
MATLAB® 7
Getting Started Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Getting Started Guide

© COPYRIGHT 1984–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 1996 First printing For MATLAB 5
May 1997 Second printing For MATLAB 5.1
September 1998 Third printing For MATLAB 5.3
September 2000 Fourth printing Revised for MATLAB 6 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
August 2002 Fifth printing Revised for MATLAB 6.5
June 2004 Sixth printing Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Seventh printing Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Minor revision for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Minor revision for MATLAB 7.2 (Release 2006a)
September 2006 Eighth printing Minor revision for MATLAB 7.3 (Release 2006b)
March 2007 Ninth printing Minor revision for MATLAB 7.4 (Release 2007a)
September 2007 Tenth printing Minor revision for MATLAB 7.5 (Release 2007b)
March 2008 Eleventh printing Minor revision for MATLAB 7.6 (Release 2008a)
October 2008 Twelfth printing Minor revision for MATLAB 7.7 (Release 2008b)
March 2009 Thirteenth printing Minor revision for MATLAB 7.8 (Release 2009a)
September 2009 Fourteenth printing Minor revision for MATLAB 7.9 (Release 2009b)
March 2010 Fifteenth printing Minor revision for MATLAB 7.10 (Release 2010a)
September 2010 Sixteenth printing Revised for MATLAB 7.11 (R2010b)
April 2011 Online only Revised for MATLAB 7.12 (R2011a)

Contents

Getting Started

Introduction

1
Product Overview . 1-2
Overview of the MATLAB Environment 1-2
The MATLAB System . 1-3

Documentation . 1-5

Starting and Quitting the MATLAB Program 1-7
Starting a MATLAB Session . 1-7
Quitting the MATLAB Program . 1-8

Matrices and Arrays

2
Matrices and Magic Squares . 2-2
About Matrices . 2-2
Entering Matrices . 2-4
sum, transpose, and diag . 2-5
Subscripts . 2-7
The Colon Operator . 2-8
The magic Function . 2-9

Expressions . 2-11
Variables . 2-11
Numbers . 2-12
Operators . 2-13

v

Functions . 2-14
Examples of Expressions . 2-15

Working with Matrices . 2-17
Generating Matrices . 2-17
The load Function . 2-18
Saving Code to a File . 2-18
Concatenation . 2-19
Deleting Rows and Columns . 2-20

More About Matrices and Arrays . 2-21
Linear Algebra . 2-21
Arrays . 2-25
Multivariate Data . 2-27
Scalar Expansion . 2-28
Logical Subscripting . 2-28
The find Function . 2-29

Controlling Command Window Input and Output 2-31
The format Function . 2-31
Suppressing Output . 2-32
Entering Long Statements . 2-33
Command Line Editing . 2-33

Graphics

3
Overview of Plotting . 3-2
Plotting Process . 3-2
Graph Components . 3-6
Figure Tools . 3-7
Arranging Graphs Within a Figure 3-14
Choosing a Type of Graph to Plot . 3-15

Editing Plots . 3-24
Plot Edit Mode . 3-24
Using Functions to Edit Graphs . 3-29

vi Contents

Some Ways to Use Plotting Tools . 3-30
Plotting Two Variables with Plotting Tools 3-30
Changing the Appearance of Lines and Markers 3-33
Adding More Data to the Graph . 3-34
Changing the Type of Graph . 3-37
Modifying the Graph Data Source . 3-39

Preparing Graphs for Presentation 3-44
Annotating Graphs for Presentation 3-44
Printing the Graph . 3-49
Exporting the Graph . 3-53

Using Basic Plotting Functions . 3-57
Creating a Plot . 3-57
Plotting Multiple Data Sets in One Graph 3-58
Specifying Line Styles and Colors . 3-59
Plotting Lines and Markers . 3-60
Graphing Imaginary and Complex Data 3-62
Adding Plots to an Existing Graph 3-63
Figure Windows . 3-64
Displaying Multiple Plots in One Figure 3-65
Controlling the Axes . 3-67
Adding Axis Labels and Titles . 3-68
Saving Figures . 3-69

Creating Mesh and Surface Plots . 3-72
About Mesh and Surface Plots . 3-72
Visualizing Functions of Two Variables 3-72

Plotting Image Data . 3-80
About Plotting Image Data . 3-80
Reading and Writing Images . 3-81

Printing Graphics . 3-82
Overview of Printing . 3-82
Printing from the File Menu . 3-82
Exporting the Figure to a Graphics File 3-83
Using the Print Command . 3-83

Understanding Handle Graphics Objects 3-85
Using the Handle . 3-85

vii

Graphics Objects . 3-86
Setting Object Properties . 3-88
Specifying the Axes or Figure . 3-91
Finding the Handles of Existing Objects 3-93

Programming

4
Flow Control . 4-2
Conditional Control — if, else, switch 4-2
Loop Control — for, while, continue, break 4-5
Error Control — try, catch . 4-7
Program Termination — return . 4-8

Other Data Structures . 4-9
Multidimensional Arrays . 4-9
Cell Arrays . 4-11
Characters and Text . 4-13
Structures . 4-16

Scripts and Functions . 4-20
Overview . 4-20
Scripts . 4-21
Functions . 4-22
Types of Functions . 4-24
Global Variables . 4-26
Passing String Arguments to Functions 4-27
The eval Function . 4-28
Function Handles . 4-28
Function Functions . 4-29
Vectorization . 4-31
Preallocation . 4-32

Object-Oriented Programming . 4-33
MATLAB Classes and Objects . 4-33
Learn About Defining MATLAB Classes 4-33

viii Contents

Data Analysis

5
Introduction . 5-2

Preprocessing Data . 5-3
Overview . 5-3
Loading the Data . 5-3
Missing Data . 5-3
Outliers . 5-4
Smoothing and Filtering . 5-6

Summarizing Data . 5-10
Overview . 5-10
Measures of Location . 5-10
Measures of Scale . 5-11
Shape of a Distribution . 5-11

Visualizing Data . 5-14
Overview . 5-14
2-D Scatter Plots . 5-14
3-D Scatter Plots . 5-16
Scatter Plot Arrays . 5-18
Exploring Data in Graphs . 5-19

Modeling Data . 5-27
Overview . 5-27
Polynomial Regression . 5-27
General Linear Regression . 5-28

Creating Graphical User Interfaces

6
What Is GUIDE? . 6-2

Laying Out a GUI . 6-3
Starting GUIDE . 6-3

ix

The Layout Editor . 6-4

Programming a GUI . 6-7

Desktop Tools and Development Environment

7
Desktop Overview . 7-2
Introduction to the Desktop . 7-2
Arranging the Desktop . 7-3
Start Button . 7-3

Command Window and Command History 7-5
Command Window . 7-5
Command History . 7-6

Getting Help . 7-7
Ways to Get Help . 7-7
Accessing Documentation, Examples, and Demos Using the
Help Browser . 7-9

Searching for Documentation and Demos 7-11
Browsing for Documentation and Demos 7-15
Running Demos and Code in Examples 7-16

Workspace Browser and Variable Editor 7-20
Workspace Browser . 7-20
Variable Editor . 7-21

Managing Files in MATLAB . 7-23
How MATLAB Helps You Manage Files 7-23
Making Files Accessible to MATLAB 7-23
Using the Current Folder Browser to Manage Files 7-24
More Ways to Manage Files . 7-26

Finding and Getting Files Created by Other Users —
File Exchange . 7-27

x Contents

Editor . 7-29
Editing MATLAB Code Files . 7-29
Identifying Problems and Areas for Improvement 7-31
Publishing MATLAB Code Files . 7-33

Improving and Tuning Your MATLAB Programs 7-39
Finding Errors Using the Code Analyzer Report 7-39
Improving Performance Using the Profiler 7-41

External Interfaces

8
Programming Interfaces . 8-2
Call MATLAB Software from C/C++ and Fortran
Programs . 8-2

Call C/C++ and Fortran Programs fromMATLAB Command
Line . 8-2

Call Sun Java Commands from MATLAB Command
Line . 8-3

Call Functions in Shared Libraries 8-3
Import and Export Data . 8-3

Interface to .NET Framework . 8-4

Component Object Model Interface 8-5

Web Services . 8-6

Serial Port Interface . 8-7

Index

xi

xii Contents

_

Getting Started

The MATLAB® high-performance language for technical computing integrates
computation, visualization, and programming in an easy-to-use environment
where problems and solutions are expressed in familiar mathematical
notation. You can watch the Getting Started with MATLAB video demo
for an overview of the major functionality. If you have an active Internet
connection, you can also watch the Working in the Development Environment
video demo, and the Writing a MATLAB Program video demo. This collection
includes the following topics:

Chapter 1, Introduction (p. 1-1) Describes the components of the
MATLAB system

Chapter 2, Matrices and Arrays
(p. 2-1)

How to use MATLAB to generate
matrices and perform mathematical
operations on matrices

Chapter 3, Graphics (p. 3-1) How to plot data, annotate graphs,
and work with images

Chapter 4, Programming (p. 4-1) How to use MATLAB to create
scripts and functions, how to
construct and manipulate data
structures

Chapter 5, Data Analysis (p. 5-1) How to set up a basic data analysis

Chapter 6, Creating Graphical User
Interfaces (p. 6-1)

Introduces GUIDE, the MATLAB
graphical user interface development
environment.

Chapter 7, Desktop Tools and
Development Environment (p. 7-1)

Information about tools and the
MATLAB desktop

Chapter 8, External Interfaces
(p. 8-1)

Introduces external interfaces
available in MATLAB software.

Getting Started

A printable version (PDF) of this documentation is available on the
Web—MATLAB Getting Started Guide. For tutorial information about any
of the topics covered in this collection, see the corresponding sections in
the MATLAB documentation. For reference information about MATLAB
functions, see the MATLAB Function Reference.

2

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/getstart.pdf

1

Introduction

• “Product Overview” on page 1-2

• “Documentation” on page 1-5

• “Starting and Quitting the MATLAB Program” on page 1-7

1 Introduction

Product Overview

In this section...

“Overview of the MATLAB Environment” on page 1-2

“The MATLAB System” on page 1-3

Overview of the MATLAB Environment
MATLAB is a high-level technical computing language and interactive
environment for algorithm development, data visualization, data analysis,
and numeric computation. Using the MATLAB product, you can solve
technical computing problems faster than with traditional programming
languages, such as C, C++, and Fortran.

You can use MATLAB in a wide range of applications, including signal and
image processing, communications, control design, test and measurement,
financial modeling and analysis, and computational biology. Add-on toolboxes
(collections of special-purpose MATLAB functions, available separately)
extend the MATLAB environment to solve particular classes of problems
in these application areas.

MATLAB provides a number of features for documenting and sharing your
work. You can integrate your MATLAB code with other languages and
applications, and distribute your MATLAB algorithms and applications.
Features include:

• High-level language for technical computing

• Development environment for managing code, files, and data

• Interactive tools for iterative exploration, design, and problem solving

• Mathematical functions for linear algebra, statistics, Fourier analysis,
filtering, optimization, and numerical integration

• 2-D and 3-D graphics functions for visualizing data

• Tools for building custom graphical user interfaces

1-2

Product Overview

• Functions for integrating MATLAB based algorithms with external
applications and languages, such as C, C++, Fortran, Java™, COM, and
Microsoft® Excel®

The MATLAB System
The MATLAB system consists of these main parts:

Desktop Tools and Development Environment
This part of MATLAB is the set of tools and facilities that help you use and
become more productive with MATLAB functions and files. Many of these
tools are graphical user interfaces. It includes: the MATLAB desktop and
Command Window, an editor and debugger, a code analyzer, and browsers for
viewing help, the workspace, and folders.

Mathematical Function Library
This library is a vast collection of computational algorithms ranging from
elementary functions, like sum, sine, cosine, and complex arithmetic, to
more sophisticated functions like matrix inverse, matrix eigenvalues, Bessel
functions, and fast Fourier transforms.

The Language
The MATLAB language is a high-level matrix/array language with control
flow statements, functions, data structures, input/output, and object-oriented
programming features. It allows both “programming in the small” to
rapidly create quick programs you do not intend to reuse. You can also do
“programming in the large” to create complex application programs intended
for reuse.

Graphics
MATLAB has extensive facilities for displaying vectors and matrices as
graphs, as well as annotating and printing these graphs. It includes high-level
functions for two-dimensional and three-dimensional data visualization,
image processing, animation, and presentation graphics. It also includes
low-level functions that allow you to fully customize the appearance of
graphics as well as to build complete graphical user interfaces on your
MATLAB applications.

1-3

1 Introduction

External Interfaces
The external interfaces library allows you to write C/C++ and Fortran
programs that interact with MATLAB. It includes facilities for calling routines
from MATLAB (dynamic linking), for calling MATLAB as a computational
engine, and for reading and writing MAT-files.

1-4

Documentation

Documentation
The MATLAB program provides extensive documentation, in both printable
and HTML format, to help you learn about and use all of its features. If
you are a new user, begin with this Getting Started guide. It covers all the
primary MATLAB features at a high level, including many examples.

To view the online documentation, select Help > Product Help in MATLAB.
Online help appears in the Help browser, providing task-oriented and
reference information about MATLAB features. For more information about
using the Help browser, see “Getting Help” on page 7-7.

The MATLAB documentation is organized into these main topics:

• Desktop Tools and Development Environment — Startup and shutdown,
arranging the desktop, and using tools to become more productive with
MATLAB

• Data Import and Export — Retrieving and storing data, memory-mapping,
and accessing Internet files

• Mathematics — Mathematical operations

• Data Analysis — Data analysis, including data fitting, Fourier analysis,
and time-series tools

• Programming Fundamentals — The MATLAB language and how to
develop MATLAB applications

• Object-Oriented Programming — Designing and implementing MATLAB
classes

• Graphics — Tools and techniques for plotting, graph annotation, printing,
and programming with Handle Graphics® objects

• 3-D Visualization — Visualizing surface and volume data, transparency,
and viewing and lighting techniques

• Creating Graphical User Interfaces — GUI-building tools and how to write
callback functions

• External Interfaces — MEX-files, the MATLAB engine, and interfacing to
Sun Microsystems™ Java software, Microsoft® .NET Framework, COM,
Web services, and the serial port

1-5

1 Introduction

There is reference documentation for all MATLAB functions:

• Function Reference — Lists all MATLAB functions, listed in categories
or alphabetically

• Handle Graphics Property Browser — Provides easy access to descriptions
of graphics object properties

• C/C++ and Fortran API Reference — Covers functions used by the
MATLAB external interfaces, providing information on syntax in the
calling language, description, arguments, return values, and examples

The MATLAB online documentation also includes:

• Examples — An index of examples included in the documentation

• Release Notes — New features, compatibility considerations, and bug
reports for current and recent previous releases

• Printable Documentation — PDF versions of the documentation, suitable
for printing

In addition to the documentation, you can access demos for each product from
the Help browser. Run demos to learn about key functionality of MathWorks®

products and tools.

1-6

../infotool/hgprop/doc_frame.html
../demo_example.html
../matlab_product_page2.html

Starting and Quitting the MATLAB® Program

Starting and Quitting the MATLAB Program

In this section...

“Starting a MATLAB Session” on page 1-7

“Quitting the MATLAB Program” on page 1-8

Starting a MATLAB Session
On Microsoft Windows® platforms, start the MATLAB program by
double-clicking the MATLAB shortcut on your Windows desktop.

On Apple Macintosh® platforms, start MATLAB by double-clicking the
MATLAB icon in the Applications folder.

On UNIX® platforms, start MATLAB by typing matlab at the operating
system prompt.

When you start MATLAB, by default, MATLAB automatically loads all the
program files provided by MathWorks for MATLAB and other MathWorks
products. You do not have to start each product you want to use.

There are alternative ways to start MATLAB, and you can customize
MATLAB startup. For example, you can change the folder in which MATLAB
starts or automatically execute MATLAB statements upon startup.

For More Information See “Startup and Shutdown” in the Desktop Tools
and Development Environment documentation.

The Desktop
When you start MATLAB, the desktop appears, containing tools (graphical
user interfaces) for managing files, variables, and applications associated
with MATLAB.

The following illustration shows the default desktop. You can customize the
arrangement of tools and documents to suit your needs. For more information

1-7

1 Introduction

about the desktop tools, see Chapter 7, “Desktop Tools and Development
Environment”.

�������
	
��
���
�
	��������������

���������������
����������
	������������

������������
���������������
�
�������

������	
��
��
��������
���
�
������� ��
��������
�

Quitting the MATLAB Program
To end your MATLAB session, select File > Exit MATLAB in the desktop,
or type quit in the Command Window. You can run a script file named
finish.m each time MATLAB quits that, for example, executes functions to
save the workspace.

