectively. Files compressed with gzip are given the endingsgz GNU software can be
obtained via anonymous ftp froftp://ftp.gnu.org/pub/gnu.

8.2.2 tar - archive files

The tar command combines files into one device or filename for archiving purposes. tarThe
command does not compress the files; it merely makes a large quantity of files more manageable.

Syntax

tar [options] [directory file]

Common Options

create an archive (begin writting at the start of the file)
table of contents list

extract from an archive

verbose

archive file name

archive block size

o *rT< X *+ 0

tar will accept its options either with or without a preceding hypkenTthe archive file can be a disk
file, a tape device, or standard input/output. The latter are represented by a hyphen.

Examples

Given the files and size indications below:

45 logs.beauty
89 logs.bottom
74 logs.photon
84 logs.top

tar can combine these into one filegfile.tar:

% tar -cf logdfile.tar logs.* ; Is -s lodfile.tar
304 logfile.tar

Many anonymous FTP archive sites on the Internet store their packages in compressed tar format, ¢
the files will end intar.Z or.tar.gz. To extract the files from these files you would first uncompress
them, or use the appropriate zcat command and pipe the output into tar, e.g.:

% zcat archive.tar.Z | tar -xvf -

where the hyphen at the end of taecommand indicates that the file is taken fretatin.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 93

Other Useful Commands

8.2.3 uuencode/uudecode - encode a file

To encode a binary file into 7-bit ASCII use theencodecommand. To decode the file back to
binary use theuudecodecommand. Theauu in the names comes because they are part of the
Unix-to-Unix CoPy (UUCP) set of commands. Theencode and uudecodecommands are
commonly used when sending binary files through e-mail. In e-mail there’s no guarantee that 8-bit
binary files will be transferred cleanly. So to ensure delivery you should encode the binary file, either
directly, on the command line and then include the encoded file, or indirectly, by letting your MIME
mailer program do it for you. In a similar manner, the user decodes the file on the receiving end.

Syntax

uuencode] source_file] pathname_to_uudecode_to [> new_file]

uudecodd -p] encoded_file
Common Options

-p send output to standard output, rather than to the default file

Examples

The first line of encoded file includes the permissimodesandname thatuudecodewill use when
decoding the file. The file begins and ends withiteégin andend keywords, respectively, e.g.:

begin 555 binary_filename

M?T5,1@$" 0 "(! %'W #0 5< T"
MOH!4% 8 T $- "@ H 4 P

M -0 I$! Lo %"

M%P 10A< % $ $ 4(8 -"& W& W% < 0
M @!0B T(@ Y@ IP O=7-R+VQI8B]L9"YS
M;RXQ ?2< 'Y VP "O IVP)8 &6 !GO
M %[UO %G 13 < #Q %Q !
MEP P | ‘@ PP (P

M NO =H 0 3D Y < #F L
MOl $ $ & | P#OA@ 4(8

M" I 0 E '@ ,T@ %'()@ $

M 0 (;@ $ '-"NIOK@ /H

M $ # ', | P#l) 4@ #8 !

M IY 0 , TH %* =X 0

M@ @ # -IX 130 "E, $ 4 !

M 4>)0 0 " P

: %P)@ $

end

94 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Archiving, Compression and Conversion

8.2.4 dd - block copy and convert
Thedd command allows you to copy from raw devices, such as disks and tapes, specifying the input
and output block sizesdd was originally known as the disk-to-disk copy program. Wdlyou can
also convert between different formats, for example, EBCDIC to ASCII, or swap byte order, etc.
Syntax

dd [if=input_device] §f=output_device] [operand=value]

Common Options

if=input_device the input file or device
of=output_device the output file or device

If the input or output devices are not specified they default to standard input and standard output
respectively.

Operands can include:

ibs=n input block size (defaults to 512 byte blocks)
obs=n output block size (defaults to 512 byte blocks)
bs=n sets both input and output block sizes
files=n copyn input files
skip=n skip n input blocks before starting to copy
count=n only copy n input blocks
conv=valud,value] wherevalue can include:
ascii convert EBCDIC to ASCII
ebcdic convert from ASCII to EBCDIC
Icase convert upper case characters to lower case
ucase convert lower case characters to upper case
swab swap every pair of bytes of input data
noerror don’t stop processing on an input error
sync pad every input block to the sizeib§, appending null bytes as needed

Block sizes are specified in bytes and may end Im orw to indicate 1024 (kilo), 512 (block), or 2
(word), respectively.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 95

Other Useful Commands

Examples

To copy files from one tape drive to another:

% dd if=/dev/rmt/0 of=/dev/rmt/1
20+0 records in
20+0 records out

To copy files written on a tape drive on a big endian machine, written with a block size of 20 blocks,
to a file on a little endian machine that now has the tape inserted in its drive, we would need to swap
pairs of bytes, as in:

% dd if=/dev/rmt/0 of=new _file ibs=20b conv=swab
1072+0 records in
21440+0 records out

Upon completiordd reports the number of whole blocks and partial blocks for both the input and
output files.

8.2.5 od - octal dump of a file

od dumps a file to stdout in different formats, including octal, decimal, floating point, hex, and
character format.

Syntax

od [options] file

Common Options

-b octal dump

-d|-D decimal (-d) or long decimal (-D) dump

-s|-S signed decimal (-s) and signed long decimal (-S) dump

-f|-F floating point (-f) or long (double) floating point (-F) dump

-x|-X hex (-x) or long hex (-X) dump

-c|-C character (single byte) or long character dump (single or multi-byte
characters, as determined by locale settings) dump

-V verbose mode

96 00 1998 University Technology Services, The Ohio State University Introduction to Unix

File Archiving, Compression and Conversion

Examples

To look at the actual contents of the following file, a list of P. G. Wodehouse’s Lord Emsworth
novels.

Something Fresh [1915] Uncle Dynamite [1948]
Leave it to Psmith [1923] Pigs Have Wings [1952]
Summer Lightning [1929] Cocktail Time [1958]
Heavy Weather [1933] Service with a Smile [1961]
Blandings Castle and Elsewhere [1935] Galahad at Blandings [1965]
Uncle Fred in the Springtime [1939] A Pelican at Blandings [1969]
Full Moon [1947] Sunset at Blandings [1977]

we could do:

% od -c wodehouse
0000000 S o m et hing Fresh

0000020 [1 9 1 5] UnNnclle Dy n
0000040 a m i t e [1 948]WnLea
0000060 v e it to P s mith

0000100 [1 9 2 3]\t P i g s H ave
0000120 W ings [1 95 2]\ Su
0000140 m m e r Lightning [
0000160 1 9 2 9] Cocktail T
0000200 i m e [1 958]\WnH&eavy
0000220 W eathertr [1 9 3 3]\
0000240 S e r v i c e with a S
0000260 m i | e [1 96 1]\ BIlI an
0000300 d i n g s Castle and
0000320 EIl sewhere [1 9 35
0000340]\t G al a h ad at B I a
0000360 n d ings [1965]WnUnn
0000400 c | e Fred in the

0000420 S pringtime [19329
0000440 1\t A Pelican at B
0000460 a ndings [196 9]\
0000500 F u I | M oon [1947
0000520t S un s et at Bl and

0000540 i ngs [197 7]\
0000554

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 97

Other Useful Commands

8.3 Remote Connections

TABLE 8.3 Remote Connection Commands
Command/Syntax What it will do
finger [options]user[@hostname] report information about users on local and remote machines
ftp [options]host transfer file(s) using file transfer protocol
rcp [options]hostname remotely copy files from this machine to another machine
rlogin [options]hostname login remotely to another machine
rsh [options]hosthame remote shell to run on another machine
telnet[host [port]] communicate with another host using telnet protocol

8.3.1 TELNET and FTP - remote login and file transfer protocols

TELNET and FTP are Application Level Internet protocols. The TELNET and FTP protocol
specifications have been implemented by many different sources, including The National Center for
Supercomputer Applications (NCSA), and many other public domain and shareware sources.