1-8

Starting and Quitting the MATLAB® Program

Confirm Quitting
MATLAB can display a confirmation dialog box before quitting. To set this
option, select File > Preferences > General > Confirmation Dialogs, and
select the check box for Confirm before exiting MATLAB.

For More Information See “Quitting the MATLAB Program” in the Desktop
Tools and Development Environment documentation.

1-9

1 Introduction

1-10

2

Matrices and Arrays

You can watch the Getting Started with MATLAB video demo for an overview
of the major functionality.

• “Matrices and Magic Squares” on page 2-2

• “Expressions” on page 2-11

• “Working with Matrices” on page 2-17

• “More About Matrices and Arrays” on page 2-21

• “Controlling Command Window Input and Output” on page 2-31

2 Matrices and Arrays

Matrices and Magic Squares

In this section...

“About Matrices” on page 2-2

“Entering Matrices” on page 2-4

“sum, transpose, and diag” on page 2-5

“Subscripts” on page 2-7

“The Colon Operator” on page 2-8

“The magic Function” on page 2-9

About Matrices
In the MATLAB environment, a matrix is a rectangular array of numbers.
Special meaning is sometimes attached to 1-by-1 matrices, which are
scalars, and to matrices with only one row or column, which are vectors.
MATLAB has other ways of storing both numeric and nonnumeric data, but
in the beginning, it is usually best to think of everything as a matrix. The
operations in MATLAB are designed to be as natural as possible. Where other
programming languages work with numbers one at a time, MATLAB allows
you to work with entire matrices quickly and easily. A good example matrix,
used throughout this book, appears in the Renaissance engraving Melencolia
I by the German artist and amateur mathematician Albrecht Dürer.

2-2

Matrices and Magic Squares

This image is filled with mathematical symbolism, and if you look carefully,
you will see a matrix in the upper right corner. This matrix is known as a
magic square and was believed by many in Dürer’s time to have genuinely
magical properties. It does turn out to have some fascinating characteristics
worth exploring.

2-3

2 Matrices and Arrays

Entering Matrices
The best way for you to get started with MATLAB is to learn how to handle
matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.

• Load matrices from external data files.

• Generate matrices using built-in functions.

• Create matrices with your own functions and save them in files.

Start by entering Dürer’s matrix as a list of its elements. You only have to
follow a few basic conventions:

• Separate the elements of a row with blanks or commas.

• Use a semicolon, ; , to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

To enter Dürer’s matrix, simply type in the Command Window

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

2-4

Matrices and Magic Squares

MATLAB displays the matrix you just entered:

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

This matrix matches the numbers in the engraving. Once you have entered
the matrix, it is automatically remembered in the MATLAB workspace. You
can refer to it simply as A. Now that you have A in the workspace, take a look
at what makes it so interesting. Why is it magic?

sum, transpose, and diag
You are probably already aware that the special properties of a magic square
have to do with the various ways of summing its elements. If you take the
sum along any row or column, or along either of the two main diagonals,
you will always get the same number. Let us verify that using MATLAB.
The first statement to try is

sum(A)

MATLAB replies with

ans =
34 34 34 34

When you do not specify an output variable, MATLAB uses the variable ans,
short for answer, to store the results of a calculation. You have computed a
row vector containing the sums of the columns of A. Each of the columns has
the same sum, the magic sum, 34.

How about the row sums? MATLAB has a preference for working with the
columns of a matrix, so one way to get the row sums is to transpose the
matrix, compute the column sums of the transpose, and then transpose the
result. For an additional way that avoids the double transpose use the
dimension argument for the sum function.

MATLAB has two transpose operators. The apostrophe operator (e.g., A')
performs a complex conjugate transposition. It flips a matrix about its main

2-5

2 Matrices and Arrays

diagonal, and also changes the sign of the imaginary component of any
complex elements of the matrix. The dot-apostrophe operator (e.g., A.'),
transposes without affecting the sign of complex elements. For matrices
containing all real elements, the two operators return the same result.

So

A'

produces

ans =
16 5 9 4
3 10 6 15
2 11 7 14

13 8 12 1

and

sum(A')'

produces a column vector containing the row sums

ans =
34
34
34
34

The sum of the elements on the main diagonal is obtained with the sum and
the diag functions:

diag(A)

produces

ans =
16
10
7
1

2-6

Matrices and Magic Squares

and

sum(diag(A))

produces

ans =
34

The other diagonal, the so-called antidiagonal, is not so important
mathematically, so MATLAB does not have a ready-made function for it.
But a function originally intended for use in graphics, fliplr, flips a matrix
from left to right:

sum(diag(fliplr(A)))
ans =

34

You have verified that the matrix in Dürer’s engraving is indeed a magic
square and, in the process, have sampled a few MATLAB matrix operations.
The following sections continue to use this matrix to illustrate additional
MATLAB capabilities.

Subscripts
The element in row i and column j of A is denoted by A(i,j). For example,
A(4,2) is the number in the fourth row and second column. For the magic
square, A(4,2) is 15. So to compute the sum of the elements in the fourth
column of A, type

A(1,4) + A(2,4) + A(3,4) + A(4,4)

This subscript produces

ans =
34

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript,
A(k). A single subscript is the usual way of referencing row and column
vectors. However, it can also apply to a fully two-dimensional matrix, in

2-7

2 Matrices and Arrays

which case the array is regarded as one long column vector formed from the
columns of the original matrix. So, for the magic square, A(8) is another way
of referring to the value 15 stored in A(4,2).

If you try to use the value of an element outside of the matrix, it is an error:

t = A(4,5)
Index exceeds matrix dimensions.

Conversely, if you store a value in an element outside of the matrix, the size
increases to accommodate the newcomer:

X = A;
X(4,5) = 17

X =
16 3 2 13 0
5 10 11 8 0
9 6 7 12 0
4 15 14 1 17

The Colon Operator
The colon, :, is one of the most important MATLAB operators. It occurs in
several different forms. The expression

1:10

is a row vector containing the integers from 1 to 10:

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example,

100:-7:50

is

100 93 86 79 72 65 58 51

and

0:pi/4:pi

2-8

Matrices and Magic Squares

is

0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix:

A(1:k,j)

is the first k elements of the jth column of A. Thus:

sum(A(1:4,4))

computes the sum of the fourth column. However, there is a better way to
perform this computation. The colon by itself refers to all the elements in
a row or column of a matrix and the keyword end refers to the last row or
column. Thus:

sum(A(:,end))

computes the sum of the elements in the last column of A:

ans =
34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1
to 16 are sorted into four groups with equal sums, that sum must be

sum(1:16)/4

which, of course, is

ans =
34

The magic Function
MATLAB actually has a built-in function that creates magic squares of almost
any size. Not surprisingly, this function is named magic:

2-9

2 Matrices and Arrays

B = magic(4)
B =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

This matrix is almost the same as the one in the Dürer engraving and has
all the same “magic” properties; the only difference is that the two middle
columns are exchanged.

To make this B into Dürer’s A, swap the two middle columns:

A = B(:,[1 3 2 4])

This subscript indicates that—for each of the rows of matrix B—reorder the
elements in the order 1, 3, 2, 4. It produces:

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

2-10

Expressions

Expressions

In this section...

“Variables” on page 2-11

“Numbers” on page 2-12

“Operators” on page 2-13

“Functions” on page 2-14

“Examples of Expressions” on page 2-15

Variables
Like most other programming languages, the MATLAB language provides
mathematical expressions, but unlike most programming languages, these
expressions involve entire matrices.

MATLAB does not require any type declarations or dimension statements.
When MATLAB encounters a new variable name, it automatically creates the
variable and allocates the appropriate amount of storage. If the variable
already exists, MATLAB changes its contents and, if necessary, allocates
new storage. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its
single element. To view the matrix assigned to any variable, simply enter
the variable name.

Variable names consist of a letter, followed by any number of letters, digits, or
underscores. MATLAB is case sensitive; it distinguishes between uppercase
and lowercase letters. A and a are not the same variable.

Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables.

2-11

2 Matrices and Arrays

N = namelengthmax
N =

63

The genvarname function can be useful in creating variable names that are
both valid and unique.

Numbers
MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the
letter e to specify a power-of-ten scale factor. Imaginary numbers use either i
or j as a suffix. Some examples of legal numbers are

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23
1i -3.14159j 3e5i

MATLAB stores all numbers internally using the long format specified by
the IEEE® floating-point standard. Floating-point numbers have a finite
precision of roughly 16 significant decimal digits and a finite range of roughly
10-308 to 10+308.

Numbers represented in the double format have a maximum precision of
52 bits. Any double requiring more bits than 52 loses some precision. For
example, the following code shows two unequal values to be equal because
they are both truncated:

x = 36028797018963968;
y = 36028797018963972;
x == y
ans =

1

Integers have available precisions of 8-bit, 16-bit, 32-bit, and 64-bit. Storing
the same numbers as 64-bit integers preserves precision:

x = uint64(36028797018963968);
y = uint64(36028797018963972);
x == y
ans =

2-12

Expressions

0

The section “Avoiding Common Problems with Floating-Point Arithmetic”
gives a few of the examples showing how IEEE floating-point arithmetic
affects computations in MATLAB. For more examples and information, see
Technical Note 1108 — Common Problems with Floating-Point Arithmetic.

MATLAB software stores the real and imaginary parts of a complex number.
It handles the magnitude of the parts in different ways depending on the
context. For instance, the sort function sorts based on magnitude and
resolves ties by phase angle.

sort([3+4i, 4+3i])
ans =

4.0000 + 3.0000i 3.0000 + 4.0000i

This is because of the phase angle:

angle(3+4i)
ans =

0.9273
angle(4+3i)
ans =

0.6435

The “equal to” relational operator == requires both the real and imaginary
parts to be equal. The other binary relational operators > <, >=, and <= ignore
the imaginary part of the number and consider the real part only.

Operators
Expressions use familiar arithmetic operators and precedence rules.

+ Addition

- Subtraction

* Multiplication

/ Division

2-13

http://www.mathworks.com/support/tech-notes/1100/1108.html

2 Matrices and Arrays

\ Left division (described in “Linear Algebra” in the
MATLAB documentation)

^ Power

' Complex conjugate transpose

() Specify evaluation order

Functions
MATLAB provides a large number of standard elementary mathematical
functions, including abs, sqrt, exp, and sin. Taking the square root or
logarithm of a negative number is not an error; the appropriate complex result
is produced automatically. MATLAB also provides many more advanced
mathematical functions, including Bessel and gamma functions. Most of
these functions accept complex arguments. For a list of the elementary
mathematical functions, type

help elfun

For a list of more advanced mathematical and matrix functions, type

help specfun
help elmat

Some of the functions, like sqrt and sin, are built in. Built-in functions are
part of the MATLAB core so they are very efficient, but the computational
details are not readily accessible. Other functions are implemented in the
MATLAB programing language, so their computational details are accessible.

There are some differences between built-in functions and other functions.
For example, for built-in functions, you cannot see the code. For other
functions, you can see the code and even modify it if you want.

Several special functions provide values of useful constants.

pi 3.14159265...

i Imaginary unit,

j Same as i

2-14

Expressions

eps Floating-point relative precision,

realmin Smallest floating-point number,

realmax
Largest floating-point number,

Inf Infinity

NaN Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by evaluating
well defined mathematical expressions that overflow, i.e., exceed realmax.
Not-a-number is generated by trying to evaluate expressions like 0/0 or
Inf-Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them
with a new variable, such as

eps = 1.e-6

and then use that value in subsequent calculations. The original function
can be restored with

clear eps

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a
few more examples, and the resulting values:

rho = (1+sqrt(5))/2
rho =

1.6180

a = abs(3+4i)
a =

5

z = sqrt(besselk(4/3,rho-i))
z =

0.3730+ 0.3214i

2-15

2 Matrices and Arrays

huge = exp(log(realmax))
huge =

1.7977e+308

toobig = pi*huge
toobig =

Inf

2-16

Working with Matrices

Working with Matrices

In this section...

“Generating Matrices” on page 2-17

“The load Function” on page 2-18

“Saving Code to a File” on page 2-18

“Concatenation” on page 2-19

“Deleting Rows and Columns” on page 2-20

Generating Matrices
MATLAB software provides four functions that generate basic matrices.

zeros All zeros

ones All ones

rand Uniformly distributed random elements

randn Normally distributed random elements

Here are some examples:

Z = zeros(2,4)
Z =

0 0 0 0
0 0 0 0

F = 5*ones(3,3)
F =

5 5 5
5 5 5
5 5 5

N = fix(10*rand(1,10))
N =

9 2 6 4 8 7 4 0 8 4

2-17

2 Matrices and Arrays

R = randn(4,4)
R =

0.6353 0.0860 -0.3210 -1.2316
-0.6014 -2.0046 1.2366 1.0556
0.5512 -0.4931 -0.6313 -0.1132

-1.0998 0.4620 -2.3252 0.3792

The load Function
The load function reads binary files containing matrices generated by earlier
MATLAB sessions, or reads text files containing numeric data. The text file
should be organized as a rectangular table of numbers, separated by blanks,
with one row per line, and an equal number of elements in each row. For
example, outside of MATLAB, create a text file containing these four lines:

16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0

Save the file as magik.dat in the current directory. The statement

load magik.dat

reads the file and creates a variable, magik, containing the example matrix.

An easy way to read data into MATLAB from many text or binary formats
is to use the Import Wizard.

Saving Code to a File
You can create matrices using text files containing MATLAB code. Use the
MATLAB Editor or another text editor to create a file containing the same
statements you would type at the MATLAB command line. Save the file
under a name that ends in .m.

For example, create a file in the current directory named magik.m containing
these five lines:

2-18

Working with Matrices

A = [16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0];

The statement

magik

reads the file and creates a variable, A, containing the example matrix.

Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In
fact, you made your first matrix by concatenating its individual elements. The
pair of square brackets, [], is the concatenation operator. For an example,
start with the 4-by-4 magic square, A, and form

B = [A A+32; A+48 A+16]

The result is an 8-by-8 matrix, obtained by joining the four submatrices:

B =

16 3 2 13 48 35 34 45
5 10 11 8 37 42 43 40
9 6 7 12 41 38 39 44
4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29
53 58 59 56 21 26 27 24
57 54 55 60 25 22 23 28
52 63 62 49 20 31 30 17

This matrix is halfway to being another magic square. Its elements are a
rearrangement of the integers 1:64. Its column sums are the correct value
for an 8-by-8 magic square:

sum(B)

ans =
260 260 260 260 260 260 260 260

2-19

2 Matrices and Arrays

But its row sums, sum(B')', are not all the same. Further manipulation is
necessary to make this a valid 8-by-8 magic square.

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square
brackets. Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

This changes X to

X =
16 2 13
5 11 8
9 7 12
4 14 1

If you delete a single element from a matrix, the result is not a matrix
anymore. So, expressions like

X(1,2) = []

result in an error. However, using a single subscript deletes a single element,
or sequence of elements, and reshapes the remaining elements into a row
vector. So

X(2:2:10) = []

results in

X =
16 9 2 7 13 12 1

2-20

More About Matrices and Arrays

More About Matrices and Arrays

In this section...

“Linear Algebra” on page 2-21

“Arrays” on page 2-25

“Multivariate Data” on page 2-27

“Scalar Expansion” on page 2-28

“Logical Subscripting” on page 2-28

“The find Function” on page 2-29

Linear Algebra
Informally, the terms matrix and array are often used interchangeably. More
precisely, a matrix is a two-dimensional numeric array that represents a
linear transformation. The mathematical operations defined on matrices are
the subject of linear algebra.

Dürer’s magic square

A = [16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1]

provides several examples that give a taste of MATLAB matrix operations.
You have already seen the matrix transpose, A'. Adding a matrix to its
transpose produces a symmetric matrix:

A + A'

ans =
32 8 11 17
8 20 17 23

11 17 14 26
17 23 26 2

2-21

2 Matrices and Arrays

The multiplication symbol, *, denotes the matrix multiplication involving
inner products between rows and columns. Multiplying the transpose of a
matrix by the original matrix also produces a symmetric matrix:

A'*A

ans =
378 212 206 360
212 370 368 206
206 368 370 212
360 206 212 378

The determinant of this particular matrix happens to be zero, indicating
that the matrix is singular:

d = det(A)

d =
0

The reduced row echelon form of A is not the identity:

R = rref(A)

R =
1 0 0 1
0 1 0 -3
0 0 1 3
0 0 0 0

Because the matrix is singular, it does not have an inverse. If you try to
compute the inverse with

X = inv(A)

you will get a warning message:

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 9.796086e-018.

Roundoff error has prevented the matrix inversion algorithm from detecting
exact singularity. But the value of rcond, which stands for reciprocal

2-22

More About Matrices and Arrays

condition estimate, is on the order of eps, the floating-point relative precision,
so the computed inverse is unlikely to be of much use.

The eigenvalues of the magic square are interesting:

e = eig(A)

e =
34.0000
8.0000
0.0000

-8.0000

One of the eigenvalues is zero, which is another consequence of singularity.
The largest eigenvalue is 34, the magic sum. That sum results because the
vector of all ones is an eigenvector:

v = ones(4,1)

v =
1
1
1
1

A*v

ans =
34
34
34
34

When a magic square is scaled by its magic sum,

P = A/34

the result is a doubly stochastic matrix whose row and column sums are all 1:

2-23

2 Matrices and Arrays

P =
0.4706 0.0882 0.0588 0.3824
0.1471 0.2941 0.3235 0.2353
0.2647 0.1765 0.2059 0.3529
0.1176 0.4412 0.4118 0.0294

Such matrices represent the transition probabilities in a Markov process.
Repeated powers of the matrix represent repeated steps of the process. For
this example, the fifth power

P^5

is

0.2507 0.2495 0.2494 0.2504
0.2497 0.2501 0.2502 0.2500
0.2500 0.2498 0.2499 0.2503
0.2496 0.2506 0.2505 0.2493

This shows that as approaches infinity, all the elements in the th power,

, approach .

Finally, the coefficients in the characteristic polynomial

poly(A)

are

1 -34 -64 2176 0

These coefficients indicate that the characteristic polynomial

is

The constant term is zero because the matrix is singular. The coefficient of
the cubic term is -34 because the matrix is magic!

2-24

More About Matrices and Arrays

Arrays
When they are taken away from the world of linear algebra, matrices become
two-dimensional numeric arrays. Arithmetic operations on arrays are
done element by element. This means that addition and subtraction are
the same for arrays and matrices, but that multiplicative operations are
different. MATLAB uses a dot, or decimal point, as part of the notation for
multiplicative array operations.

The list of operators includes

+ Addition

- Subtraction

.* Element-by-element multiplication

./ Element-by-element division

.\ Element-by-element left division

.^ Element-by-element power

.' Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16,
in an unusual order:

ans =
256 9 4 169
25 100 121 64
81 36 49 144
16 225 196 1

Building Tables
Array operations are useful for building tables. Suppose n is the column vector

n = (0:9)';

2-25

2 Matrices and Arrays

Then

pows = [n n.^2 2.^n]

builds a table of squares and powers of 2:

pows =
0 0 1
1 1 2
2 4 4
3 9 8
4 16 16
5 25 32
6 36 64
7 49 128
8 64 256
9 81 512

The elementary math functions operate on arrays element by element. So

format short g
x = (1:0.1:2)';
logs = [x log10(x)]

builds a table of logarithms.

logs =
1.0 0
1.1 0.04139
1.2 0.07918
1.3 0.11394
1.4 0.14613
1.5 0.17609
1.6 0.20412
1.7 0.23045
1.8 0.25527
1.9 0.27875
2.0 0.30103

2-26

More About Matrices and Arrays

Multivariate Data
MATLAB uses column-oriented analysis for multivariate statistical data.
Each column in a data set represents a variable and each row an observation.
The (i,j)th element is the ith observation of the jth variable.

As an example, consider a data set with three variables:

• Heart rate

• Weight

• Hours of exercise per week

For five observations, the resulting array might look like

D = [72 134 3.2
81 201 3.5
69 156 7.1
82 148 2.4
75 170 1.2]

The first row contains the heart rate, weight, and exercise hours for patient 1,
the second row contains the data for patient 2, and so on. Now you can apply
many MATLAB data analysis functions to this data set. For example, to
obtain the mean and standard deviation of each column, use

mu = mean(D), sigma = std(D)

mu =
75.8 161.8 3.48

sigma =
5.6303 25.499 2.2107

For a list of the data analysis functions available in MATLAB, type

help datafun

If you have access to the Statistics Toolbox™ software, type

help stats

2-27

2 Matrices and Arrays

Scalar Expansion
Matrices and scalars can be combined in several different ways. For example,
a scalar is subtracted from a matrix by subtracting it from each element. The
average value of the elements in our magic square is 8.5, so

B = A - 8.5

forms a matrix whose column sums are zero:

B =
7.5 -5.5 -6.5 4.5

-3.5 1.5 2.5 -0.5
0.5 -2.5 -1.5 3.5

-4.5 6.5 5.5 -7.5

sum(B)

ans =
0 0 0 0

With scalar expansion, MATLAB assigns a specified scalar to all indices in a
range. For example,

B(1:2,2:3) = 0

zeroes out a portion of B:

B =
7.5 0 0 4.5

-3.5 0 0 -0.5
0.5 -2.5 -1.5 3.5

-4.5 6.5 5.5 -7.5

Logical Subscripting
The logical vectors created from logical and relational operations can be used
to reference subarrays. Suppose X is an ordinary matrix and L is a matrix of
the same size that is the result of some logical operation. Then X(L) specifies
the elements of X where the elements of L are nonzero.

2-28

More About Matrices and Arrays

This kind of subscripting can be done in one step by specifying the logical
operation as the subscripting expression. Suppose you have the following
set of data:

x = [2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8];

The NaN is a marker for a missing observation, such as a failure to respond to
an item on a questionnaire. To remove the missing data with logical indexing,
use isfinite(x), which is true for all finite numerical values and false for
NaN and Inf:

x = x(isfinite(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

Now there is one observation, 5.1, which seems to be very different from the
others. It is an outlier. The following statement removes outliers, in this case
those elements more than three standard deviations from the mean:

x = x(abs(x-mean(x)) <= 3*std(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

For another example, highlight the location of the prime numbers in Dürer’s
magic square by using logical indexing and scalar expansion to set the
nonprimes to 0. (See “The magic Function” on page 2-9.)

A(~isprime(A)) = 0

A =
0 3 2 13
5 0 11 0
0 0 7 0
0 0 0 0

The find Function
The find function determines the indices of array elements that meet a given
logical condition. In its simplest form, find returns a column vector of indices.
Transpose that vector to obtain a row vector of indices. For example, start
again with Dürer’s magic square. (See “The magic Function” on page 2-9.)

2-29

2 Matrices and Arrays

k = find(isprime(A))'

picks out the locations, using one-dimensional indexing, of the primes in the
magic square:

k =
2 5 9 10 11 13

Display those primes, as a row vector in the order determined by k, with

A(k)

ans =
5 3 2 11 7 13

When you use k as a left-hand-side index in an assignment statement, the
matrix structure is preserved:

A(k) = NaN

A =
16 NaN NaN NaN

NaN 10 NaN 8
9 6 NaN 12
4 15 14 1

2-30

Controlling Command Window Input and Output

Controlling Command Window Input and Output

In this section...

“The format Function” on page 2-31

“Suppressing Output” on page 2-32

“Entering Long Statements” on page 2-33

“Command Line Editing” on page 2-33

The format Function
The format function controls the numeric format of the values displayed. The
function affects only how numbers are displayed, not how MATLAB software
computes or saves them. Here are the different formats, together with the
resulting output produced from a vector x with components of different
magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Courier.

x = [4/3 1.2345e-6]

format short

1.3333 0.0000

format short e

1.3333e+000 1.2345e-006

format short g

1.3333 1.2345e-006

format long

1.33333333333333 0.00000123450000

2-31

2 Matrices and Arrays

format long e

1.333333333333333e+000 1.234500000000000e-006

format long g

1.33333333333333 1.2345e-006

format bank

1.33 0.00

format rat

4/3 1/810045

format hex

3ff5555555555555 3eb4b6231abfd271

If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats.

In addition to the format functions shown above

format compact

suppresses many of the blank lines that appear in the output. This lets you
view more information on a screen or window. If you want more control over
the output format, use the sprintf and fprintf functions.

Suppressing Output
If you simply type a statement and press Return or Enter, MATLAB
automatically displays the results on screen. However, if you end the line
with a semicolon, MATLAB performs the computation but does not display
any output. This is particularly useful when you generate large matrices.
For example,

A = magic(100);

2-32

Controlling Command Window Input and Output

Entering Long Statements
If a statement does not fit on one line, use an ellipsis (three periods), ...,
followed by Return or Enter to indicate that the statement continues on
the next line. For example,

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Blank spaces around the =, +, and - signs are optional, but they improve
readability.

Command Line Editing
Various arrow and control keys on your keyboard allow you to recall, edit,
and reuse statements you have typed earlier. For example, suppose you
mistakenly enter

rho = (1 + sqt(5))/2

You have misspelled sqrt. MATLAB responds with

Undefined function or method 'sqt' for input arguments of type 'double'.

Instead of retyping the entire line, simply press the key. The statement
you typed is redisplayed. Use the key to move the cursor over and insert
the missing r. Repeated use of the key recalls earlier lines. Typing a few
characters and then the key finds a previous line that begins with those
characters. You can also copy previously executed statements from the
Command History. For more information, see “Command History” on page
7-6.

2-33

2 Matrices and Arrays

2-34

3

Graphics

• “Overview of Plotting” on page 3-2

• “Editing Plots” on page 3-24

• “Some Ways to Use Plotting Tools” on page 3-30

• “Preparing Graphs for Presentation” on page 3-44

• “Using Basic Plotting Functions” on page 3-57

• “Creating Mesh and Surface Plots” on page 3-72

• “Plotting Image Data” on page 3-80

• “Printing Graphics” on page 3-82

• “Understanding Handle Graphics Objects” on page 3-85

3 Graphics

Overview of Plotting

In this section...

“Plotting Process” on page 3-2

“Graph Components” on page 3-6

“Figure Tools” on page 3-7

“Arranging Graphs Within a Figure” on page 3-14

“Choosing a Type of Graph to Plot” on page 3-15

For More Information See MATLAB Graphics and 3-D Visualization in the
MATLAB documentation for in-depth coverage of MATLAB graphics and
visualization tools. Access these topics from the Help browser.

Plotting Process
The MATLAB environment provides a wide variety of techniques to display
data graphically. Interactive tools enable you to manipulate graphs to achieve
results that reveal the most information about your data. You can also
annotate and print graphs for presentations, or export graphs to standard
graphics formats for presentation in Web browsers or other media.

The process of visualizing data typically involves a series of operations. This
section provides a “big picture” view of the plotting process and contains
links to sections that have examples and specific details about performing
each operation.

Creating a Graph
The type of graph you choose to create depends on the nature of your data
and what you want to reveal about the data. You can choose from many
predefined graph types, such as line, bar, histogram, and pie graphs as well
as 3-D graphs, such as surfaces, slice planes, and streamlines.

There are two basic ways to create MATLAB graphs:

• Use plotting tools to create graphs interactively.

3-2

Overview of Plotting

See “Some Ways to Use Plotting Tools” on page 3-30.

• Use the command interface to enter commands in the Command Window
or create plotting programs.

See “Using Basic Plotting Functions” on page 3-57.

You might find it useful to combine both approaches. For example, you might
issue a plotting command to create a graph and then modify the graph using
one of the interactive tools.

Exploring Data
After you create a graph, you can extract specific information about the data,
such as the numeric value of a peak in a plot, the average value of a series of
data, or you can perform data fitting. You can also identify individual graph
observations with Datatip and Data brushing tools and trace them back to
their data sources in the MATLAB workspace.

For More Information See “Data Exploration Tools” in the MATLAB
Graphics documentation and “Marking Up Graphs with Data Brushing”,
“Making Graphs Responsive with Data Linking”, “Interacting with Graphed
Data”, and “Opening the Basic Fitting GUI” in the MATLAB Data Analysis
documentation.

Editing the Graph Components
Graphs are composed of objects, which have properties you can change. These
properties affect the way the various graph components look and behave.

For example, the axes used to define the coordinate system of the graph has
properties that define the limits of each axis, the scale, color, etc. The line
used to create a line graph has properties such as color, type of marker used
at each data point (if any), line style, etc.

3-3

3 Graphics

Note The data values that a line graph (for example) displays are copied into
and become properties of the (lineseries) graphics object. You can, therefore,
change the data in the workspace without creating a new graph. You can also
add data to a graph. See “Editing Plots” on page 3-24 for more information.

Annotating Graphs
Annotations are the text, arrows, callouts, and other labels added to graphs
to help viewers see what is important about the data. You typically add
annotations to graphs when you want to show them to other people or when
you want to save them for later reference.

For More Information See “Annotating Graphs” in the MATLAB Graphics
documentation, or select Annotating Graphs from the figure Help menu.

Printing and Exporting Graphs
You can print your graph on any printer connected to your computer. The
print previewer enables you to view how your graph will look when printed.
It enables you to add headers, footers, a date, and so on. The print preview
dialog box lets you control the size, layout, and other characteristics of the
graph (select Print Preview from the figure File menu).

Exporting a graph means creating a copy of it in a standard graphics file
format, such as TIFF, JPEG, or EPS. You can then import the file into a word
processor, include it in an HTML document, or edit it in a drawing package
(select Export Setup from the figure File menu).

Adding and Removing Figure Content
By default, when you create a new graph in the same figure window, its data
replaces that of the graph that is currently displayed, if any. You can add
new data to a graph in several ways; see “Adding More Data to the Graph”
on page 3-34 for how to do this using a GUI. You can manually remove all
data, graphics and annotations from the current figure by typing clf in the
Command Window or by selecting Clear Figure from the figure’s Edit menu.

3-4

Overview of Plotting

For More Information See the print command reference page and “Printing
and Exporting” in the MATLAB Graphics documentation, or select Printing
and Exporting from the figure Help menu.

Saving Graphs for Reuse
There are two ways to save graphs that enable you to save the work you
have invested in their preparation:

• Save the graph as a FIG-file (select Save from the figure File menu).

• Generate MATLAB code that can recreate the graph (select Generate
code from the figure File menu).

FIG-Files. FIG-files are a binary format that saves a figure in its current
state. This means that all graphics objects and property settings are stored in
the file when you create it. You can reload the file into a different MATLAB
session, even when you run it on a different type of computer. When you load a
FIG-file, a new MATLAB figure opens in the same state as the one you saved.

Note The states of any figure tools on the toolbars are not saved in a FIG-file;
only the contents of the graph and its annotations are saved. The contents of
datatips (created by the Data Cursor tool), are also saved. This means that
FIG-files always open in the default figure mode.

Generated Code. You can use the MATLAB code generator to create code
that recreates the graph. Unlike a FIG-file, the generated code does not
contain any data. You must pass appropriate data to the generated function
when you run the code.

Studying the generated code for a graph is a good way to learn how to program
using MATLAB.

For More Information See the print command reference page and “Saving
Your Work” in the MATLAB Graphics documentation.

3-5

3 Graphics

Graph Components
MATLAB graphs display in a special window known as a figure. To create
a graph, you need to define a coordinate system. Therefore, every graph is
placed within axes, which are contained by the figure.

You achieve the actual visual representation of the data with graphics objects
like lines and surfaces. These objects are drawn within the coordinate system
defined by the axes, which appear automatically to specifically span the range
of the data. The actual data is stored as properties of the graphics objects.

See “Understanding Handle Graphics Objects” on page 3-85 for more
information about graphics object properties.

The following picture shows the basic components of a typical graph. You can
find commands for plotting this graph in “Preparing Graphs for Presentation”
on page 3-44.

3-6

Overview of Plotting

!�
����������
������ ��
���
��

�"���������
��	���������
� ��������
�
��
���
�

���������
����������
�����

����#��������
����
���	���
����������	�����������

Figure Tools
The figure is equipped with sets of tools that operate on graphs. The figure
Tools menu provides access to many graph tools, as this view of the Options
submenu illustrates. Many of the options shown in this figure also appear as
context menu items for individual tools such as zoom and pan. The figure also
shows three figure toolbars, discussed in “Figure Toolbars” on page 3-9.

3-7

3 Graphics

For More Information See “Plots and Plotting Tools” in the MATLAB
Graphics documentation, or select Plotting Tools from the figure Help
menu.

3-8

Overview of Plotting

Accessing the Tools
You can access or remove the figure toolbars and the plotting tools from the
View menu, as shown in the following picture. Toggle on and off the toolbars
you need. Adding a toolbar stacks it beneath the lowest one.

Figure Toolbars
Figure toolbars provide easy access to many graph modification features.
There are three toolbars. When you place the cursor over a particular tool, a
text box pops up with the tool name. The following picture shows the three
toolbars displayed with the cursor over the Data Cursor tool.

For More Information See “Anatomy of a Graph” in the MATLAB Graphics
documentation.

3-9

3 Graphics

Plotting Tools
Plotting tools are attached to figures and create an environment for creating
graphs. These tools enable you to perform the following tasks:

• Select from a wide variety of graph types.