The programs implementing tHE&ELNET protocol are usually callelnet but not always. Some
notable exceptions arn327Q WinQVT, and QWS3270 which are also TELNET protocol
implementations. TELNET is used for remote login to other computers on the Internet.

The programs implementing tlf&P protocol are usually calleith, but there are exceptions to that

too. A program calleetch, distributed by Dartmouth College/S_FTP, written and distributed by

John Junod, anBtptool, written by a Mike Sullivan, are FTP protocol implementations with graphic
user interfaces. There’s an enhanced FTP versdaitp, that allows additional features, written by
Mike Gleason. Also, FTP protocol implementations are often included in TELNET implementation
programs, such as the ones distributed by NCSA. FTP is used for transferring files between
computers on the Internet.

rlogin is a remote login service that was at one time exclusive to Berkeley 4.3 BSD UNIX.
Essentially, it offers the same functionality tathet, except that it passes to the remote computer
information about the user's login environment. Machines can be configured to allow connections
from trusted hosts without prompting for the users’ passwords. A more secure version of this
protocol is the Secure SHellSSH software written by Tatu Ylonen and available via
ftp://ftp.net.ohio-state.edu/pub/security/ssh.

From a Unix prompt, these programs are invoked by typing the command (program name) and the
(Internet) name of the remote machine to which to connect. You can also specify various options, as
allowed, for these commands.

98 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Remote Connections

Syntax

telnet[options] [remote_host [port_number]]
tn3270[options] [remote_host [port_number]]
ftp [options] [remote_host |

Common Options

ftp telnet Action
-d set debugging mode on
-d same as above (SVR4 only)

-i turn off interactive prompting

-n don’t attempt auto-login on connection

-v verbose mode on
-l user connect with usernamsser, on the remote host (SVR4 only)
-8 8-bit data path (SVR4 only)

telnetandtn3270allow you the option of specifying a port number to connect to on the remote host.
For both commands it defaults to port number 23, the telnet port. Other ports are used for debuggin:
of network services and for specialized resources.

Examples

telnet oscar.us.ohio-state.edu
tn3270 ohstmvsa.acs.ohio-state.edu
ftp magnus.acs.ohio-state.edu

The remote machine will query you for your login identification and your password. Machines set up
as archives for software or information distribution often allow anonymous ftp connectiongtp You

to the remote machine and logina®nymous(the loginftp is equivalent on many machines), that

is, when asked for your "login" you would typeonymous

Once you have successfully connected to a remote computetelmigh andrlogin (and assuming
terminal emulation is appropriate) you will be able to use the machine as you always do.

Once you have successfully connected to a remote computeitpyijfou will be able to transfer a
file "up" to that computer with th@ut command, or "down" from that computer with tbet
command. The syntax is as follows:

put local-file-name remote-file-name
get local-file-name remote-file-name

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 99

Other Useful Commands

Other commands are availableftp as well, depending on the specific "local" and "remote" FTP
implementations. Thieelp command will display a list of available commands. e command
will also display the purpose of a specific command. Examples of valid commands are shown below:

help display list of available commands

help mget display the purpose of the mget command ("get multiple files")
pwd present working directory

Is or dir directory list

cd change directory

Icd local change directory

open specify the machine you wish to connect with

user specify your login id (in cases where you are not prompted)
quit quit out of the FTP program

8.3.2 finger - get information about users

finger displays theplan file of a specific user, or reports who is logged into a specific machine. The
user must allow general read permission onplan file.

Syntax

finger [options] [user[@hostname]]

Common Options

-l force long output format

-m match username only, not first or last names
-S force short output format
Examples

brigadier: condron [77]> finger workshop@nyssa
This is a sample .plan file for the nyssa id, workshop.
This id is being used this week by Frank Fiamingo, Linda
DeBula, and Linda Condron, while we teach a pilot version
of the new Unix workshop we developed for UTS.

Hope yer learnin' somethin'.
Frank, Linda, & Linda

brigadier: condron [77]> finger
Login Name TTY Idle When Where
condron Linda S Condron pO Sun 18:13 Icondron-mac.acs
frank Frank G. Fiamingo pl Mon 16:19 nyssa

100 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Remote Connections

8.3.3 Remote commands

A number of Unix machines can be connected together to form a local area network. When this is the
case, it often happens that a user of one machine has valid login access to several of the oth
machines in the local network. There are Unix commands available to such users which provide
convenience in carrying out certain common operations. Because these commands focus o
communications with remote hosts in the local network, the command names begin with the letter
"r": rlogin, rsh, andrcp. The remote access capability of these commands is supported (optionally)
by the dotfile,~/.rhosts for individual users and by the system-wide fi¢c/hosts.equiv For
security reasons these may be restricted on some hosts.

Therlogin command allows remote login access to another host in the local nethawin passes
information about the local environment, including the value offtBRM environment variable, to
the remote host.

Thersh command provides the ability to invoke a Unix shell on a remote host in the local network for
the purpose of executing a shell command there. This capability is similar to the "shell escape”
function commonly available from within such Unix software systems as editors and email.

Thercp command provides the ability to copy files from the local host to a remote host in the local
network.

Syntax

rlogin [-l username] remote_host
rsh [-l username] remote_host [command]
rcp [[userl]@hostl:]original_filename [[user2]@host2:Inew_filename

where the parts in brackets ([]) are optionadp does not prompt for passwords, so you must have
permission to execute remote commands on the specified machines as the selected user on ec
machine.

Common Options

-l username connect as the ussername on the remote hostli¢gin & rsh)

The.rhostsfile, if it exists in the user's home directory on the remote host, petagts, rsh, orrcp
access to that remote host without prompting for a password for that accountrhdsis file
contains an entry for each remote host and username from which the ownermrlobdstefile may
wish to connect. Each entry in thrbostsfile is of the form:

remote_host remote_user

where listing the remote_user is optional. For instance, if Heather Jones wants to be able to conne:
to machinel (where her username is heather) from machine2 (where her username is jones), or fro
machine 3 (where her username is heather, the same as for machinel), she couldltosttdile

in her home directory on machinel. The contents of this file could be:

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 101

Other Useful Commands

machine2 jones

machine3
__Or__

machine2 jones

machine3 heather
On a system-wide basis the filetc/hosts.equivserves the same purpose for all users, except the
super-user. Such a file with the contents:

remote_machine
allows any user from remote_machine to remote connect to this machine without a password, as the
same username on this machine.
An /etc/hosts.equiviile with the contents:

remote_machine remote_user

allows remote_user, on remote_machine, to remote connect to this machnyd@sal user, except
the super-user.

letc/hosts.equivand~/.rhostsfiles should be used with caution.

The Secure SHellSSH) versions of thecp, rsh, andrlogin programs are freely available and
provide much greater security.

102 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Shell Scripts

CHAPTER 9 Shell Programming

9.1 Shell Scripts

You can write shell programs by creating scripts containing a series of shell commands. The first line
of the script should start with! which indicates to the kernel that the script is directly executable.