• Change the type of graph that represents a variable.

• See and set the properties of graphics objects.

• Annotate graphs with text, arrows, etc.

• Create and arrange subplots in the figure.

• Drag and drop data into graphs.

Display the plotting tools from the View menu or by clicking the Show Plot
Tools icon in the figure toolbar, as shown in the following picture.

���#����������
�����������
�
�������������������#��

You can also start the plotting tools from the MATLAB prompt:

plottools

The plotting tools are made up of three independent GUI components:

• Figure Palette — Specify and arrange subplots, access workspace variables
for plotting or editing, and add annotations.

3-10

Overview of Plotting

• Plot Browser — Select objects in the graphics hierarchy, control visibility,
and add data to axes.

• Property Editor — Change key properties of the selected object. ClickMore
Properties to access all object properties with the Property Inspector.

You can also control these components from the Command Window, by typing
the following:

figurepalette
plotbrowser
propertyeditor

See the reference pages for plottools, figurepalette, plotbrowser, and
propertyeditor for information on syntax and options.

The following picture shows a figure with all three plotting tools enabled.

3-11

3 Graphics

Using Plotting Tools and MATLAB Code
You can enable the plotting tools for any graph, even one created using
MATLAB commands. For example, suppose you type the following code to
create a graph:

t = 0:pi/20:2*pi;
y = exp(sin(t));
plotyy(t,y,t,y,'plot','stem')
xlabel('X Axis')
ylabel('Plot Y Axis')

3-12

Overview of Plotting

title('Two Y Axes')

This graph contains two y-axes, one for each plot type (a lineseries and a
stemseries). The plotting tools make it easy to select any of the objects that
the graph contains and modify their properties.

For example, adding a label for the y-axis that corresponds to the stem plot
is easily accomplished by selecting that axes in the Plot Browser and setting
the Y Label property in the Property Editor (if you do not see that text field,
stretch the Figures window to make it taller).

3-13

3 Graphics

Arranging Graphs Within a Figure
You can place a number of axes within a figure by selecting the layout you
want from the Figure Palette. For example, the following picture shows how
to specify four 2-D axes in the figure.

3-14

Overview of Plotting

$��	%�������������"������#�����
���	��������� ����

$��	%��������
���

��������	��
�"����� ����

Select the axes you want to target for plotting. You can also use the subplot
function to create multiple axes.

Choosing a Type of Graph to Plot
For details on the many kinds of 2-D and 3-D graphs you can plot, see “Types
of MATLAB Plots” in the MATLAB Graphics documentation. Clicking a
function name opens the function reference pages. Several desktop tools
also summarize the types of graphs available to you and help you plot them
quickly. These tools, the Plot Selector and the Plot Catalog, are described in
the following sections.

3-15

3 Graphics

Creating Graphs with the Plot Selector
After you select variables in the Workspace Browser, you can create a graph

of the data by clicking the Plot Selector toolbar button. The Plot
Selector icon depicts the type of graph it creates by default. The default graph
reflects the variables you select and your history of using the tool. The Plot
Selector icon changes to indicate the default type of graph along with the
function’s name and calling arguments. If you click the icon, the Plot Selector
executes that code to create a graph of the type it displays. For example,
when you select two vectors named t and y, the Plot Selector initially displays
plot(t,y).

If you click the down-arrow on the right side of the button, its menu opens to
display all graph types compatible with the selected variables. The following
figure shows the Plot Selector menu with an area graph selected. The graph
types that the Plot Selector shows as available are consistent with the
variables (t and y) currently selected in the Workspace Browser.

3-16

Overview of Plotting

Releasing the mouse button over the highlighted icon creates an area graph.

3-17

3 Graphics

You can see how the graph is created because the code the Plot Selector
generates executes in the Command Window:

>> area(t,y,'DisplayName','t,y');figure(gcf)

You can also use the Plot Selector to get help for graphing functions. A
scrolling yellow window pops up when you hover the mouse pointer over a Plot
Selector menu item. The help window contains syntax descriptions for the
function you point at. To open the entire function reference page in a Help
Browser window, click the More Help link at the top right of the pop-up
window, an example of which (for area) appears in the following figure.

3-18

Overview of Plotting

To keep the help text visible, click just inside the top edge of the pop-up help
window and drag it to another location on your screen. Close the window by
clicking on the X in its upper left corner.

For more information about using the Plot Selector, see “Creating Plots from
the Workspace Browser”.

Creating Graphs with the Plot Catalog
You can use the Plot Catalog tool to browse graph types and create plots of
selections of data. Like the Plot Selector, the Plot Catalog shows all graph
types as thumbnails with function names and short descriptions. In addition,
it groups graphs into categories and lets you specify variables to display
inside the tool. When you select the Scatter Plots category, the Plot Catalog
looks like this.

3-19

3 Graphics

The content and behavior of the Plot Catalog matches that of the Plot Selector
tool, except that the Plot Catalog:

• Opens as a persistent window that you close manually, rather than as a
pop-up window

• Enables you to edit the names of the variables to plot before plotting them

• Can plot MATLAB expressions in addition to variables

3-20

Overview of Plotting

• Provides help for the selected graph type in the right pane, rather than
in a pop-up window.

Open the Plot Catalog in any of the following ways:

• From the Plot Selector menu in the Workspace browser or Variable Editor,
click the Catalog link at the bottom of the menu.

• In the Workspace browser, right-click a variable and choose Plot Catalog
from the context menu.

• In the Variable Editor, select the values you want to graph, right-click the
selection you just made, and choose Plot Catalog from the context menu.

• In the Figure Palette component of the Plotting Tools, right-click a selected
variable and choose Plot Catalog from the context menu

The following illustration of the Figure Palette tool shows two selected
numeric variables and the right-click context menu displayed. The Plot
Catalog option is the bottom item on the menu.

3-21

3 Graphics

The list of Favorites that both the Plot Catalog and Plot Selector tools
maintain for you determine the types of graphs that display as options on
the context menu. Adding and removing graph types from your Favorites
gives you quick access to the kinds of graphs that you regularly use. See
“Working with the Plot Selector GUI” for more information on managing a
list of favorite graph types.

3-22

Overview of Plotting

Selecting Plot Catalog opens that tool in a new window with the selected
variables in the Plotted Variables edit field. To graph the variables, select
a plot category from the first column, and then select a graph type from the
second column. To plot the graph, click the graph thumbnail, the Plot button,
or the Plot in New Figure button. You can override the selected variables
by typing other variable names or MATLAB expressions in the Plotted
Variables edit field.

Caution The Plot Catalog does not evaluate expressions you enter in the
Plotted Variables field. If the expressions are faulty, either MATLAB or the
graphics function that executes the expressions can produce errors.

When you choose a graph type that does not accept the selected variables
or that requires additional inputs, the Plot Catalog (like the Plot Selector)
displays a warning message in the right pane. You cannot generate a plot
when such a warning is present, but the message tells you what you need
to do to use the plotting function you selected. For example, the following
illustration shows the warning diagnostic you receive when you attempt to
use the image function to display vector inputs.

For more information, see “Example — Plotting from the Figure Palette”.

3-23

3 Graphics

Editing Plots

In this section...

“Plot Edit Mode” on page 3-24

“Using Functions to Edit Graphs” on page 3-29

Plot Edit Mode
Plot edit mode lets you select specific objects in a graph and enables you to
perform point-and-click editing of most of them.

Enabling Plot Edit Mode
To enable plot edit mode, click the arrowhead in the figure toolbar:

&�����������������#���

You can also select Edit Plot from the figure Tools menu.

Setting Object Properties
After you have enabled plot edit mode, you can select objects by clicking them
in the graph. Selection handles appear and indicate that the object is selected.
Select multiple objects using Shift+click.

Right-click with the pointer over the selected object to display the object’s
context menu:

3-24

Editing Plots

The context menu provides quick access to the most commonly used operations
and properties.

Using the Property Editor
In plot edit mode, double-clicking an object in a graph opens the Property
Editor GUI with that object’s major properties displayed. The Property Editor
provides access to the most used object properties. When you select an object,
it updates to display the properties of whatever object you select.

3-25

3 Graphics

$��	%���������� �&������ �'����	���

Accessing Properties with the Property Inspector
The Property Inspector is a tool that enables you to access most Handle
Graphics properties and other MATLAB objects. If you do not find the
property you want to set in the Property Editor, click the More Properties
button to display the Property Inspector. You can also use the inspect
command to start the Property Inspector. For example, to inspect the
properties of the current axes, type

inspect(gca)

3-26

Editing Plots

The following picture shows the Property Inspector displaying the properties
of a graph’s axes. It lists each property and provides a text field or other
appropriate device (such as a color picker) from which you can set the value
of the property.

As you select different objects, the Property Inspector updates to display
the properties of the current object.

3-27

3 Graphics

The Property Inspector lists properties alphabetically by default. However,
you can group Handle Graphics objects, such as axes, by categories which you

can reveal or close in the Property Inspector. To do so, click the icon
at the upper left, then click the + next to the category you want to expand.
For example, to see the position-related properties, click the + to the left of
the Position category.

The Position category opens and the + changes to a - to indicate that you can
collapse the category by clicking it.

3-28

Editing Plots

Using Functions to Edit Graphs
If you prefer to work from the MATLAB command line, or if you are creating
a MATLAB program file, you can use MATLAB commands to edit the graphs
you create. You can use the set and get commands to change the properties of
the objects in a graph. For more information about using graphics commands,
see “Understanding Handle Graphics Objects” on page 3-85.

3-29

3 Graphics

Some Ways to Use Plotting Tools

In this section...

“Plotting Two Variables with Plotting Tools” on page 3-30

“Changing the Appearance of Lines and Markers” on page 3-33

“Adding More Data to the Graph” on page 3-34

“Changing the Type of Graph” on page 3-37

“Modifying the Graph Data Source” on page 3-39

Plotting Two Variables with Plotting Tools
Suppose you want to graph the function y = x3 over the x domain -1 to 1. The
first step is to generate the data to plot.

It is simple to evaluate a function like this because the MATLAB software can
distribute arithmetic operations over all elements of a multivalued variable.

For example, the following statement creates a variable x that contains values
ranging from -1 to 1 in increments of 0.1 (you could also use the linspace
function to generate data for x). The second statement raises each value in
x to the third power and stores these values in y:

x = -1:.1:1; % Define the range of x
y = x.^3; % Raise each element in x to the third power

Now that you have generated some data, you can plot it using the MATLAB
plotting tools. To start the plotting tools, type

plottools

A figure displays with plotting tools attached.

3-30

Some Ways to Use Plotting Tools

�����#����������%���	� !�
�����������
�����

3-31

3 Graphics

Note When you invoke plottools, the set of plotting tools you see and their
relative positions depend on how they were configured the last time you used
them. Also, sometimes when you dock and undock figures with plotting tools
attached, the size or proportions of the various components can change, and
you may need to resize one or more of the tool panes.

A simple line graph is a suitable way to display x as the independent variable
and y as the dependent variable. To do this, select both variables (click to
select, and then Shift+click or Ctrl+click if variables are not contiguous to
select again), and then right-click to display the context menu.

3-32

Some Ways to Use Plotting Tools

Select plot(x, y) from the menu. The line graph plots in the figure area. The
black squares indicate that the line is selected and you can edit its properties
with the Property Editor.

Changing the Appearance of Lines and Markers
Next, change the line properties so that the graph displays only the data
point. Use the Property Editor to set following properties:

• Line to no line

• Marker to o (circle)

• Marker size to 4.0

• Marker fill color to red

3-33

3 Graphics

(�������������������

(������	��������

(������	��������	��������	�
�

(������	�������������
�

Adding More Data to the Graph
You can add more data to the graph by defining more variables or by
specifying a MATLAB expression to generate data for the plot. This second
approach makes it easy to explore variations of the data already plotted.

To add data to the graph, select the axes in the Plot Browser and click the
Add Data button. When you are using the plotting tools, new data plots
are always added to the existing graph, instead of replacing the graph, as it

3-34

Some Ways to Use Plotting Tools

would if you issued repeated plotting commands. Thus, the plotting tools
are in a hold on state.

To add data using the Plot Browser:

1 Click the Edit Plot tool .

2 Select the axes to which you wish to add data;
handles appear around it.

3 Click the Add Data button in the Plot Browser;
the Add Data to Axes dialog box opens.

4 Select a plot type from the Plot Type drop-down menu.

5 Select a variable or type an expression for X Data Source.

6 Select a variable or type an expression for Y Data Source.

7 Click OK;
a plot of the data you specified is added to the axes.

3-35

3 Graphics

)��(���	���"���

*��$��	%�
���
����+���������"���������

The preceding figure shows how to use the Add Data to Axes dialog box to
create a line plot of y = x4, which is added to the existing plot of y = x3. The
resulting plot appears with the Plot Browser, as shown in the following figure:

3-36

Some Ways to Use Plotting Tools

Changing the Type of Graph
The plotting tools enable you to easily view your data with a variety of plot
types. The following picture shows the same data as above converted to stem
plots. To change the plot type,

1 Select both plotted series in the Plot Browser or Shift+click to select them
in the plot itself.

2 Select short dashes from the Line drop-down menu in the Property
Inspector; the line type of both series changes.

3 Select Stem from the Plot Type menu.

3-37

3 Graphics

(���	��#��
��������������

(���	�����������
������������

3-38

Some Ways to Use Plotting Tools

Modifying the Graph Data Source
You can link graph data to variables in your workspace. When you change
the values contained in the variables, you can then update the graph to use
the new data without having to create a new graph. (See also the refresh
function.)

1 Define 50 points between -3π and 3π and compute their sines and cosines:

x = linspace(-3*pi,3*pi,50);
ys = sin(x);
yc = cos(x);

2 Using the plotting tools, create a graph of ys = sin(x):

figure
plottools

3 In the Figure Palette, alternate-click to select x and ys in the Variable
pane.

4 Right-click either selected variable and choose plot(x, ys) from the context
menu, as the following figure shows.

3-39

3 Graphics

You can use the Property Editor to change the data that this plot displays:

1 Select the line ys vs x in the Plot Browser or by clicking it.

2 In the Property Editor, select yc in the Y Data Source drop-down menu.

3 Click the Refresh Data button;
the plot will change to display a plot of yc vs x.

3-40

Some Ways to Use Plotting Tools

Providing New Values for the Data Source
Data values that define the graph are copies of variables in the base
workspace (for example, x and y) to the XData and YData properties of the
plot object (for example, a lineseries). Therefore, in addition to being able to
choose new data sources, you can assign new values to workspace variables
in the Command Window and click the Refresh Data button to update a
graph to use the new data.

x = linspace(-pi,pi,50); % Define 50 points between - and
y = sin(x);
area(x,y) % Make an area plot of x and y

3-41

3 Graphics

Now, recalculate y at the command line:

y = cos(x)

Select the blue line on the plot. Select, x as the X Data Source, y as the Y
Data Source, and click Refresh Data. The graph’s XData and YData are
replaced, making the plot look like this.

3-42

Some Ways to Use Plotting Tools

3-43

3 Graphics

Preparing Graphs for Presentation

In this section...

“Annotating Graphs for Presentation” on page 3-44

“Printing the Graph” on page 3-49

“Exporting the Graph” on page 3-53

Annotating Graphs for Presentation
Suppose you plot the following data and want to create a graph that presents
certain information about the data:

x = -10:.005:40;
y = [1.5*cos(x)+4*exp(-.01*x).*cos(x)+exp(.07*x).*sin(3*x)];
plot(x,y)

This figure shows the graph created by the previous code.

3-44

Preparing Graphs for Presentation

Now, suppose you want to save copies of the graph by

• Printing the graph on a local printer so you have a copy for your notebook

• Exporting the graph to an Encapsulated PostScript® (EPS) file to
incorporate into a word processor document

To obtain a better view, zoom in on the graph using horizontal zoom.

Enable zoom mode by clicking the Zoom tool on the figure toolbar, and
then right-click to display the context menu. Select Horizontal Zoom (2-D
Plots Only) from Zoom Options. You can reverse your zoom direction by
doing Shift+left-click, or using the context menu.

Left-click to zoom in on a region of the graph and use the Pan tool to
position the points of interest where you want them on the graph.

3-45

3 Graphics

Label some key points with data tips using the Data Cursor tool .
Left-clicking the line moves the last datatip you created to where you just
clicked. To create a new datatip, press Alt+click or use the tool’s context
menu. See “Data Cursor — Displaying Data Values Interactively” in the
MATLAB Graphics documentation for more information on using datatips.

Next, use the Figure Palette to annotate the plot. Choose the Double arrow
tool in the Annotations section to draw a line between two datatips, as shown
in the following figure.