You immediately follow this with the name of the shell, or program (spaces are allowed), to execute,
using the full path name. Generally you can count on having up to 32 characters, possibly more ol
some systems, and can include one option. So to set up a Bourne shell script the first line would be

#! [bin/sh

or for the C shell:
#! /bin/csh -f

where the “f" option indicates that it should not read yoceshrc. Any blanks following the magic
symbols#!, are optional.

You also need to specify that the script is executable by setting the proper bits on the difeneith
e.g.:
% chmod +x shell_script

Within the scripts# indicates a comment from that point until the end of the line, #litheing a
special case if found as the first characters of the file.

9.2 Setting Parameter Values

Parameter values, ejgaram, are assigned as:

Bourne shell C shell
param=value set param = value

wherevalue is any valid string, and can be enclosed within quotations, either singlee] or

double (value"), to allow spaces within the string value. When enclosed with backqgtwatkes()

the string is first evaluated by the shell and the result is substituted. This is often used to run &
command, substituting the command outputvidue, e.g.:

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 103

Shell Programming

$ day='date +%a"
$ echo $day
Wed

After the parameter values has been assigned the current value of the parameter is accessed using the
$param, or ${param}, notation.

9.3 Quoting

We quote strings to control the way the shell interprets any parameters or variables within the string.
We can use singlé)(and double"() quotes around strings. Double quotes define the string, but
allow variable substitution. Single quotes define the string and prevent variable substitution. A
backslash\] before a character is said to escape it, meaning that the system should take the character
literally, without assigning any special meaning to it. These quoting techniques can be used to
separate a variable from a fixed string. As an example lets use the varabléhat has been
assigned the valueat, and the constant stringian. If | wanted to combine these to get the result
"batman" | might try:

$varman
but this doesn’t work, because the shell will be trying to evaluate a variable altedn, which

doesn't exist. To get the desired result we need to separate it by quoting, or by isolating the variable
with curly braces{}), as in:

"$var'man - quote the variable
$var™'man - separate the parameters
$var'man” - quote the constant
$var'man - separate the parameters
$varman’ - quote the constant
$var\man - separate the parameters
${var}man - isolate the variable

These all work because’, \, {, and} are not valid characters in a variable name.

We could not use either of

'$var'man
\$varman

because it would prevent the variable substitution from taking place.

When using the curly braces they should surround the variable only, and not include the $, otherwise,
they will be included as part of the resulting string, e.g.:

% echo {$variman
{bat}man

104 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Variables

9.4 Variables

There are a number of variables automatically set by the shell when it starts. These allow you tc
reference arguments on the command line.

Theseshell variablesare:

TABLE 9.1 Shell Variables

Variable Usage sh csh
$# number of arguments on the command line X
$- options supplied to the shell X
$? exit value of the last command executed X
$$ process number of the current process X X
$! process number of the last command done in background X
$n argument on the command line, where n is from 1 through 9, reading left to fight X X
$0 the name of the current shell or program X X
$* all arguments on the command line ("$1 $2 ... $9") X X
$@ all arguments on the command line, each separately quoted ("$1" "$2" ... "$9") X
$argv[n] selects theth word from the input list X
${argv[n]} same as above X
$#argv report the number of words in the input list X

We can illustrate these with some simple scripts. First for the Bourne shell the script will be:

#l/bin/sh
echo "$#:" $#
echo '$#:" $#
echo '$-:' $-
echo '$?:' $?
echo '$$:" $$
echo '$!:" $!
echo '$3:" $3
echo '$0:"' $0
echo '$*:' $*
echo '$@:' $@

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 105

Shell Programming

When executed with some arguments it displays the values for the shell variables, e.qg.:

$./variables.sh one two three four five
5:5
$#:.5
$-:
$?:0
$$: 12417
$:
$3: three
$0: ./variables.sh
$*: one two three four five
$@: one two three four five

As you can see, we needed to use single quotes to prevent the shell from assigning special meaning to
$. The double quotes, as in the first echo statement, allowed substitution to take place.

Similarly, for the C shell variables we illustrate variable substitution with the script:

#l/bin/csh -f

echo '$$:" $$

echo '$3:" $3

echo '$0:" $0

echo '$*:' $*

echo '$argv[2]:' $argv[2]
echo '${argv[4]}:' ${argv[4]}
echo '$#targv:' $#argv

which when executed with some arguments displays the following:

% ./variables.csh one two three four five
$$: 12419
$3: three
$0: ./variables.csh
$*: one two three four five
$argv[2]: two
${argv[4]}: four
$targv: 5

106 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Parameter Substitution

9.5 Parameter Substitution

You can reference parameters abstractly and substitute values for them based on conditional setting
using the operators defined below. Again we will use the curly brges (solate the variable and
its operators.

$parameter substitute the value @iarameter for this string

${parameter} same as above. The brackets are helpful if there’s no separation
between this parameter and a neighboring string.

$parameter= setsparameter to null.

${parameter-default} if parameter is not set, then uskefault as the value here. The
parameter is not reset.

${parameter=default} if parameter is not set, then set it tiefault and use the new value

${parameter+newval) if parameter is set, then useewval, otherwise use nothing here.
The parameter is not reset.

${parameter?message} if parameter is not set, then displapessage If parameter is set,

then use its current value.

There are no spaces in the above operators. If a cylenr{serted before the=, +, or? then a test
if first performed to see if the parameter hama-null setting.

The C shell has a few additional ways of substituting parameters:

$list[n] selects theth word from list

${list[n]} same as above

$#list report the number of words in list
$?parameter return 1 if parameter is set, 0 otherwise
${?parameter} same as above

$< read a line from stdin

The C shell also defines the arr®argv[n] to contain then arguments on the command line and
$#argvto be the number of arguments, as noted in Table 9.1.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 107

Shell Programming

To illustrate some of these features we’ll use the test script below.

#1/bin/sh
param0=$0
test -n "$1" && param1=$1
test -n "$2" && param2=$2
test -n "$3" && param3=$3
echo 0: $paramO
echo "1: ${param1-1}: \c" ;echo $paraml
echo "2: ${param2=2}: \c" ;echo $param?2
echo "3: ${param3+3}: \c" ;echo $param3

In the script we first test to see if the variable exists, if so we set a parameter to its value.

we report the values, allowing substitution.

In the first run through the script we won't provide any arguments:

$./parameter.sh

0: ./parameter.sh # always finds $0

1:1: # substitute 1, but don't assign this value
2:2:2 # substitute 2 and assign this value

3:: # don’t substitute

In the second run through the script we’ll provide the arguments:

$./parameter one two three

0: ./parameter.sh # always finds $0

1: one: one # don't substitute, it already has a value
2: two: two # don't substitute, it already has a value
3: 3: three # substitute 3, but don’t assign this value

Below this

108 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Here Document

9.6 Here Document

A here documentis a form of quoting that allows shell variables to be substituted. It's a special form
of redirection that starts withWORD and ends withWWORD as the only contents of a line. In the
Bourne shell you can prevent shell substitution by escapi@&D by putting a in front of it on the
redirection line, i.e<<\WORD, but not on the ending line. To have the same effect the C shell
expects théin front of WORD at both locations.

The following scripts illustrate this,

for theBourne shelt and for theC shelt
#!/bin/sh #!/bin/csh -f

does=does set does = does

not="" set not =""

cat << EOF cat << EOF

This here document This here document
$does $not $does $not

do variable substitution do variable substitution
EOF EOF

cat << \EOF cat << \EOF

This here document This here document
$does $not $does $not

do variable substitution do variable substitution
EOF \EOF

Both produce the output:

This here document
does

do variable substitution
This here document
$does $not

do variable substitution

In the top part of the example the shell varialfidsesand$not are substituted. In the bottom part
they are treated as simple text strings without substitution.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 109

Shell Programming

9.7 Interactive Input

Shell scripts will accept interactive input to set parameters within the script.