3-46

Preparing Graphs for Presentation

Now, add a text box, also using the Figure Palette. You may have to scroll to
see the text box icon. Drag out a box, and then type into it. You can stretch
or shrink the box with its handles, and center the text with the Property
Editor while the text box is selected. You can also use the Property Editor
to change the text font, size, style, color, and also the text box line and
background colors.

3-47

3 Graphics

Finally, add text annotations, axis labels, and a title. You can add the title
and axis labels using the following commands:

title ('y = 1.5cos(x) + 4e^{-0.01x}cos(x) + e^{0.07x}sin(3x)')
xlabel('X Axis')
ylabel('Y Axis')

Note The text string passed to title uses TEX syntax to produce the
exponents. See “Information About Using TEX” in the Text Properties
reference page for more about using TEX syntax to produce mathematical
symbols.

You can also add these annotations by selecting the axes and typing the above
strings into their respective fields in the Property Editor. The graph is now
ready to print and export.

3-48

Preparing Graphs for Presentation

Printing the Graph
Before printing the graph, select File > Print Preview to view and modify
how the graph will be laid out on the page. The Print Preview window opens,
containing a tabbed control panel on its left side and a page image on its
right side.

3-49

3 Graphics

• Click the Lines/Text tab, and enter a line of text in the Header Text edit
field that you want to place at the top of the page. You can change the font,
style, and size of the header by clicking the Font button beneath the text
field, and also use the Date Style drop-down list to specify a date format to
add the current date/time to the header.

• The rulers along the left and top sides of the preview pane contain three
black handlebars. The outside handlebars let you stretch one edge of the
plot, leaving the other edges in place. The inner handlebars let you move

3-50

Preparing Graphs for Presentation

the plot up and down or left and right without stretching it. Using them
does not affect the figure itself, only the printed version of it.

• You can also change the size and position of the plot on the page using the
buttons and edit boxes on the Layout tab. You can revert to the original
configuration by clicking the Auto (Actual Size, Centered) option button,
and correct stretching and shrinking by clicking Fix Aspect Ratio. The
following picture shows the Layout tab in Auto configuration.

3-51

3 Graphics

• By default, the locations of the axes tick marks are recalculated because a
printed graph is normally larger than the one displayed on your monitor.
However, you can keep your graph’s tick marks and limits when printing
it by clicking the Advanced tab and selecting Keep screen limits and
ticks.

3-52

Preparing Graphs for Presentation

• When you are ready to print your plot, click Print in the right pane. You
can also click Close to accept the settings and dismiss the dialog box.
Later, you can print the figure as you previewed it using Print on the
figure’s File menu. Both methods will open a standard Print dialog box,
and will produce the same printed results.

Note There is no way to cancel a print preview; any changes you make
will take effect if you print the figure. If you want to revert to a default
page layout, you can generally accomplish this by selecting either the Use
Defaults button or the Auto (Actual Size, Centered) option button on the
Layout tab, although this will not affect every setting you can make.

The Print Preview dialog box provides many other options for controlling how
printed graphs look. Click its Help button for more information.

Exporting the Graph
Exporting a graph is the process of creating a standard graphics file format
of the graph (such as EPS or TIFF), which you can then import into other
applications like word processors, drawing packages, etc.

This example exports the graph as an EPS file with the following
requirements:

• The size of the picture when imported into the word processor document
should be 4 inches wide and 3 inches high.

• All the text in the figure should have a size of 8 points.

Specifying the Size of the Graph
To set the size, use the Export Setup dialog box (select Export Setup from
the figure File menu). Then select 4 from the Width list and 3 from the
Height list.

3-53

3 Graphics

(����
�����������
�	
���
�"������
��
���
�����������

Specifying the Font Size
To set the font size of all the text in the graph, select Fonts in the Export
Setup dialog box Properties selector. Then click Use fixed font size and
enter 8 in the text box.

3-54

Preparing Graphs for Presentation

When you have finished specifying settings for exporting the figure, click
the Apply to Figure button. The figure now displays the effect of settings
you just made. If you do not apply the settings, the exported file will not
display them.

Selecting the File Format
After you finish setting options for the exported graph, click the Export
button. A standard Save As dialog box opens that enables you to specify a
name for the file as well as select the type of file format you want to use.

The Save as type drop-down menu lists a number of other options for file
formats. For this example, select EPS (*.eps) from the Save as type menu.

You can import the saved file into any application that supports EPS files.

You can also use the print command to print figures on your local printer or
to export graphs to standard file types.

3-55

3 Graphics

For More Information See the print command reference page and “Printing
and Exporting” in the MATLAB Graphics documentation or select Printing
and Exporting from the figure Help menu.

3-56

Using Basic Plotting Functions

Using Basic Plotting Functions

In this section...

“Creating a Plot” on page 3-57

“Plotting Multiple Data Sets in One Graph” on page 3-58

“Specifying Line Styles and Colors” on page 3-59

“Plotting Lines and Markers” on page 3-60

“Graphing Imaginary and Complex Data” on page 3-62

“Adding Plots to an Existing Graph” on page 3-63

“Figure Windows” on page 3-64

“Displaying Multiple Plots in One Figure” on page 3-65

“Controlling the Axes” on page 3-67

“Adding Axis Labels and Titles” on page 3-68

“Saving Figures” on page 3-69

Creating a Plot
The plot function has different forms, depending on the input arguments. If
y is a vector, plot(y) produces a piecewise linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

For example, these statements use the colon operator to create a vector of
x values ranging from 0 to 2π, compute the sine of these values, and plot
the result:

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol π.
See “text strings” in the MATLAB Reference documentation for more symbols:

xlabel('x = 0:2\pi')
ylabel('Sine of x')

3-57

../ref/text_props.html#String

3 Graphics

title('Plot of the Sine Function','FontSize',12)

Plotting Multiple Data Sets in One Graph
Multiple x-y pair arguments create multiple graphs with a single call to plot.
automatically cycle through a predefined (but customizable) list of colors
to allow discrimination among sets of data. See the axes ColorOrder and
LineStyleOrder properties.

For example, these statements plot three related functions of x, with each
curve in a separate distinguishing color:

x = 0:pi/100:2*pi;
y = sin(x);
y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual plots:

3-58

../ref/axes_props.html#ColorOrder
../ref/axes_props.html#LineStyleOrder

Using Basic Plotting Functions

legend('sin(x)','sin(x-.25)','sin(x-.5)')

For More Information See “Defining the Color of Lines for Plotting” in the
MATLAB Graphics documentation.

Specifying Line Styles and Colors
It is possible to specify color, line styles, and markers (such as plus signs or
circles) when you plot your data using the plot command:

plot(x,y,'color_style_marker')

color_style_marker is a string containing from one to four characters
(enclosed in single quotation marks) constructed from a color, a line style, and
a marker type. The strings are composed of combinations of the following
elements:

3-59

3 Graphics

Type Values Meanings

Color 'c'
'm'
'y'
'r'
'g'
'b'
'w'
'k'

cyan
magenta
yellow
red
green
blue
white
black

Line style '-'
'--'
':'
'.-'
no
character

solid
dashed
dotted
dash-dot
no line

Marker type '+'
'o'
'*'
'x'
's'
'd'
'^'
'v'
'>'
'<'
'p'
'h'
no
character
or none

plus mark
unfilled circle
asterisk
letter x
filled square
filled diamond
filled upward triangle
filled downward triangle
filled right-pointing triangle
filled left-pointing triangle
filled pentagram
filled hexagram
no marker

You can also edit color, line style, and markers interactively. See “Editing
Plots” on page 3-24 for more information.

Plotting Lines and Markers
If you specify a marker type but not a line style, only the marker is drawn.
For example,

3-60

Using Basic Plotting Functions

plot(x,y,'ks')

plots black squares at each data point, but does not connect the markers
with a line.

The statement

plot(x,y,'r:+')

plots a red-dotted line and places plus sign markers at each data point.

Placing Markers at Every Tenth Data Point
You might want to use fewer data points to plot the markers than you use to
plot the lines. This example plots the data twice using a different number of
points for the dotted line and marker plots:

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

3-61

3 Graphics

Graphing Imaginary and Complex Data
When the arguments to plot are complex, the imaginary part is ignored
except when you pass plot a single complex argument. For this special case,
the command is a shortcut for a graph of the real part versus the imaginary
part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

For example,

t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal

draws a 20-sided polygon with little circles at the vertices. The axis equal
command makes the individual tick-mark increments on the x- and y-axes the
same length, which makes this plot more circular in appearance.

3-62

Using Basic Plotting Functions

Adding Plots to an Existing Graph
The MATLAB hold command enables you to add plots to an existing graph.
When you type

hold on

Now MATLAB does not replace the existing graph when you issue another
plotting command; it adds the new data to the current graph, rescaling the
axes if necessary.

For example, these statements first create a contour plot of the peaks
function, then superimpose a pseudocolor plot of the same function:

[x,y,z] = peaks;
pcolor(x,y,z)
shading interp
hold on
contour(x,y,z,20,'k')
hold off

The hold on command combines the pcolor plot with the contour plot in
one figure.

3-63

3 Graphics

For More Information See “Creating Specialized Plots” in the MATLAB
Graphics documentation for details about a variety of graph types.

Figure Windows
Graphing functions automatically open a new figure window if there are no
figure windows already on the screen. If a figure window exists, it is used for
graphics output. If there are multiple figure windows open, the one that is
designated the “current figure” (the last figure used or clicked in) is used. See
documentation for the gcf function for more information.

To make an existing figure window the current figure, you can click the mouse
while the pointer is in that window or you can type

figure(n)

where n is the number in the figure title bar. The results of subsequent
graphics commands are displayed in this window.

3-64

Using Basic Plotting Functions

To open a new figure window and make it the current figure, type

figure

Clearing the Figure for a New Plot
When a figure already exists, most plotting commands clear the axes and use
this figure to create the new plot. However, these commands do not reset
figure properties, such as the background color or the colormap. If you have
set any figure properties in the previous plot, you might want to use the clf
command with the reset option,

clf reset

before creating your new plot to restore the figure’s properties to their
defaults.

For More Information See “Using Figure Properties” and “Graphics
Windows — the Figure” in the MATLAB Graphics documentation for details
about figures.

Displaying Multiple Plots in One Figure
The subplot command enables you to display multiple plots in the same
window or print them on the same piece of paper. Typing

subplot(m,n,p)

partitions the figure window into an m-by-n matrix of small subplots and
selects the pth subplot for the current plot. The plots are numbered along the
first row of the figure window, then the second row, and so on. For example,
these statements plot data in four different subregions of the figure window:

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

3-65

3 Graphics

You can add subplots to GUIs as well as to figures. For details about creating
subplots in a GUIDE-generated GUI, see “Creating Subplots” in the MATLAB
Creating Graphical User Interfaces documentation.

3-66

Using Basic Plotting Functions

Controlling the Axes
The axis command provides a number of options for setting the scaling,
orientation, and aspect ratio of graphs. You can also set these options
interactively. See “Editing Plots” on page 3-24 for more information.

Setting Axis Limits
By default, MATLAB finds the maxima and minima of the data and chooses
the axis limits to span this range. The axis command enables you to specify
your own limits:

axis([xmin xmax ymin ymax])

or for three-dimensional graphs,

axis([xmin xmax ymin ymax zmin zmax])

Use the command

axis auto

to enable automatic limit selection again.

Setting the Axis Aspect Ratio
The axis command also enables you to specify a number of predefined modes.
For example,

axis square

makes the x-axis and y-axis the same length.

axis equal

makes the individual tick mark increments on the x-axes and y-axes the same
length. This means

plot(exp(i*[0:pi/10:2*pi]))

followed by either axis square or axis equal turns the oval into a proper
circle:

axis auto normal

3-67

3 Graphics

returns the axis scaling to its default automatic mode.

Setting Axis Visibility
You can use the axis command to make the axis visible or invisible.

axis on

makes the axes visible. This is the default.

axis off

makes the axes invisible.

Setting Grid Lines
The grid command toggles grid lines on and off. The statement

grid on

turns the grid lines on, and

grid off

turns them back off again.

For More Information See the axis and axes reference pages and “Using
Axes Properties” in the MATLAB Graphics documentation.

Adding Axis Labels and Titles
The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The
title command adds a title at the top of the figure and the text function
inserts text anywhere in the figure.

You can produce mathematical symbols using LaTeX notation in the text
string, as the following example illustrates:

t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)

3-68

Using Basic Plotting Functions

axis([-pi pi -1 1])
xlabel('-\pi \leq {\itt} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(1,-1/3,'{\itNote the odd symmetry.}')

You can also set these options interactively. See “Editing Plots” on page 3-24
for more information.

Note that the location of the text string is defined in axes units (i.e., the
same units as the data). See the annotation function for a way to place text
in normalized figure units.

Saving Figures
Save a figure by selecting Save from the File menu. This writes the figure
to a file, including property data, its menus, uicontrols it contains, and all
annotations (i.e., the entire window). If you have not saved the figure before,

3-69

3 Graphics

the Save As dialog displays. This dialog provides options to save the figure as
a FIG-file or export it to a graphics format.

If you have previously saved the figure, using Save again saves the figure
“silently,” without displaying the Save As dialog.

To save a figure using a standard graphics format for use with other
applications, such as TIFF or JPG, select Save As (or Export Setup, if you
want additional control) from the File menu.

Note Whenever you specify a format for saving a figure, that file format is
used again the next time you save that figure or a new one. If you do not want
to save in the previously-used format, use Save As and be sure to set the
Save as type drop-down menu to the kind of file you want to write.

You can also save from the command line—use the saveas command,
including any options to save the figure in a different format. The more
restricted hgexport command, which saves figures to either bitmap or
metafile files, depending on the rendering method in effect, is also available.

See “Exporting the Graph” on page 3-53 for an example.

Saving Workspace Data
You can save the variables in your workspace by selecting Save Workspace
As from the figure File menu. You can reload saved data using the Import
Data item in the figure File menu. MATLAB supports a variety of data file
formats, including MATLAB data files, which have a .mat extension.

Generating MATLAB Code to Recreate a Figure
You can generate MATLAB code that recreates a figure and the graph it
contains by selecting Generate code from the figure File menu. This option
is particularly useful if you have developed a graph using plotting tools and
want to create a similar graph using the same or different data.

3-70

Using Basic Plotting Functions

Saving Figures That Are Compatible with the Previous MATLAB
Software Version
Create backward-compatible FIG-files by following these two steps:

1 Ensure that any plotting functions used to create the contents of the figure
are called with the 'v6' argument, where applicable.

2 Use the '-v6' option with the hgsave command.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be removed
in a future version of MATLAB. For more information, see “Plot Objects and
Backward Compatibility” in the MATLAB Graphics documentation.

3-71

3 Graphics

Creating Mesh and Surface Plots

In this section...

“About Mesh and Surface Plots” on page 3-72

“Visualizing Functions of Two Variables” on page 3-72

About Mesh and Surface Plots
You define a surface by the z-coordinates of points above a grid in the x-y
plane, using straight lines to connect adjacent points. The mesh and surf
plotting functions display surfaces in three dimensions. mesh produces
wireframe surfaces that color only the lines connecting the defining points.
surf displays both the connecting lines and the faces of the surface in color.

The figure colormap and figure properties determine how the surface is
colored.

Visualizing Functions of Two Variables
To display a function of two variables, z = f (x,y),

1 Generate X and Y matrices consisting of repeated rows and columns,
respectively, over the domain of the function.

2 Use X and Y to evaluate and graph the function.

The meshgrid function transforms the domain specified by a single vector or
two vectors x and y into matrices X and Y for use in evaluating functions of
two variables. The rows of X are copies of the vector x and the columns of
Y are copies of the vector y.

Example — Graphing the sinc Function
This example evaluates and graphs the two-dimensional sinc function,
sin(r)/r, between the x and y directions. R is the distance from the origin, which
is at the center of the matrix. Adding eps (a MATLAB command that returns
a small floating-point number) avoids the indeterminate 0/0 at the origin:

[X,Y] = meshgrid(-8:.5:8);

3-72

Creating Mesh and Surface Plots

R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,'EdgeColor','black')

By default, the current colormap is used to color the mesh. However, this
example uses a single-colored mesh by specifying the EdgeColor surface
property. See the surface reference page for a list of all surface properties.

You can create a mesh with see-through faces by disabling hidden line
removal:

hidden off

See the hidden reference page for more information on this option.

3-73

3 Graphics

Example — Colored Surface Plots
A surface plot is similar to a mesh plot except that the rectangular faces of the
surface are colored. The color of each face is determined by the values of Z and
the colormap (a colormap is an ordered list of colors). These statements graph
the sinc function as a surface plot, specify a colormap, and add a color bar to
show the mapping of data to color:

surf(X,Y,Z)
colormap hsv
colorbar

See the colormap reference page for information on colormaps.

3-74

Creating Mesh and Surface Plots

For More Information See “Creating 3-D Graphs” in the MATLAB 3-D
Visualization documentation for more information on surface plots.

Making Surfaces Transparent
You can make the faces of a surface transparent to a varying degree.
Transparency (referred to as the alpha value) can be specified for the whole
object or can be based on an alphamap, which behaves similarly to colormaps.
For example,

surf(X,Y,Z)
colormap hsv
alpha(.4)

produces a surface with a face alpha value of 0.4. Alpha values range from 0
(completely transparent) to 1 (not transparent).

3-75

3 Graphics

For More Information See “Manipulating Transparency” in the MATLAB
3-D Visualization documentation for details about using this feature.

Illuminating Surface Plots with Lights
Lighting is the technique of illuminating an object with a directional light
source. In certain cases, this technique can make subtle differences in
surface shape easier to see. Lighting can also be used to add realism to
three-dimensional graphs.

This example uses the same surface as the previous examples, but colors it
red and removes the mesh lines. A light object is then added to the left of the

3-76

Creating Mesh and Surface Plots

“camera” (the camera is the location in space from where you are viewing
the surface):

surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; lighting phong

Manipulating the Surface
The figure toolbar and the camera toolbar provide ways to explore 3-D
graphics interactively. Display the camera toolbar by selecting Camera
Toolbar from the figure View menu.

The following picture shows both toolbars with the Rotate 3D tool selected.

3-77

3 Graphics

These tools enable you to move the camera around the surface object,
zoom, add lighting, and perform other viewing operations without issuing
commands.

The following picture shows the surface viewed by orbiting the camera toward
the bottom using Rotate 3D. You can see the tools’s cursor icon on the surface
where as you drag to rotate the view. As you drag, the viewing altitude and
elevation read out in the lower left corner of the axes, as the picture shows.

3-78

Creating Mesh and Surface Plots

For More Information See “Lighting as a Visualization Tool” and “View
Control with the Camera Toolbar” in the MATLAB 3-D Visualization
documentation for details about these techniques.

3-79

3 Graphics

Plotting Image Data

In this section...

“About Plotting Image Data” on page 3-80

“Reading and Writing Images” on page 3-81

About Plotting Image Data
Two-dimensional arrays can be displayed as images, where the array elements
determine brightness or color of the images. For example, the statements

load durer
whos
Name Size Bytes Class

X 648x509 2638656 double array
caption 2x28 112 char array
map 128x3 3072 double array

load the file durer.mat, adding three variables to the workspace. The matrix
X is a 648-by-509 matrix and map is a 128-by-3 matrix that is the colormap for
this image.

MAT-files, such as durer.mat, are binary files that can be created on one
platform and later read by the MATLAB software on a different platform.

The elements of X are integers between 1 and 128, which serve as indices
into the colormap, map. Then

image(X)
colormap(map)
axis image

reproduces Albrecht Dürer’s etching shown in “Matrices and Magic Squares”
on page 2-2. A high-resolution scan of the magic square in the upper-right
corner is available in another file. Type

load detail

3-80

Plotting Image Data

and then use the up arrow key on your keyboard to reexecute the image,
colormap, and axis commands. The statement

colormap(hot)

adds some 21st century colorization to the 16th century etching. The function
hot generates a colormap containing shades of reds, oranges, and yellows.
Typically, a given image matrix has a specific colormap associated with it.
See the colormap reference page for a list of other predefined colormaps.

Reading and Writing Images
You can read standard image files (TIFF, JPEG, BMP, etc using the imread
function. The type of data returned by imread depends on the type of image
you are reading.

You can write MATLAB data to a variety of standard image formats using
the imwrite function. See the MATLAB reference pages for these functions
for more information and examples.

For More Information See “Displaying Bit-Mapped Images” in the MATLAB
Graphics documentation for details about MATLAB image processing
capabilities.

3-81

3 Graphics

Printing Graphics

In this section...

“Overview of Printing” on page 3-82

“Printing from the File Menu” on page 3-82

“Exporting the Figure to a Graphics File” on page 3-83

“Using the Print Command” on page 3-83

Overview of Printing
You can print a MATLAB figure directly on a printer connected to your
computer or you can export the figure to one of the standard graphics file
formats that MATLAB supports. There are two ways to print and export
figures:

• Use the Print, Print Preview, or Export Setup GUI options under the
File menu; see “Preparing Graphs for Presentation” on page 3-44 for an
example.

• Use the print command to print or export the figure from the command
line.

The print command provides greater control over drivers and file formats.
The Print Preview dialog box gives you greater control over figure size,
proportions, placement, and page headers. You can sometimes notice
differences in output as printed from a GUI and as printed from the command
line.

Printing from the File Menu
There are two menu options under the File menu that pertain to printing:

• The Print Preview option displays a dialog box that lets you lay out and
style figures for printing while previewing the output page, and from which
you can print the figure. It includes options that formerly were part of
the Page Setup dialog box.

3-82

Printing Graphics

• The Print option displays a dialog box that lets you choose a printer, select
standard printing options, and print the figure.

Use Print Preview to determine whether the printed output is what you
want. Click the Print Preview dialog box Help button to display information
on how to set up the page.

See “Printing the Graph” on page 3-49 for an example of printing from
the Print Preview dialog. For details on printing from GUIs and from the
Command Window, see “Printing and Exporting” in the MATLAB Graphics
documentation.

Exporting the Figure to a Graphics File
The Export Setup option in the File menu opens a GUI that enables you
to set graphic characteristics, such as text size, font, and style, for figures
you save as graphics files. The Export Setup GUI lets you define and apply
templates to customize and standardize output. After setup, you can export
the figure to a number of standard graphics file formats such as EPS, PNG,
and TIFF.

See “Exporting the Graph” on page 3-53 for an example of exporting a figure
to a graphics file.

Using the Print Command
The print command provides more flexibility in the type of output sent to
the printer and allows you to control printing from function and script files.
The result can be sent directly to your default printer or stored in a specified
output file. A wide variety of output formats, including TIFF, JPEG, and
PostScript, is available.

For example, this statement saves the contents of the current figure window
as color Encapsulated Level 2 PostScript in the file called magicsquare.eps.
It also includes a TIFF preview, which enables most word processors to
display the picture.

print -depsc2 -tiff magicsquare.eps

3-83

3 Graphics

To save the same figure as a TIFF file with a resolution of 200 dpi, use the
following command:

print -dtiff -r200 magicsquare.tiff

If you type print on the command line

print

the current figure prints on your default printer.

For More Information See the print reference page and “Printing and
Exporting” in the MATLAB Graphics documentation for details about
printing.

3-84

Understanding Handle Graphics® Objects

Understanding Handle Graphics Objects

In this section...

“Using the Handle” on page 3-85

“Graphics Objects” on page 3-86

“Setting Object Properties” on page 3-88

“Specifying the Axes or Figure” on page 3-91

“Finding the Handles of Existing Objects” on page 3-93

Handle Graphics objects are MATLAB objects that implement graphing and
visualization functions. Each object created has a fixed set of properties. You
can use these properties to control the behavior and appearance of your graph.

When you call a MATLAB plotting function, it creates the graph using various
graphics objects, such as a figure window, axes, lines, text, and so on. You can
query the value of each property and set the values of most of them.

For example, the following statement creates a figure with a white background
color and without displaying the figure toolbar:

figure('Color','white','Toolbar','none')

Using the Handle
Whenever MATLAB creates a graphics object, it assigns an identifier (called a
handle) to the object. You can use this handle to access the object’s properties
with the set and get functions. For example, the following statements create
a graph and return a handle to a lineseries object in h:

x = 1:10;
y = x.^3;
h = plot(x,y);

You can use the handle h to set the properties of the lineseries object. For
example, you can set its Color property:

set(h,'Color','red')

You can also specify properties when you call the plotting function:

3-85

3 Graphics

h = plot(x,y,'Color','red');

When you query the lineseries properties,

get(h,'LineWidth')

You obtain the answer (in points):

ans =
0.5000

Use the handle to see what properties a particular object contains:

get(h)

Graphics Objects
Graphics objects are the basic elements used to display graphs and user
interface components. These objects are organized into a hierarchy, as shown
by the following diagram.

Key Graphics Objects
When you call a function to create a MATLAB graph, a hierarchy of graphics
objects results. For example, calling the plot function creates the following
graphics objects:

• Figures — The windows that contain axes toolbars, menus, etc.

• Axes — The frames that contain graphs

3-86

Understanding Handle Graphics® Objects

• Lineseries plot objects — Representations of data passed to the plot
function.

• Text — Labels for axes tick marks and optional titles and annotations.

Different types of graphs use different objects to represent data. All data
objects are contained in axes and all objects (except root) are contained in
figures.

The root is an abstract object that primarily stores information about your
computer or MATLAB states. You cannot create an instance of the root object.
The handle of the root object is always 0.

For More Information See “Handle Graphics Objects” in the MATLAB
Graphics documentation for details about graphics objects.

User interface objects are used to create graphical user interfaces (GUIs).
These objects include components like push buttons, editable text boxes, and
list boxes.

For More Information See Chapter 6, “Creating Graphical User Interfaces”
for details about user interface objects.

Creating Objects
Plotting functions (like plot and surf) call the appropriate low-level function
to draw their respective graph. For information about an object’s properties,
you can use the Handle Graphics Property Browser in the MATLAB online
Graphics documentation.

Functions for Working with Objects
This table lists functions commonly used when working with objects.

3-87

../infotool/hgprop/doc_frame.html

3 Graphics

Function Purpose

allchild Find all children of specified objects.

ancestor Find ancestor of graphics object.

copyobj Copy graphics object.

delete Delete an object.

findall Find all graphics objects (including hidden handles).

findobj Find the handles of objects having specified property
values.

gca Return the handle of the current axes.

gcf Return the handle of the current figure.

gco Return the handle of the current object.

get Query the values of an object’s properties.

ishandle True if the value is a valid object handle.

set Set the values of an object’s properties.

Setting Object Properties
All object properties have default values. However, you might find it useful
to change the settings of some properties to customize your graph. There
are two ways to set object properties:

• Specify values for properties when you create the object.

• Set the property value on an object that already exists.

Setting Properties from Plotting Commands
You can specify object property value pairs as arguments to many plotting
functions, such as plot, mesh, and surf.

For example, plotting commands that create lineseries or surfaceplot objects
enable you to specify property name/property value pairs as arguments. The
command

3-88

Understanding Handle Graphics® Objects

surf(x,y,z,'FaceColor','interp',...
'FaceLighting','gouraud')

plots the data in the variables x, y, and z using a surfaceplot object with
interpolated face color and employing the Gouraud face light technique. You
can set any of the object’s properties this way.

Setting Properties of Existing Objects
To modify the property values of existing objects, you can use the set
command or the Property Editor. This section describes how to use the set
command. See “Using the Property Editor” on page 3-25 for more information.

Most plotting functions return the handles of the objects that they create
so you can modify the objects using the set command. For example, these
statements plot a 5-by-5 matrix (creating five lineseries, one per column), and
then set the Marker property to a square and the MarkerFaceColor property
to green:

h = plot(magic(5));
set(h,'Marker','s','MarkerFaceColor','g')

In this case, h is a vector containing five handles, one for each of the
five lineseries in the graph. The set statement sets the Marker and
MarkerFaceColor properties of all lineseries to the same values.

Setting Multiple Property Values
If you want to set the properties of each lineseries to a different value, you
can use cell arrays to store all the data and pass it to the set command. For
example, create a plot and save the lineseries handles:

h = plot(magic(5));

Suppose you want to add different markers to each lineseries and color the
marker’s face color the same color as the lineseries. You need to define two
cell arrays—one containing the property names and the other containing
the desired values of the properties.

The prop_name cell array contains two elements:

prop_name(1) = {'Marker'};

3-89

../ref/line_props.html#Marker
../ref/line_props.html#MarkerFaceColor

3 Graphics

prop_name(2) = {'MarkerFaceColor'};

The prop_values cell array contains 10 values: five values for the Marker
property and five values for the MarkerFaceColor property. Notice that
prop_values is a two-dimensional cell array. The first dimension indicates
which handle in h the values apply to and the second dimension indicates
which property the value is assigned to:

prop_values(1,1) = {'s'};
prop_values(1,2) = {get(h(1),'Color')};
prop_values(2,1) = {'d'};
prop_values(2,2) = {get(h(2),'Color')};
prop_values(3,1) = {'o'};
prop_values(3,2) = {get(h(3),'Color')};
prop_values(4,1) = {'p'};
prop_values(4,2) = {get(h(4),'Color')};
prop_values(5,1) = {'h'};
prop_values(5,2) = {get(h(5),'Color')};

The MarkerFaceColor is always assigned the value of the corresponding
line’s color (obtained by getting the lineseries Color property with the get
command).

After defining the cell arrays, call set to specify the new property values:

set(h,prop_name,prop_values)

3-90

../ref/line_props.html#Color

Understanding Handle Graphics® Objects

Specifying the Axes or Figure
MATLAB always creates an axes or figure if one does not exist when you
issue a plotting command. However, when you are creating graphics from a
program file, it is good practice to create and specify the parent axes and
figure explicitly, particularly if others will use your program. Specifying the
parent prevents the following problems:

• Your program overwrites the graph in the current figure. A figure becomes
the current figure whenever a user clicks it.

• The current figure might be in an unexpected state and not behave as
your program expects.

The following example shows a MATLAB function that evaluates a
mathematical expression over the range specified in the input argument x,
and then plots the results. A second call to the plot function plots the mean
value of the results as a red line.

function myfunc(x)
% Evaluate the expression using the input argument

3-91

3 Graphics

y = 1.5*cos(x) + 6*exp(-.1*x) + exp(.07*x).*sin(3*x);

% Calculate the mean
ym = mean(y);

% Create a figure, axes parented to that axes
% and the using the axes
hfig = figure('Name','Function and Mean');
hax = axes('Parent',hfig);
plot(hax,x,y)

% Hold the current plot and add a red line along the mean value
hold on
plot(hax,[min(x) max(x)],[ym ym],'Color','red')
hold off

% Add a tick label that shows the mean value
% and add a title and axis labels
ylab = get(hax,'YTick');
set(hax,'YTick',sort([ylab ym]))
title ('y = 1.5cos(x) + 6e^{-0.1x} + e^{0.07x}sin(3x)')
xlabel('X Axis'); ylabel('Y Axis')

end

First, define a value for the input argument and call the function:

x = -10:.005:40;
myfunc(x)

3-92

Understanding Handle Graphics® Objects

Finding the Handles of Existing Objects
The findobj function enables you to obtain the handles of graphics objects
by searching for objects with particular property values. With findobj you
can specify the values of any combination of properties, which makes it easy
to pick one object out of many. findobj also recognizes regular expressions
(regexp).

For example, you might want to find the blue line with square marker having
blue face color. You can also specify which figures or axes to search, if there
are more than one. The following four sections provide examples illustrating
how to use findobj.

Finding All Objects of a Certain Type
Because all objects have a Type property that identifies the type of object,
you can find the handles of all occurrences of a particular type of object. For
example,

h = findobj('Type','patch');

finds the handles of all patch objects.

3-93

3 Graphics

Finding Objects with a Particular Property
You can specify multiple properties to narrow the search. For example,

h = findobj('Type','line','Color','r','LineStyle',':');

finds the handles of all red dotted lines.

Limiting the Scope of the Search
You can specify the starting point in the object hierarchy by passing the
handle of the starting figure or axes as the first argument. For example,

h = findobj(gca,'Type','text','String','\pi/2');

finds the string π/2 only within the current axes.

Using findobj as an Argument
Because findobj returns the handles it finds, you can use it in place of the
handle argument. For example,

set(findobj('Type','line','Color','red'),'LineStyle',':')

finds all red lines and sets their line style to dotted.

3-94

4

Programming

If you have an active Internet Explorer® connection, you can watch the Writing
a MATLAB Program video demo for an overview of the major functionality.

• “Flow Control” on page 4-2

• “Other Data Structures” on page 4-9

• “Scripts and Functions” on page 4-20

• “Object-Oriented Programming” on page 4-33

4 Programming

Flow Control

In this section...