9.7.1 Sh
Sh uses the built-in commanead, to read in a line, e.g.:

read param

We can illustrate this with the simple script:
#!/bin/sh

echo "Input a phrase \c" # This is /bin/echo which requlgs to prevent <newline>
read param
echo param=$param

When we run this script it prompts for input and then echoes the results:

$./read.sh
Input a phraséello frank # | type in hello frank <return>
param=hello frank

9.7.2 Csh
Csh uses th&< symbol to read a line from stdin, e.qg.:

set param = $<

The spaces around the equal sign are important. The following script illustrates how to use this.

#!/bin/csh -f

echo -n "Input a phrase " # This built-in echo requiret® prevent <newline>
set param = $<

echo param=$param

Again, it prompts for input and echoes the results:

% ./read.csh
Input a phraséello frank # 1 type in hello frank <return>
param=hello frank

110 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Functions

9.8 Functions

The Bourne shell has functions. These are somewhat similar to aliases in the C shell, but allow yo
more flexibility. A function has the form:

fcn () { command; }

where the space aftgrand the semicolon)(are both required; the latter can be dispensed with if a
<newline> precedes th}e Additional spaces and <newline>’s are allowed. We saw a few examples
of this in the sampleorofile in an earlier chapter, where we had functionddandil:

Is() { /bin/ls -sbF "$@";}

o { Is -al "$@";}

The first one redefinets so that the optionssbF are always supplied to the standdbdh/Is
command, and acts on the supplied inpB@®" . The second one takes the current valudsf(the
previous function) and tacks on tfad options.

Functions are very useful in shell scripts. The following is a simplified version of one | use to
automatically backup up system partitions to tape.

#1/bin/sh

Cron script to do a complete backup of the system

HOST="/bin/uname -n’

admin=frank

Mt=/bin/mt

Dump=/usr/sbhin/ufsdump

Mail=/bin/mailx

device=/dev/rmt/On

Rewind="$Mt -f $device rewind"

Offline="$Mt -f $device rewoffl"

Failure - exit

failure () {

$Mail -s "Backup Failure - SHOST" $admin << EOF_failure
$HOST
Cron backup script failed. Apparently there was no tape in the device.

EOF _failure
exit 1

}

Dump failure - exit
dumpfail () {

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 111

Shell Programming

$Mail -s "Backup Failure - $SHOST" $admin << EOF_dumpfail
$HOST
Cron backup script failed. Initial tape access was okay, but dump failed.
EOF_dumpfail
exit 1
}
Success
success () {
$Mail -s "Backup completed successfully - SHOST" $admin << EOF_success
$HOST
Cron backup script was apparently successful. The /etc/dumpdates file is:
“Ibin/cat /etc/dumpdates’
EOF_success
}
Confirm that the tape is in the device
$Rewind || failure
$Dump Ouf $device / || dumpfail
$Dump Ouf $device /usr || dumpfail
$Dump Ouf $device /home || dumpfail
$Dump Ouf $device /var || dumpfail
($Dump Ouf $device /var/spool/mail || dumpfail) && success
$Offline

This script illustrates a number of topics that we’ve looked at in this document. It starts by setting
various parameter valueslOST is set from the output of a commamadmin is the administrator of

the systemMt, Dump, andMail are program names, device is the special device file used to access
the tape driveRewind and Offline contain the commands to rewind and off-load the tape drive,
respectively, using the previously referenced Mt and the necessary options. There are three functions
defined:failure, dumpfail, andsuccess The functions in this script all usénare documentto form

the contents of the function. We also introduce the logd¢al(|[) andAND (&&) operators here;

each is position between a pair of commands. FoD&eperator, the second command will be run

only if the first command does not complete successfully. ForAt¥® operator, the second
command will be run only if the first command does complete successfully.

The main purpose of the script is done with the Dump commands, i.e. backup the specified file
systems. First an attempt is made to rewind the tape. Should tH|d4ddily e, thefailure function

is run and we exit the program. If it succeeds we proceed with the backup of each partition in turn,
each time checking for successful completipmlgmpfail). Should it not complete successfully we

run thedumpfail subroutine and then exit. If the last backup succeeds we proceed vatittess
function (...) && succes3. Lastly, we rewind the tape and take it offline so that no other user can
accidently write over our backup tape.

112 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9 Control Commands

9.9.1 Conditional if
Theconditional if statement is available in both shells, but has a different syntax in each.

9.9.1.1 Sh
if condition1
then
command list if conditionl is true
[elif condition2
then command list if condition2 is true]
[else
command list if conditionl is false]
fi
The conditions to be tested for are usually done withetsteor [| command (see Section 8.9.6). The
if andthen must be separated, either with a <newline> or a semicplon (
#1/bin/sh
if [$# -ge 2]
then
echo $2
elif [$# -eq 1]; then
echo $1
else
echo No input
fi

There are required spaces in the format of the conditional test, onfeaadteone befork This script
should respond differently depending upon whether there are zero, one or more arguments on th
command line. First with no arguments:

$./if.sh
No input
Now with one argument:

$./if.sh one
one

And now with two arguments:

$./if.sh one two
two

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 113

Shell Programming

9.9.1.2 Csh

if (condition) command

-or-
if (condition1)then

command list if conditionl is true
[else if(condition2)then

command list if condition2 is true]
[else

command list if conditionl is false]
endif

Theif andthen must be on the same line.

#!/bin/csh -f

if ($#argv >= 2) then
echo $2

else if ($#argv == 1) then
echo $1

else

echo No input
endif

Again, this script should respond differently depending upon whether | have zero, one or more
arguments on the command line. First with no arguments:

% ./if.csh
No input
Now with one argument:

% ./if.csh one
one

And now with two arguments:

% ./if.csh one two
two

114 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9.2 Conditional switch and case

To choose between a set of string values for a parameteassi® the Bourne shell anslitch in
the C shell.

9.9.2.1 Sh
caseparametem
patternl[|patternla]) command listl;;
pattern2) command list2
command list2a;;
pattern3) command list3;;
)5

esacC

You can use any valid flename meta-characters within the patterns to be matchedentseeach
choice and can be on the same line, or following a <newline>, as the last command for the choice
Additional alternative patterns to be selected for a particular case are separated by the vettical bar,
as in the first pattern line in the example above. The wildcard symBals,indicate any one
character and to match any number of characters, can be used either alone or adjacent to fixed
strings.

This simple example illustrates how to use the conditional case statement.

#!/bin/sh
case $1 in
aalab) echo A

b?) echo "B \c"

echo $1;;
c*) echo C;;
*) echo D;;

esac

So when running the script with the arguments on the left, it will respond as on the right:

aa A
ab A

ac D
bb B bb
bbb D

C C

cc C

fff D

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 115

Shell Programming

9.9.2.2 Csh

switch (parameter)
casepatternl:

command listl

[breaksvy
casepattern2:

command list2

[breakswy
default

command list for default behavior

[breakswy
endsw

breakswis optional and can be used to break out of the switch after a match to the string value of the
parameter is madeSwitch doesn’t accept "|" in the pattern list, but it will allow you to string several
case statements together to provide a similar result. The following C shell script has the same
behavior as the Bourne sheliseexample above.