“Conditional Control — if, else, switch” on page 4-2

“Loop Control — for, while, continue, break” on page 4-5

“Error Control — try, catch” on page 4-7

“Program Termination — return” on page 4-8

Conditional Control — if, else, switch
Conditional statements enable you to select at run time which block of code to
execute. The simplest conditional statement is an if statement. For example:

% Generate a random number
a = randi(100, 1);

% If it is even, divide by 2
if rem(a, 2) == 0

disp('a is even')
b = a/2;

end

if statements can include alternate choices, using the optional keywords
elseif or else. For example:

a = randi(100, 1);

if a < 30
disp('small')

elseif a < 80
disp('medium')

else
disp('large')

end

Alternatively, when you want to test for equality against a set of known
values, use a switch statement. For example:

4-2

Flow Control

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString
case 'Monday'

disp('Start of the work week')
case 'Tuesday'

disp('Day 2')
case 'Wednesday'

disp('Day 3')
case 'Thursday'

disp('Day 4')
case 'Friday'

disp('Last day of the work week')
otherwise

disp('Weekend!')
end

For both if and switch, MATLAB executes the code corresponding to the
first true condition, and then exits the code block. Each conditional statement
requires the end keyword.

In general, when you have many possible discrete, known values, switch
statements are easier to read than if statements. However, you cannot test
for inequality between switch and case values. For example, you cannot
implement this type of condition with a switch:

yourNumber = input('Enter a number: ');

if yourNumber < 0
disp('Negative')

elseif yourNumber > 0
disp('Positive')

else
disp('Zero')

end

Array Comparisons in Conditional Statements
It is important to understand how relational operators and if statements
work with matrices. When you want to check for equality between two
variables, you might use

4-3

4 Programming

if A == B, ...

This is valid MATLAB code, and does what you expect when A and B are
scalars. But when A and B are matrices, A == B does not test if they are
equal, it tests where they are equal; the result is another matrix of 0’s and 1’s
showing element-by-element equality. (In fact, if A and B are not the same
size, then A == B is an error.)

A = magic(4); B = A; B(1,1) = 0;

A == B
ans =

0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

The proper way to check for equality between two variables is to use the
isequal function:

if isequal(A, B), ...

isequal returns a scalar logical value of 1 (representing true) or 0 (false),
instead of a matrix, as the expression to be evaluated by the if function.
Using the A and B matrices from above, you get

isequal(A, B)
ans =

0

Here is another example to emphasize this point. If A and B are scalars, the
following program will never reach the “unexpected situation”. But for most
pairs of matrices, including our magic squares with interchanged columns,
none of the matrix conditions A > B, A < B, or A == B is true for all elements
and so the else clause is executed:

if A > B
'greater'

elseif A < B
'less'

elseif A == B
'equal'

4-4

Flow Control

else
error('Unexpected situation')

end

Several functions are helpful for reducing the results of matrix comparisons
to scalar conditions for use with if, including

isequal
isempty
all
any

Loop Control — for, while, continue, break
This section covers those MATLAB functions that provide control over
program loops.

for
The for loop repeats a group of statements a fixed, predetermined number of
times. A matching end delineates the statements:

for n = 3:32
r(n) = rank(magic(n));

end
r

The semicolon terminating the inner statement suppresses repeated printing,
and the r after the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are
nested:

for i = 1:m
for j = 1:n

H(i,j) = 1/(i+j);
end

end

4-5

4 Programming

while
The while loop repeats a group of statements an indefinite number of times
under control of a logical condition. A matching end delineates the statements.

Here is a complete program, illustrating while, if, else, and end, that uses
interval bisection to find a zero of a polynomial:

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b

x = (a+b)/2;
fx = x^3-2*x-5;
if sign(fx) == sign(fa)

a = x; fa = fx;
else

b = x; fb = fx;
end

end
x

The result is a root of the polynomial x3 - 2x - 5, namely

x =
2.09455148154233

The cautions involving matrix comparisons that are discussed in the section
on the if statement also apply to the while statement.

continue
The continue statement passes control to the next iteration of the for loop
or while loop in which it appears, skipping any remaining statements in the
body of the loop. The same holds true for continue statements in nested
loops. That is, execution continues at the beginning of the loop in which the
continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the
file magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered:

4-6

Flow Control

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) || strncmp(line,'%',1) || ~ischar(line)

continue
end
count = count + 1;

end
fprintf('%d lines\n',count);
fclose(fid);

break
The break statement lets you exit early from a for loop or while loop. In
nested loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is
this use of break a good idea?

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b

x = (a+b)/2;
fx = x^3-2*x-5;
if fx == 0

break
elseif sign(fx) == sign(fa)

a = x; fa = fx;
else

b = x; fb = fx;
end

end
x

Error Control — try, catch
This section covers those MATLAB functions that provide error handling
control.

4-7

4 Programming

try
The general form of a try-catch statement sequence is

try
statement
...
statement

catch exceptObj
statement
...
statement

end

In this sequence, the statements in the try block (that part of the try-catch
that follows the word try statement, and precedes catch) between try and
catch execute just like any other program code. If an error occurs within
the try section The statements between catch and end are then executed.
Examine the contents of the MException object exceptObj to see the cause of
the error. If an error occurs between catch and end, MATLAB terminates
execution unless another try-catch sequence has been established.

Program Termination — return
This section covers the MATLAB return function that enables you to
terminate your program before it runs to completion.

return
return terminates the current sequence of commands and returns control to
the invoking function or to the keyboard. return is also used to terminate
keyboard mode. A called function normally transfers control to the function
that invoked it when it reaches the end of the function. You can insert a
return statement within the called function to force an early termination and
to transfer control to the invoking function.

4-8

Other Data Structures

Other Data Structures

In this section...

“Multidimensional Arrays” on page 4-9

“Cell Arrays” on page 4-11

“Characters and Text” on page 4-13

“Structures” on page 4-16

Multidimensional Arrays
Multidimensional arrays in the MATLAB environment are arrays with more
than two subscripts. One way of creating a multidimensional array is by
calling zeros, ones, rand, or randn with more than two arguments. For
example,

R = randn(3,4,5);

creates a 3-by-4-by-5 array with a total of 3*4*5 = 60 normally distributed
random elements.

A three-dimensional array might represent three-dimensional physical data,
say the temperature in a room, sampled on a rectangular grid. Or it might
represent a sequence of matrices, A(k), or samples of a time-dependent matrix,
A(t). In these latter cases, the (i, j)th element of the kth matrix, or the tkth
matrix, is denoted by A(i,j,k).

MATLAB and Dürer’s versions of the magic square of order 4 differ by an
interchange of two columns. Many different magic squares can be generated
by interchanging columns. The statement

p = perms(1:4);

generates the 4! = 24 permutations of 1:4. The kth permutation is the row
vector p(k,:). Then

A = magic(4);
M = zeros(4,4,24);

4-9

4 Programming

for k = 1:24
M(:,:,k) = A(:,p(k,:));

end

stores the sequence of 24 magic squares in a three-dimensional array, M. The
size of M is

size(M)

ans =
4 4 24

Note The order of the matrices shown in this illustration might differ from
your results. The perms function always returns all permutations of the input
vector, but the order of the permutations might be different for different
MATLAB versions.

The statement

sum(M,d)

computes sums by varying the dth subscript. So

sum(M,1)

4-10

Other Data Structures

is a 1-by-4-by-24 array containing 24 copies of the row vector

34 34 34 34

and

sum(M,2)

is a 4-by-1-by-24 array containing 24 copies of the column vector

34
34
34
34

Finally,

S = sum(M,3)

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so
it looks like a 4-by-4 array:

S =
204 204 204 204
204 204 204 204
204 204 204 204
204 204 204 204

Cell Arrays
Cell arrays in MATLAB are multidimensional arrays whose elements are
copies of other arrays. A cell array of empty matrices can be created with
the cell function. But, more often, cell arrays are created by enclosing a
miscellaneous collection of things in curly braces, {}. The curly braces are
also used with subscripts to access the contents of various cells. For example,

C = {A sum(A) prod(prod(A))}

produces a 1-by-3 cell array. The three cells contain the magic square, the
row vector of column sums, and the product of all its elements. When C
is displayed, you see

C =

4-11

4 Programming

[4x4 double] [1x4 double] [20922789888000]

This is because the first two cells are too large to print in this limited space,
but the third cell contains only a single number, 16!, so there is room to
print it.

Here are two important points to remember. First, to retrieve the contents of
one of the cells, use subscripts in curly braces. For example, C{1} retrieves
the magic square and C{3} is 16!. Second, cell arrays contain copies of other
arrays, not pointers to those arrays. If you subsequently change A, nothing
happens to C.

You can use three-dimensional arrays to store a sequence of matrices of the
same size. Cell arrays can be used to store a sequence of matrices of different
sizes. For example,

M = cell(8,1);
for n = 1:8

M{n} = magic(n);
end
M

produces a sequence of magic squares of different order:

M =
[1]
[2x2 double]
[3x3 double]
[4x4 double]
[5x5 double]
[6x6 double]
[7x7 double]
[8x8 double]

4-12

Other Data Structures

You can retrieve the 4-by-4 magic square matrix with

M{4}

Characters and Text
Enter text into MATLAB using single quotes. For example,

s = 'Hello'

The result is not the same kind of numeric matrix or array you have been
dealing with up to now. It is a 1-by-5 character array.

4-13

4 Programming

Internally, the characters are stored as numbers, but not in floating-point
format. The statement

a = double(s)

converts the character array to a numeric matrix containing floating-point
representations of the ASCII codes for each character. The result is

a =
72 101 108 108 111

The statement

s = char(a)

reverses the conversion.

Converting numbers to characters makes it possible to investigate the various
fonts available on your computer. The printable characters in the basic ASCII
character set are represented by the integers 32:127. (The integers less than
32 represent nonprintable control characters.) These integers are arranged in
an appropriate 6-by-16 array with

F = reshape(32:127,16,6)';

The printable characters in the extended ASCII character set are represented
by F+128. When these integers are interpreted as characters, the result
depends on the font currently being used. Type the statements

char(F)
char(F+128)

and then vary the font being used for the Command Window. Select
Preferences from the File menu and then click Fonts to change the font. If
you include tabs in lines of code, use a fixed-width font, such as Monospaced,
to align the tab positions on different lines.

Concatenation with square brackets joins text variables together into larger
strings. The statement

h = [s, ' world']

4-14

Other Data Structures

joins the strings horizontally and produces

h =
Hello world

The statement

v = [s; 'world']

joins the strings vertically and produces

v =
Hello
world

Note that a blank has to be inserted before the 'w' in h and that both words
in v have to have the same length. The resulting arrays are both character
arrays; h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have
two choices—a padded character array or a cell array of strings. When
creating a character array, you must make each row of the array the same
length. (Pad the ends of the shorter rows with spaces.) The char function does
this padding for you. For example,

S = char('A','rolling','stone','gathers','momentum.')

produces a 5-by-9 character array:

S =
A
rolling
stone
gathers
momentum.

Alternatively, you can store the text in a cell array. For example,

C = {'A';'rolling';'stone';'gathers';'momentum.'}

creates a 5-by-1 cell array that requires no padding because each row of the
array can have a different length:

4-15

4 Programming

C =
'A'
'rolling'
'stone'
'gathers'
'momentum.'

You can convert a padded character array to a cell array of strings with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures
Structures are multidimensional MATLAB arrays with elements accessed by
textual field designators. For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields:

S =
name: 'Ed Plum'

score: 83
grade: 'B+'

Like everything else in the MATLAB environment, structures are arrays, so
you can insert additional elements. In this case, each element of the array is a
structure with several fields. The fields can be added one at a time,

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

or an entire element can be added with a single statement:

S(3) = struct('name','Jerry Garcia',...
'score',70,'grade','C')

4-16

Other Data Structures

Now the structure is large enough that only a summary is printed:

S =
1x3 struct array with fields:

name
score
grade

There are several ways to reassemble the various fields into other MATLAB
arrays. They are mostly based on the notation of a comma-separated list. If
you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

which is a comma-separated list.

If you enclose the expression that generates such a list within square
brackets, MATLAB stores each item from the list in an array. In this example,
MATLAB creates a numeric row vector containing the score field of each
element of structure array S:

scores = [S.score]
scores =

83 91 70

avg_score = sum(scores)/length(scores)
avg_score =

81.3333

To create a character array from one of the text fields (name, for example), call
the char function on the comma-separated list produced by S.name:

names = char(S.name)
names =

Ed Plum
Toni Miller
Jerry Garcia

4-17

4 Programming

Similarly, you can create a cell array from the name fields by enclosing the
list-generating expression within curly braces:

names = {S.name}
names =

'Ed Plum' 'Toni Miller' 'Jerry Garcia'

To assign the fields of each element of a structure array to separate variables
outside of the structure, specify each output to the left of the equals sign,
enclosing them all within square brackets:

[N1 N2 N3] = S.name
N1 =

Ed Plum
N2 =

Toni Miller
N3 =

Jerry Garcia

Dynamic Field Names
The most common way to access the data in a structure is by specifying the
name of the field that you want to reference. Another means of accessing
structure data is to use dynamic field names. These names express the
field as a variable expression that MATLAB evaluates at run-time. The
dot-parentheses syntax shown here makes expression a dynamic field name:

structName.(expression)

Index into this field using the standard MATLAB indexing syntax. For
example, to evaluate expression into a field name and obtain the values of
that field at columns 1 through 25 of row 7, use

structName.(expression)(7,1:25)

Dynamic Field Names Example. The avgscore function shown below
computes an average test score, retrieving information from the testscores
structure using dynamic field names:

function avg = avgscore(testscores, student, first, last)
for k = first:last

scores(k) = testscores.(student).week(k);

4-18

Other Data Structures

end
avg = sum(scores)/(last - first + 1);

You can run this function using different values for the dynamic field student.
First, initialize the structure that contains scores for a 25-week period:

testscores.Ann_Lane.week(1:25) = ...
[95 89 76 82 79 92 94 92 89 81 75 93 ...
85 84 83 86 85 90 82 82 84 79 96 88 98];

testscores.William_King.week(1:25) = ...
[87 80 91 84 99 87 93 87 97 87 82 89 ...
86 82 90 98 75 79 92 84 90 93 84 78 81];

Now run avgscore, supplying the students name fields for the testscores
structure at runtime using dynamic field names:

avgscore(testscores, 'Ann_Lane', 7, 22)
ans =

85.2500

avgscore(testscores, 'William_King', 7, 22)
ans =

87.7500

4-19

4 Programming

Scripts and Functions

In this section...

“Overview” on page 4-20

“Scripts” on page 4-21

“Functions” on page 4-22

“Types of Functions” on page 4-24

“Global Variables” on page 4-26

“Passing String Arguments to Functions” on page 4-27

“The eval Function” on page 4-28

“Function Handles” on page 4-28

“Function Functions” on page 4-29

“Vectorization” on page 4-31

“Preallocation” on page 4-32

Overview
The MATLAB product provides a powerful programming language, as well as
an interactive computational environment. You can enter commands from
the language one at a time at the MATLAB command line, or you can write a
series of commands to a file that you then execute as you would any MATLAB
function. Use the MATLAB Editor or any other text editor to create your
own function files. Call these functions as you would any other MATLAB
function or command.

There are two kinds of program files:

• Scripts, which do not accept input arguments or return output arguments.
They operate on data in the workspace.

• Functions, which can accept input arguments and return output
arguments. Internal variables are local to the function.

If you are a new MATLAB programmer, just create the program files that you
want to try out in the current folder. As you develop more of your own files,

4-20

Scripts and Functions

you will want to organize them into other folders and personal toolboxes that
you can add to your MATLAB search path.

If you duplicate function names, MATLAB executes the one that occurs first
in the search path.

To view the contents of a program file, for example, myfunction.m, use

type myfunction

For more detailed information, see “Functions and Scripts” in the MATLAB
Programming Fundamentals documentation.

Scripts
When you invoke a script, MATLAB simply executes the commands found in
the file. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return output
arguments, any variables that they create remain in the workspace, to be
used in subsequent computations. In addition, scripts can produce graphical
output using functions like plot.

For example, create a file called magicrank.m that contains these MATLAB
commands:

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32

r(n) = rank(magic(n));
end
r
bar(r)

Typing the statement

magicrank

causes MATLAB to execute the commands, compute the rank of the first 30
magic squares, and plot a bar graph of the result. After execution of the file is
complete, the variables n and r remain in the workspace.

4-21

4 Programming

Functions
Functions are files that can accept input arguments and return output
arguments. The names of the file and of the function should be the same.
Functions operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt.

A good example is provided by rank. The file rank.m is available in the folder

toolbox/matlab/matfun

You can see the file with

type rank

Here is the file:

function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.

4-22

Scripts and Functions

% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

s = svd(A);
if nargin==1

tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

The first line of a function starts with the keyword function. It gives the
function name and order of arguments. In this case, there are up to two input
arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment
lines that provide the help text. These lines are printed when you type

help rank

The first line of the help text is the H1 line, which MATLAB displays when
you use the lookfor command or request help on a folder.