#l/bin/csh -f
switch ($1)
case aa:
case ab:
echo A
breaksw
case b?:
echo-n"B"
echo $1
breaksw
case c*
echo C
breaksw
default:
echo D
endsw

116 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9.3 for and foreach
One way to loop through a list of string values is withfdreandforeach commands.

9.9.3.1 Sh
for variable [n list_of values]
do
command list
done

Thelist_of_valuesis optional, with$@ assumed if nothing is specified. Each value in this list is
sequentially substituted ferariable until the list is emptied. Wildcards can be used and are applied
to file names in the current directory. Below we illustrate the for loop in copying all files ending in
.old to similar names ending inew. In these examples thasenamautility extracts the base part of
the name so that we can exchange the endings.
#1/bin/sh
for file in *.old
do
newf="basename $file .old"
cp $file $newf.new
done

9.9.3.2 Csh
foreachvariable (list_of values)
command list
end

The equivalent C shell script to copy all files endingid to .newis:

#!/bin/csh -f

foreach file (*.old)
set newf = “basename $file .old"
cp $file $newf.new

end

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 117

Shell Programming

9.9.4 while
Thewhile commands let you loop as long as the condition is true.

9.9.4.1 Sh
while condition
do
command list
[brealk
[continug
done

A simple script to illustrate while loop is:

#1/bin/sh
while [$# -gt 0]
do
echo $1
shift
done

This script takes the list of arguments, echoes the first one, then shifts the list to the left, losing the
original first entry. It loops through until it has shifted all the arguments off the argument list.

$./while.sh one two three

one

two

three

118 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9.4.2 Csh
while (condition)
command list
[breal
[continug
end

If you want the condition to always be true specify 1 within the conditional test.

A C shell script equivalent to the one above is:

#l/bin/csh -f

while ($#argv '=0)
echo $argv[1]
shift

end

9.9.5 until
This looping feature is only allowed in the Bourne shell.

until condition
do

command list while condition is false
done

The condition is tested at the start of each loop and the loop is terminated when the condition is true
A script equivalent to therhile examples above is:
#1/bin/sh
until [$# -le 0]
do
echo $1
shift
done

Notice, though, that here we'’re testing fess than or equalrather thargreater than or equal
because thantil loop is looking for dalse condition.

Both theuntil andwhile loops are only executed if the condition is satisfied. The condition is
evaluated before the commands are executed.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 119

Shell Programming

9.9.6 test

Conditional statements are evaluated tfoie or false values. This is done with thest or its
equivalent, thg] operators. It the condition evaluates to true, a ZERIUE) exit status is set,
otherwise a non-zerd-ALSE) exit status is set. If there are no arguments a non-zero exit status is
set. The operators used by the Bourne shell conditional statements are given below.
Forfilenamesthe options tdestare given with the syntax:

-option filename

The options available for thestoperator foffiles include:

-r true if it exists and is readable

-w true if it exists and is writable

-X true if it exists and is executable

-f true if it exists and is a regular file (or for csh, exists and is not a directory)

-d true if it exists and is a directory

-h or-L true if it exists and is a symbolic link

-C true if it exists and is a character special file (i.e. the special device is accessed
one character at a time)

-b true if it exists and is a block special file (i.e. the device is accessed in blocks
of data)

-p true if it exists and is a named pipe (fifo)

-u true if it exists and is setuid (i.e. has the set-user-id bit set, s or S in the third
bit)

-g true if it exists and is setgid (i.e. has the set-group-id bit set, s or S in the sixth
bit)

-k true if it exists and the sticky bit is set (a t in bit 9)

-S true if it exists and is greater than zero in size

There is a test fdile descriptors:

-t [file_descriptor] true if the open file descriptor (default is 1, stdin) is associated with a terminal

There are tests fatrings:

-z string true if the string length is zero

-n string true if the string length is non-zero
stringl = string2 true if stringl is identical to string2
stringl != string2 true if stringl is non identical to string2
string true if string is not NULL

120 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

There arenteger comparisons

nl-eq n2 true if integers nl1 and n2 are equal

nl-ne n2 true if integers n1 and n2 are not equal

nl -gt n2 true if integer nl is greater than integer n2

nl-ge n2 true if integer nl is greater than or equal to integer n2
nl -t n2 true if integer nl is less than integer n2

nl -le n2 true if integer nl is less than or equal to integer n2

The followinglogical operatorsare also available:

! negation (unary)

-a and (binary)
-0 or (binary)
0 expressions within the () are grouped together. You may need to quote the ()

to prevent the shell from interpreting them.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 121

Shell Programming

9.9.7 C Shell Logical and Relational Operators

The C shell has its own set of built-in logical and relational expression operators. In descending order
of precedence they are:

(.. group expressions with ()
~ inversion (one’s complement)

! logical negation

* [, % multiply, divide, modulus

+, - add, subtract

<<, >> bitwise shift left, bitwise shift right
<= less than or equal

>= greater than or equal

< less than

> greater than

== equal

1= not equal

=~ match a string

I~ don’t match the string

& bitwise AND

A bitwise XOR (exclusive or)

| bitwise OR

&& logical AND

[l logical OR

{command} true (1) if command terminates with a zero exit status, false (0) otherwise.

The C shell also allows file type and permission inquiries with the operators:

-r return true (1) if it exists and is readable, otherwise return false (0)

-w true if it exists and is writable

-X true if it exists and is executable

-f true if it exists and is a regular file (or for csh, exists and is not a directory)
-d true if it exists and is a directory

-e true if the file exists

-0 true if the user owns the file

-z true if the file has zero length (empty)

122 00 1998 University Technology Services, The Ohio State University Introduction to Unix

CHAPTER 10 Editors

There are numerous text processing utilities available with Unix, as is noted throughout this
document (e.g.ed ex, sed awk, the grep family, and theroff family). Among the editors, the
standard "visual” (or fullscreen) editor on Unixis It comprises a super-set, so to spealedand

ex (the Unix line editors) capabilities.

Vi is a modal editor. This means that it has specific modes that allow text insertion, text deletion, anc
command entering. You leave the insert mode by typingékeape>key. This brings you back to
command mode. The line editay, is incorporated withirvi. You can switch back and forth
between full-screen and line mode as desiredi inode type) to go toex mode. Inex mode at the

. prompt typevi to return tovi mode. There is also a read-only modeipfvhich you can invoke as

view.

Another editor that is common on Unix systems, especially in college and university environments, is
emacs(which stands for "editing macros"). Whileusually comes with the Unix operating system,
emacsusually does not. It is distributed by The Free Software Foundation. It is arguably the most
powerful editor available for Unix. It is also a very large software system, and is a heavy user of
computer system resources.

The Free Software Foundation and the GNU Project (of wéinhcsis a part) were founded by
Richard Stallman and his associates, who believe (as stated in the GNU Manifesto) that sharing
software is the "fundamental act of friendship among programmers."” Their General Public License
guarantees your rights to use, modify, and distribute emacs (including its source code), and wa
specifically designed to prevent anyone from hoarding or turning a financial profieframsor any
software obtained through the Free Software Foundation. Most of their software, ineludiogis
available at ftp://ftp.gnu.org/pub/gnu/ and http://www.gnu.org/.

Both vi andemacsallow you to create start-up files that you can populate with macros to control
settings and functions in the editors.

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 123

Editors

10.1 Configuring Your vi Session

To configure thevi environment certain options can be set with the line editor commeetduring a

vi editing session. Alternatively, frequently used options caeteutomatically wheni is invoked,

by use of theexrcfile. This file can also contain macros to map keystrokes into functions using the
map function. Withinvi these macros can be defined with #lmap command. Control characters
can be inserted by first typingcontrol>-V (*V), then the desired control character. The options
available invi include, but are not limited to, the following. Some options are not available on every
Unix system.

:set all display all option settings

:set ignorecase ignore the case of a character in a search
'set list display tabs and carriage returns

:set nolist turn off list option

:set number display line numbers

:set nonumber turn off line numbers

:set showmode display indication that insert mode is on
:set noshowmode turn off showmode option

:set wrapmargin=n turn on word-wrap n spaces from the right margin
:set wrapmargin=0 turn off wrapmargin option

‘set warn display "No write since last change”

:set nowarn turn off "write" warning

The following is a samplexrc file:
set wrapmargin=10
set number
set list
set warn
set ignorecase
map K {{}fmt -80 # reformat this paragrapfl}, usingfmt to 80 characters per line
map ~Z :!spell # invokespell :!, to check a word spelling (returntowith *D)

124 00 1998 University Technology Services, The Ohio State University Introduction to Unix

Configuring Your emacs Session

10.2 Configuring Your emacs Session

Configuring theemacsenvironment amounts to making calls to LISP functioBsacsis infinitely
customizable by means amacs variables and built-in functions and by using Emacs LISP
programming. Settings can be specified from the minibuffer (or command line) durgmaas
session. Alternatively, frequently used settings can be established automaticallemédesis
invoked, by use of aemacsfile. Though a discussion of Emacs LISP is beyond the scope of this
document, a few examples of commamacsconfigurations follow.

To set or togglemacsvariables, or to usemacsbuilt-in functions, use theescape> key"Meta" is
how emacsrefers to it), followed by the lettar then by the variable or function and its arguments.

M-x what-line what line is the cursor on?
M-x auto-fill-mode turn on word-wrap
M-x auto-fill-mode turn off word-wrap
M-x set-variable<return>
fill-column<return> set line-length to
45 45 characters
M-x set-variable<return>
auto-save-interval<return> save the file automatically after every
300 300 keystrokes
M-x goto-line<return>16 move the cursor to line 16
M-x help-for-help invoke emacs help when C-h has been bound to the

backspace key

The following is a sampleemacsfile:

(message "Loading ~/.emacs...")
; Comments begin with semi-colons and continue to the end of the line.

(setq text-mode-hook 'turn-on-auto-fill) ;turn on word-wrap
(setq fill-column 45) ;line-length=45 chars
(setq auto-save-interval 300) ;save after every 300 keystrokes

; Bind (or map) the rubout (control-h) function to the backspace key
(global-set-key "\C-h" 'backward-delete-char-untabify)

; Bind the emacs help function to the keystroke sequence "C-x ?".
(global-set-key "\C-x?" 'help-for-help)

; To jump to line 16, type M-#<return>16

(global-set-key "\M-#" 'goto-line)

; To find out what line you are on, type M-n

(global-set-key "\M-n" 'what-line)

(message "~/.emacs loaded.")

(message ")

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 125

XIUN 0] UoNONPOU|

AusIaniun are1s oyo 8yl ‘sadines ABojouysal Ausiaaiun 866T [

9¢T

10.3 vi Quick Reference Guide

Inserting Text:

All commands irvi are preceded by pressing the

escape key. Each time a different command is to

be entered, the escape key needs to be used®

Except where indicated] is case sensitive.

Cursor Movement Commands:

(n) indicates a number, and is optional

(mh left (n) space(s)

(n)j down (n) space(s)
(nk up (n) space(s)
(n) right (n) space(s)

(The arrow keys usually work also)

N forward one screen

"B back one screen

D down half screen

AU up half screen

(indicates control key; case does not matter)
H beginning of top line of screen

M beginning of middle line of screen
L beginning of last line of screen

G beginning of last line of file

(NG move to beginning of line (n)

0 (zero) beginning of line

$ end of line

(nw forward (n) word(s)

(nb back (n) word(s)

e end of word

changes the case of the current charac

ter

insert text before the cursor J joins the current line and the next line
append text after the cursor (does not u undo the last command just done on this
overwrite other text) line
I insert text at the beginning of the line repeats last change
A append text to the end of the line S substitutes text for current character
r rePIace the character under the cursor S substitutes text for current line
with the next character typed ,
)] 'S substitutes new word(s) for old
R Overwrite characters until the end of the :<line nos effected> s/old/new/g
line (or until escape is pressed to change _
command) & repeats last substitution (:s) command
0 Falpha 0) open new line after the current(n)yy yanks (n) lines to buffer
ine to type text
) y(n)w yanks (n) words to buffer
(0] (alpha O% open new line before the cur- <
rent line 1o type text p puts yanked or deleted text after cursor 6
Deleting Text: P puts yanked or deleted text before curso(Ej.
dd deletes current line File Manipulation: ;
(n)dd deletes (n) line(s) :w (file) writes changes to file (default is &
current file) @
(n)dw deletes (n) word(s) ,] ®
) wq writes changes to current file | 3
D deletes from cursor to end of line and quits edit session ®
X deletes current character w! (file) ovetr¥\/|rit)es file (default is cur- Q
rent file =
(n)x deletes (n) character(s)))) 3
_ o] quits edit session w/no changes
X deletes previous character made
Change Commands: :q! quits edit session and discards
; ; changes
(n)cc changfes (n) characters on line(s) until . .)
end of the line (or until escape is pressedh edits next file in argument list
cw changes characters of word until end of :f (hname) changes name of current file to
the word (or until escape is pressed) (name
(n)cw changes characters of the next :r (file) reads contents of file into cur-
(n) words rent edit at the current cursor
) position (insert a file)
c$ changes text to the end of the line
:I(command) shell escape
ct(x) changes text to the letter (x))
o :r' (command) inserts result of shell command
C changes remaining text on the current at cursor position

line (Until stopped%y escape key)

Y4

write changes to current file and exit

LT

AISIaAIUN 81e1S 0IYO 8y ‘s9a1nas ABojouydal AlsIaAuN 866T [

XIUN 0] UoNONPOIU|

10.4 emacs Quick Reference Guide

Other Important Functions

Emacscommands are accompanied either by simultaneously holding dOWtM' (n)
g (indicated by-) or by first hitting the escape key c-d

the control ke
(indicated byM-

Essential Commands

C-h help
C-xu undo
C-xC-g get out of current operation or command
C-x C-s save the file
C-x C-c close Emacs
Cursor movement
C-f forward one character
C-b back one character
C-p previous line
C-n next line
C-a beginning of line
C-e end of line
C-l center current line on screen
C-v scroll forward
M-v scroll backward
M-f forward one word
M-b back one word
M-a beginning of sentence
M-e end of sentence
M-{ beginning of paragraph
M-} end of paragraph
M-< beginning of buffer
M-> end of buffer

M-d
C-k
M-k
C-s
C-r
M-%
M-c
M-u
M-I
C-t
M-t
C-@
C-w
Cy
M-q
M-g
M-x auto-fill-mode

M-x set-variable <return> fill-column <return> 45

M-x goto-line <return> 16

M-w
C-x C
C-x C-v
C-xi
C-xC-s
C-x C-w
C-xC-c

repeat the next command (n) times
delete a character
delete a word
kill line
kill sentence
search forward
search in reverse
query replace
capitalize word
uppercase word
lowercase word
transpose characters
transpose words
mark beginning of region
cut--wipe out everything from mark to point
paste--yank deleted text into current location
reformat paragraph
reformat each paragraph in region
turn on word wrap

set length of lines to 45 characters

move cursor to line 16
copy region marked

find file and read it

find and read alternate file

insert file at cursor position

save file

write buffer to a different file

D

exit emacs, and be prompted to save

apIN9 aoualaey YIINY SIeW?d

Unix Command Summary

CHAPTER 11

Unix Command Summary

11.1 Unix Commands

In the table below we summarize the more frequently used commands on a Unix system.
table, as in general, for most Unix commariiis, could be an actual file name, or a list of file names,
or input/output could be redirected to or from the command.

TABLE 11.1

Unix Commands

Command/Syntax

What it will do

awk/nawk[options]file

scan for patterns in a file and process the results

cat [options]file

concatenate (list) a file

cd [directory]

change directory

chgrp [options]group file

change the group of the file

chmod[options]file

change file or directory access permissions

chown [options]owner file

change the ownership of a file; can only be done by the superuser

chsh(passwd -e/)susername login_shel

change the user’s login shell (often only by the superuser)

cmp[options]filel file2

compare two files and list where differences occur (text or binary file

compresdoptions]file

compress file and save it filg.Z

cp [options]filel file2

copyfilel intofile2; file2 shouldn't already exist. This command crea
or overwritedile2.

es

cut (options) file(s)]

cut specified field(s)/character(s) from lines in file(s)

date[options] report the current date and time
dd [if=infile] [of=oultfile] [oper- copy a file, converting between ASCII and EBCDIC or swapping byt
and=value] order, as specified

1]

diff [options]filel file2

compare the two files and display the differences (text files only)

df [options] [resource]

report the summary of disk blocks and inodes free and in use

du [options] directory or file]

report amount of disk space in use

echo[text string]

echo the text string to stdout

edor ex [options]file

Unix line editors

emacsgoptions]file

full-screen editor

exprarguments

evaluate the arguments. Used to do arithmetic, etc. in the shell.

file [options]file

classify the file type

128

00 1998 University Technology Services, The Ohio State University

In this

Introduction to Unix

Unix Commands

TABLE 11.1

Unix Commands

Command/Syntax

What it will do

find directory [options] [actions]

find files matching a type or pattern

finger [options]user[@hostname]

report information about users on local and remote machines

ftp [options]host

transfer file(s) using file transfer protocol

grep[options] 'search stringrgument
egreploptions] 'search stringlrgument
fgrep [options] 'search stringlrgument

search the argument (in this case probably a file) for all occurrences
the search string, and list them.

gzip[options]file
gunzip[options]file
zcat[options]file

compress or uncompress a file. Compressed files are stored gith a|.

ending

head[-number]file

display the first 10 (or number of) lines of a file

hostname

display or set (super-user only) the name of the current machine

kill [options] [-SIGNAL] [pid#] [%job]

send a signal to the process with the process id number (pid#) or jo
trol number (%n). The default signal is to kill the process.

In [options]source_file target

link the source_fileto thetarget

Ipg [options]
Ipstat[options]

show the status of print jobs

Ipr [options]file
Ip [options]file

print to defined printer

Iprm [options]
cancel[options]

remove a print job from the print queue

Is [options] [directory or file]

list directory contents ofile permissions

mail [options] [user]
mailx [options] [user]
Mail [options] [user]

simple email utility available on Unix systems. Type a period as the
character on a new line to send message out, question mark for hel

f

man [options]Jcommand

show the manuahgan) page for a command

mkdir [options]directory

make adirectory

more [options]file
less[options]file
pg [options]file

page through a text file

mv [options]filel file2

movefilel intofile2

od [options]file

octal dump a binary file, in octal, ASCII, hex, decimal, or character
mode.

passwdoptions]

set or change your password

paste[options]file

paste field(s) onto the lines fiie

pr [options]file

filter the file and print it on the terminal

ps[options]

show status of active processes

Introduction to Unix

00 1998 University Technology Services, The Ohio State University

of

b con-

irst

D.

129

Unix Command Summary

TABLE 11.1

Unix Commands

Command/Syntax

What it will do

pwd

print working (current) directory

rcp [options]hostname

remotely copy files from this machine to another machine

rlogin [options]hostname

login remotely to another machine

rm [options]file

remove (delete) a file or directoryr fecursively deletes the directory
and its contents}i(prompts before removing files)

rmdir [options]directory

remove airectory

rsh [options]hostname

remote shell to run on another machine

scriptfile

saves everything that appears on the screen to fileeuittis executed

sed[options]file

stream editor for editing files from a script or from the command line

sort [options]file

sort the lines of théle according to the options chosen

sourcefile
. file

read commands from ttide and execute them in the current shell.
source C shell,.: Bourne shell.

disk

strings [options]file report any sequence of 4 or more printable characters ending in <NL> or
<NULL>. Usually used to search binary files for ASCII strings.

stty [options] set or display terminal control options

tail [options]file display the last few lines (or parts) of a file

tar key[options] file(s)] tape archiver--refer to man pages for details on creating, listing, and
retrieving from archive files. Tar files can be stored on tape or disk.

tee[options]file copy stdout to one or more files

telnet[host [port]] communicate with another host using telnet protocol

touch [options] [datefile create an empty file, or update the access time of an existing file

tr [options]stringl string2 translate the characters in stringl from stdin into those in string2 in stdout

uncompresdile.Z uncompreséile.Z and save it as a file

uniqg [options]file remove repeated lines in a file

uudecoddfile] decode a uuencoded file, recreating the original file

uuencodeffile] new_name encode binary file to 7-bit ASCII, useful when sending via email, to he
decoded as new_name at destination

vi [options]file visual, full-screen editor

wc [options] file(s)] display word (or character or line) count fitbe(s)

whereis[options]Jcommand report the binary, source, and man page locations for the command
named

which command reports the path to the command or the shell alias in use

who orw report who is logged in and what processes are running

zcatfile.Z concatenate (list) uncompressed file to screen, leaving file compressed on

130 00 1998 University Technology Services, The Ohio State University

Introduction to Unix

Highly Recommended

CHAPTER 12 A Short Unix Bibliography

12.1 Highly Recommended

UNIX for the Impatient, Paul W. Abrahams & Bruce R. Larson (Addison-Wesley Publishing
Company, 1992, ISBN 0-201-55703-7). (A current favorite. Recommended in the CIS Department
for Unix beginners.)

UNIX in a Nutshell for BSD 4.3: A Desktop Quick Reference For Berkel@®'Reilly & Associates,
Inc., 1990, ISBN 0-937175-20-X). (A handy reference for BSD.)

UNIX in a Nutshell: A Desktop Quick Reference for System V & Solaris @0Reilly & Associates,
Inc., 1992, ISBN 0-56592-001-5). (A handy reference for SysV and Solaris 2.)

The UNIX Programming EnvironmentBrian W. Kernighan & Rob Pike (Prentice Hall, 1984). (A
classic. For serious folks.)

When You Can’t Find Your UNIX System Administratptinda Mui (O'Reilly & Associates, Inc.,
1995, ISBN 1-56592-104-6).

UNIX Power Tools Jerry Peek, Tim O’'Reilly, and Mike Loukides (O’Reilly & Associates, 1993,
ISBN 0-679-79073-X). (Includes a CDROM of useful software for various OSs.)

12.2 Assorted Others

Understanding UNIX: A Conceptual Guidelames R. Groff & Paul N. Weinberg (Que Corporation,
1983).

Exploring the UNIX System Stephen G. Kochan & Patrick H. Wood (SAMS, a division of
Macmillan Computer Publishing, 1989, ISBN 0-8104-6268-0).

Learning GNU Emacs Debra Cameron and Bill Rosenblatt (O’'Reilly & Associates, 1992, ISBN
0-937175-84-6).

UNIX for Dummies, John R. Levine & Margaret Levine Young (IDG Books Worldwide, Inc., 1993,
ISBN 0-878058-58-4).

A Practical Guide to UNIX System VMark G. Sobell (The Benjamin/Cummings Publishing
Company, Inc., 1985, ISBN 0-80-530243-3).

UNIX Primer Plus, Mitchell Waite, Donald Martin, & Stephen Prata, (Howard W. Sams & Co., Inc.,
1983, ISBN 0-672-30194-6).

An Introduction to Berkeley UNIX Paul Wang, (Wadsworth Publishing Company, 1988).

Introduction to Unix 00 1998 University Technology Services, The Ohio State University 131

A Short Unix Bibliography

Unix Shell Programming Stephen G. Kochan & Patrick H. Wood (Hayden Book Co., 1990, ISBN
0-8104-6309-1).

The Unix C Shell Field Guide Gail Anderson and Paul Anderson (Prentice Hall, 1986, ISBN
0-13-937468-X).

A Student’s Guide to UNIXHarley Hahn. (McGraw-Hill, 1993, ISBN 0-07-025511-3).

Tricks of the UNIX Masters Russell G. Sage (Howard W. Sams & Co., Inc., 1987, ISBN
0-672-22449-6).

132 00 1998 University Technology Services, The Ohio State University Introduction to Unix

	Introduction to Unix
	1. Redistributions must retain the above copyright...
	2. Neither the name of the University nor the name...

	Table of Contents
	CHAPTER 1 History of Unix
	CHAPTER 2 Unix Structure
	2.1 The Operating System
	FIGURE 2.1 Unix System Structure

	2.2 The File System
	FIGURE 2.2 Unix File Structure

	2.3 Unix Directories, Files and Inodes
	2.4 Unix Programs

	CHAPTER 3 Getting Started
	3.1 Logging in
	3.1.1 Terminal Type
	3.1.2 Passwords
	3.1.3 Exiting
	3.1.4 Identity

	3.2 Unix Command Line Structure
	3.3 Control Keys
	3.4 stty - terminal control
	3.5 Getting Help
	3.6 Directory Navigation and Control
	TABLE 3.1 Navigation and Directory Control Command...
	TABLE 3.2 Unix vs DOS Navigation and Directory Con...
	3.6.1 pwd - print working directory
	3.6.2 cd - change directory
	3.6.3 mkdir - make a directory
	3.6.4 rmdir - remove directory
	3.6.5 ls - list directory contents

	3.7 File Maintenance Commands
	TABLE 3.3 File Maintenance Commands
	TABLE 3.4 Unix vs DOS File Maintenance Commands
	3.7.1 cp - copy a file
	3.7.2 mv - move a file
	3.7.3 rm - remove a file
	3.7.4 File Permissions
	3.7.5 chmod - change file permissions
	3.7.6 chown - change ownership
	3.7.7 chgrp - change group

	3.8 Display Commands
	TABLE 3.5 Display Commands
	3.8.1 echo - echo a statement
	3.8.2 cat - concatenate a file
	3.8.3 more, less, and pg - page through a file
	3.8.4 head - display the start of a file
	3.8.5 tail - display the end of a file

	CHAPTER 4 System Resources & Printing
	4.1 System Resources
	TABLE 4.1 System Resource Commands
	4.1.1 df - summarize disk block and file usage
	4.1.2 du - report disk space in use
	4.1.3 ps - show status of active processes
	4.1.4 kill - terminate a process
	4.1.5 who - list current users
	4.1.6 whereis - report program locations
	4.1.7 which - report the command found
	4.1.8 hostname/uname - name of machine
	4.1.9 script - record your screen I/O
	4.1.10 date - current date and time

	4.2 Print Commands
	TABLE 4.2 Printing Commands
	4.2.1 lp/lpr - submit a print job
	4.2.2 lpstat/lpq - check the status of a print job...
	4.2.3 cancel/lprm - cancel a print job
	4.2.4 pr - prepare files for printing

	CHAPTER 5 Shells
	5.1 Built-in Commands
	5.1.1 Sh
	5.1.2 Csh

	5.2 Environment Variables
	5.3 The Bourne Shell, sh
	5.4 The C Shell, csh
	5.5 Job Control
	5.6 History
	TABLE 5.1 C Shell History Substitution

	5.7 Changing your Shell

	CHAPTER 6 Special Unix Features
	6.1 File Descriptors
	6.2 File Redirection
	TABLE 6.1 File Redirection
	6.2.1 Csh
	6.2.2 Sh

	6.3 Other Special Command Symbols
	6.4 Wild Cards

	CHAPTER 7 Text Processing
	7.1 Regular Expression Syntax
	7.2 Text Processing Commands
	TABLE 7.1 Text Processing Commands
	7.2.1 grep
	7.2.2 sed
	7.2.3 awk, nawk, gawk

	CHAPTER 8 Other Useful Commands
	8.1 Working With Files
	TABLE 8.1 File utilities
	8.1.1 cmp - compare file contents
	8.1.2 diff - differences in files
	8.1.3 cut - select parts of a line
	8.1.4 paste - merge files
	8.1.5 touch - create a file
	8.1.6 wc - count words in a file
	8.1.7 ln - link to another file
	8.1.8 sort - sort file contents
	8.1.9 tee - copy command output
	8.1.10 uniq - remove duplicate lines
	8.1.11 strings - find ASCII strings
	8.1.12 file - file type
	8.1.13 tr - translate characters
	8.1.14 find - find files

	8.2 File Archiving, Compression and Conversion
	TABLE 8.2 File Archiving, Compression and Conversi...
	8.2.1 File Compression
	8.2.2 tar - archive files
	8.2.3 uuencode/uudecode - encode a file
	8.2.4 dd - block copy and convert
	8.2.5 od - octal dump of a file

	8.3 Remote Connections
	TABLE 8.3 Remote Connection Commands
	8.3.1 TELNET and FTP - remote login and file trans...
	8.3.2 finger - get information about users
	8.3.3 Remote commands

	CHAPTER 9 Shell Programming
	9.1 Shell Scripts
	9.2 Setting Parameter Values
	9.3 Quoting
	9.4 Variables
	TABLE 9.1 Shell Variables

	9.5 Parameter Substitution
	9.6 Here Document
	9.7 Interactive Input
	9.7.1 Sh
	9.7.2 Csh

	9.8 Functions
	9.9 Control Commands
	9.9.1 Conditional if
	9.9.1.1 Sh
	9.9.1.2 Csh

	9.9.2 Conditional switch and case
	9.9.2.1 Sh
	9.9.2.2 Csh

	9.9.3 for and foreach
	9.9.3.1 Sh
	9.9.3.2 Csh

	9.9.4 while
	9.9.4.1 Sh
	9.9.4.2 Csh

	9.9.5 until
	9.9.6 test
	9.9.7 C Shell Logical and Relational Operators

	CHAPTER 10 Editors
	10.1 Configuring Your vi Session
	10.2 Configuring Your emacs Session
	10.3 vi Quick Reference Guide
	10.4 emacs Quick Reference Guide

	CHAPTER 11 Unix Command Summary
	11.1 Unix Commands
	TABLE 11.1 Unix Commands

	CHAPTER 12 A Short Unix Bibliography
	12.1 Highly Recommended
	12.2 Assorted Others