The rest of the file is the executable MATLAB code defining the function. The
variable s introduced in the body of the function, as well as the variables on
the first line, r, A and tol, are all local to the function; they are separate from
any variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not
ordinarily found in other programming languages—a variable number of
arguments. The rank function can be used in several different ways:

rank(A)
r = rank(A)
r = rank(A,1.e-6)

Many functions work this way. If no output argument is supplied, the result
is stored in ans. If the second input argument is not supplied, the function
computes a default value. Within the body of the function, two quantities
named nargin and nargout are available that tell you the number of input
and output arguments involved in each particular use of the function. The
rank function uses nargin, but does not need to use nargout.

4-23

4 Programming

Types of Functions
MATLAB offers several different types of functions to use in your
programming.

Anonymous Functions
An anonymous function is a simple form of the MATLAB function that is
defined within a single MATLAB statement. It consists of a single MATLAB
expression and any number of input and output arguments. You can define
an anonymous function right at the MATLAB command line, or within a
function or script. This gives you a quick means of creating simple functions
without having to create a file for them each time.

The syntax for creating an anonymous function from an expression is

f = @(arglist)expression

The statement below creates an anonymous function that finds the square of
a number. When you call this function, MATLAB assigns the value you pass
in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Primary and Subfunctions
Any function that is not anonymous must be defined within a file. Each such
function file contains a required primary function that appears first, and any
number of subfunctions that may follow the primary. Primary functions have
a wider scope than subfunctions. That is, primary functions can be called
from outside of the file that defines them (e.g., from the MATLAB command
line or from functions in other files) while subfunctions cannot. Subfunctions
are visible only to the primary function and other subfunctions within their
own file.

4-24

Scripts and Functions

The rank function shown in the section on “Functions” on page 4-22 is an
example of a primary function.

Private Functions
A private function is a type of primary function. Its unique characteristic
is that it is visible only to a limited group of other functions. This type of
function can be useful if you want to limit access to a function, or when you
choose not to expose the implementation of a function.

Private functions reside in subfolders with the special name private. They
are visible only to functions in the parent folder. For example, assume the
folder newmath is on the MATLAB search path. A subfolder of newmath called
private can contain functions that only the functions in newmath can call.

Because private functions are invisible outside the parent folder, they can use
the same names as functions in other folders. This is useful if you want to
create your own version of a particular function while retaining the original in
another folder. Because MATLAB looks for private functions before standard
functions, it will find a private function named test.m before a nonprivate
file named test.m.

Nested Functions
You can define functions within the body of another function. These are said
to be nested within the outer function. A nested function contains any or
all of the components of any other function. In this example, function B is
nested in function A:

function x = A(p1, p2)
...
B(p2)

function y = B(p3)
...
end

...
end

Like other functions, a nested function has its own workspace where variables
used by the function are stored. But it also has access to the workspaces
of all functions in which it is nested. So, for example, a variable that has

4-25

4 Programming

a value assigned to it by the primary function can be read or overwritten
by a function nested at any level within the primary. Similarly, a variable
that is assigned in a nested function can be read or overwritten by any of the
functions containing that function.

Function Overloading
Overloaded functions act the same way as overloaded functions in most
computer languages. Overloaded functions are useful when you need to create
a function that responds to different types of inputs accordingly. For instance,
you might want one of your functions to accept both double-precision and
integer input, but to handle each type somewhat differently. You can make
this difference invisible to the user by creating two separate functions having
the same name, and designating one to handle double types and one to
handle integers. When you call the function, MATLAB chooses which file to
dispatch to based on the type of the input arguments.

Global Variables
If you want more than one function to share a single copy of a variable, simply
declare the variable as global in all the functions. Do the same thing at
the command line if you want the base workspace to access the variable.
The global declaration must occur before the variable is actually used in a
function. Although it is not required, using capital letters for the names of
global variables helps distinguish them from other variables. For example,
create a new function in a file called falling.m:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then interactively enter the statements

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the
command prompt available inside the function. You can then modify GRAVITY
interactively and obtain new solutions without editing any files.

4-26

Scripts and Functions

Passing String Arguments to Functions
You can write MATLAB functions that accept string arguments without the
parentheses and quotes. That is, MATLAB interprets

foo a b c

as

foo('a','b','c')

However, when you use the unquoted form, MATLAB cannot return output
arguments. For example,

legend apples oranges

creates a legend on a plot using the strings apples and oranges as labels.
If you want the legend command to return its output arguments, then you
must use the quoted form:

[legh,objh] = legend('apples','oranges');

In addition, you must use the quoted form if any of the arguments is not
a string.

Caution While the unquoted syntax is convenient, in some cases it can be
used incorrectly without causing MATLAB to generate an error.

Constructing String Arguments in Code
The quoted form enables you to construct string arguments within the
code. The following example processes multiple data files, August1.dat,
August2.dat, and so on. It uses the function int2str, which converts an
integer to a character, to build the filename:

for d = 1:31
s = ['August' int2str(d) '.dat'];
load(s)
% Code to process the contents of the d-th file

end

4-27

4 Programming

The eval Function
The eval function works with text variables to implement a powerful text
macro facility. The expression or statement

eval(s)

uses the MATLAB interpreter to evaluate the expression or execute the
statement contained in the text string s.

The example of the previous section could also be done with the following
code, although this would be somewhat less efficient because it involves the
full interpreter, not just a function call:

for d = 1:31
s = ['load August' int2str(d) '.dat'];
eval(s)
% Process the contents of the d-th file

end

Function Handles
You can create a handle to any MATLAB function and then use that handle
as a means of referencing the function. A function handle is typically passed
in an argument list to other functions, which can then execute, or evaluate,
the function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the
function name. The following example creates a function handle for the sin
function and assigns it to the variable fhandle:

fhandle = @sin;

You can call a function by means of its handle in the same way that you would
call the function using its name. The syntax is

fhandle(arg1, arg2, ...);

The function plot_fhandle, shown below, receives a function handle and
data, generates y-axis data using the function handle, and plots it:

function plot_fhandle(fhandle, data)
plot(data, fhandle(data))

4-28

Scripts and Functions

When you call plot_fhandle with a handle to the sin function and the
argument shown below, the resulting evaluation produces a sine wave plot:

plot_fhandle(@sin, -pi:0.01:pi)

Function Functions
A class of functions called “function functions” works with nonlinear functions
of a scalar variable. That is, one function works on another function. The
function functions include

• Zero finding

• Optimization

• Quadrature

• Ordinary differential equations

MATLAB represents the nonlinear function by the file that defines it.
For example, here is a simplified version of the function humps from the
matlab/demos folder:

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1 with

x = 0:.002:1;
y = humps(x);

Then plot the function with

plot(x,y)

4-29

4 Programming

The graph shows that the function has a local minimum near x = 0.6. The
function fminsearch finds the minimizer, the value of x where the function
takes on this minimum. The first argument to fminsearch is a function
handle to the function being minimized and the second argument is a rough
guess at the location of the minimum:

p = fminsearch(@humps,.5)
p =

0.6370

To evaluate the function at the minimizer,

humps(p)

ans =
11.2528

Numerical analysts use the terms quadrature and integration to distinguish
between numerical approximation of definite integrals and numerical
integration of ordinary differential equations. MATLAB quadrature routines
are quad and quadl. The statement

4-30

Scripts and Functions

Q = quadl(@humps,0,1)

computes the area under the curve in the graph and produces

Q =
29.8583

Finally, the graph shows that the function is never zero on this interval. So,
if you search for a zero with

z = fzero(@humps,.5)

you will find one outside the interval

z =
-0.1316

Vectorization
One way to make your MATLAB programs run faster is to vectorize the
algorithms you use in constructing the programs. Where other programming
languages might use for loops or DO loops, MATLAB can use vector or matrix
operations. A simple example involves creating a table of logarithms:

x = .01;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end

A vectorized version of the same code is

x = .01:.01:10;
y = log10(x);

For more complicated code, vectorization options are not always so obvious.

For More Information See “Performance” in the MATLAB Programming
Fundamentals documentation for other techniques that you can use.

4-31

4 Programming

Preallocation
If you cannot vectorize a piece of code, you can make your for loops go faster
by preallocating any vectors or arrays in which output results are stored. For
example, this code uses the function zeros to preallocate the vector created in
the for loop. This makes the for loop execute significantly faster:

r = zeros(32,1);
for n = 1:32

r(n) = rank(magic(n));
end

Without the preallocation in the previous example, the MATLAB interpreter
enlarges the r vector by one element each time through the loop. Vector
preallocation eliminates this step and results in faster execution.

4-32

Object-Oriented Programming

Object-Oriented Programming

In this section...

“MATLAB Classes and Objects” on page 4-33

“Learn About Defining MATLAB Classes” on page 4-33

MATLAB Classes and Objects
MATLAB object-oriented programming capabilities enable you to develop and
maintain large application and define complex data structures that integrate
seamlessly into the MATLAB environment. Some of the features include:

• Support for value and handle (reference) classes

• Definition of events and listeners

• Class introspection

• JIT/Accelerator support for classes to improve performance

Learn About Defining MATLAB Classes
For complete information on using and creating MATLAB classes, see
Object-Oriented Programming in the user-guide documentation.

4-33

4 Programming

4-34

5

Data Analysis

• “Introduction” on page 5-2

• “Preprocessing Data” on page 5-3

• “Summarizing Data” on page 5-10

• “Visualizing Data” on page 5-14

• “Modeling Data” on page 5-27

5 Data Analysis

Introduction
Every data analysis has some standard components:

• Preprocessing — Consider outliers and missing values, and smooth data
to identify possible models.

• Summarizing — Compute basic statistics to describe the overall location,
scale, and shape of the data.

• Visualizing — Plot data to identify patterns and trends.

• Modeling — Give data trends fuller descriptions, suitable for predicting
new values.

Data analysis moves among these components with two basic goals in mind:

1 Describe the patterns in the data with simple models that lead to accurate
predictions.

2 Understand the relationships among variables that lead to the model.

This section of the Getting Started guide explains how to carry out a basic
data analysis in the MATLAB environment.

5-2

Preprocessing Data

Preprocessing Data

In this section...

“Overview” on page 5-3

“Loading the Data” on page 5-3

“Missing Data” on page 5-3

“Outliers” on page 5-4

“Smoothing and Filtering” on page 5-6

Overview
Begin a data analysis by loading data into suitable MATLAB container
variables and sorting out the “good” data from the “bad.” This is a preliminary
step that assures meaningful conclusions in subsequent parts of the analysis.

Note This section begins a data analysis that is continued in “Summarizing
Data” on page 5-10, “Visualizing Data” on page 5-14, and “Modeling Data”
on page 5-27.

Loading the Data
Begin by loading the data in count.dat:

load count.dat

The 24-by-3 array count contains hourly traffic counts (the rows) at three
intersections (the columns) for a single day.

See “Importing and Exporting Data” in the MATLAB Data Analysis
documentation for more information on storing data in MATLAB variables
for analysis.

Missing Data
The MATLAB NaN (Not a Number) value is normally used to represent
missing data. NaN values allow variables with missing data to maintain their

5-3

5 Data Analysis

structure—in this case, 24-by-1 vectors with consistent indexing across all
three intersections.

Check the data at the third intersection for NaN values using the isnan
function:

c3 = count(:,3); % Data at intersection 3
c3NaNCount = sum(isnan(c3))
c3NaNCount =

0

isnan returns a logical vector the same size as c3, with entries indicating the
presence (1) or absence (0) of NaN values for each of the 24 elements in the
data. In this case, the logical values sum to 0, so there are no NaN values
in the data.

NaN values are introduced into the data in the section on “Outliers” on page
5-4.

See “Missing Data” in the MATLAB Data Analysis documentation for more
information on handling missing data.

Outliers
Outliers are data values that are dramatically different from patterns in
the rest of the data. They may be due to measurement error, or they may
represent significant features in the data. Identifying outliers, and deciding
what to do with them, depends on an understanding of the data and its source.

One common method for identifying outliers is to look for values more than
a certain number of standard deviations σ from the mean μ. The following
code plots a histogram of the data at the third intersection together with lines
at μ and μ + nσ, for n = 1, 2:

bin_counts = hist(c3); % Histogram bin counts
N = max(bin_counts); % Maximum bin count
mu3 = mean(c3); % Data mean
sigma3 = std(c3); % Data standard deviation

hist(c3) % Plot histogram
hold on

5-4

Preprocessing Data

plot([mu3 mu3],[0 N],'r','LineWidth',2) % Mean
X = repmat(mu3+(1:2)*sigma3,2,1);
Y = repmat([0;N],1,2);
plot(X,Y,'g','LineWidth',2) % Standard deviations
legend('Data','Mean','Stds')
hold off

The plot shows that some of the data are more than two standard deviations
above the mean. If you identify these data as errors (not features), replace
them with NaN values as follows:

outliers = (c3 - mu3) > 2*sigma3;
c3m = c3; % Copy c3 to c3m
c3m(outliers) = NaN; % Add NaN values

See “Inconsistent Data” in the MATLAB Data Analysis documentation for
more information on handling outliers.

5-5

5 Data Analysis

Smoothing and Filtering
A time-series plot of the data at the third intersection (with the outlier
removed in “Outliers” on page 5-4) results in the following plot:

plot(c3m,'o-')
hold on

The NaN value at hour 20 appears as a gap in the plot. This handling of NaN
values is typical of MATLAB plotting functions.

Noisy data shows random variations about expected values. You may want
to smooth the data to reveal its main features before building a model. Two
basic assumptions underlie smoothing:

• The relationship between the predictor (time) and the response (traffic
volume) is smooth.

5-6

Preprocessing Data

• The smoothing algorithm results in values that are better estimates of
expected values because the noise has been reduced.

Apply a simple moving average smoother to the data using the MATLAB
convn function:

span = 3; % Size of the averaging window
window = ones(span,1)/span;
smoothed_c3m = convn(c3m,window,'same');

h = plot(smoothed_c3m,'ro-');
legend('Data','Smoothed Data')

The extent of the smoothing is controlled with the variable span. The
averaging calculation returns NaN values whenever the smoothing window
includes the NaN value in the data, thus increasing the size of the gap in the
smoothed data.

5-7

5 Data Analysis

The filter function is also used for smoothing data:

smoothed2_c3m = filter(window,1,c3m);

delete(h)
plot(smoothed2_c3m,'ro-');

The smoothed data are shifted from the previous plot. convn with the 'same'
parameter returns the central part of the convolution, the same length as the
data. filter returns the initial part of the convolution, the same length as
the data. Otherwise, the algorithms are identical.

Smoothing estimates the center of the distribution of response values at
each value of the predictor. It invalidates a basic assumption of many
fitting algorithms, namely, that the errors at each value of the predictor are
independent. Accordingly, you can use smoothed data to identify a model, but
avoid using smoothed data to fit a model.

5-8

Preprocessing Data

See “Filtering Data” in the MATLAB Data Analysis documentation for more
information on smoothing and filtering.

5-9

5 Data Analysis

Summarizing Data

In this section...

“Overview” on page 5-10

“Measures of Location” on page 5-10

“Measures of Scale” on page 5-11

“Shape of a Distribution” on page 5-11

Overview
Many MATLAB functions enable you to summarize the overall location, scale,
and shape of a data sample.

One of the advantages of working in MATLAB is that functions operate on
entire arrays of data, not just on single scalar values. The functions are said
to be vectorized. Vectorization allows for both efficient problem formulation,
using array-based data, and efficient computation, using vectorized statistical
functions.

Note This section continues the data analysis from “Preprocessing Data”
on page 5-3.

Measures of Location
Summarize the location of a data sample by finding a “typical” value.
Common measures of location or “central tendency” are computed by the
functions mean, median, and mode:

load count.dat
x1 = mean(count)
x1 =

32.0000 46.5417 65.5833

x2 = median(count)
x2 =

23.5000 36.0000 39.0000

5-10

Summarizing Data

x3 = mode(count)
x3 =

11 9 9

Like all of its statistical functions, the MATLAB functions above summarize
data across observations (rows) while preserving variables (columns). The
functions compute the location of the data at each of the three intersections
in a single call.

Measures of Scale
There are many ways to measure the scale or “dispersion” of a data sample.
The MATLAB functions max, min, std, and var compute some common
measures:

dx1 = max(count)-min(count)
dx1 =

107 136 250

dx2 = std(count)
dx2 =

25.3703 41.4057 68.0281

dx3 = var(count)
dx3 =

1.0e+003 *
0.6437 1.7144 4.6278

Like all of its statistical functions, the MATLAB functions above summarize
data across observations (rows) while preserving variables (columns). The
functions compute the scale of the data at each of the three intersections
in a single call.

Shape of a Distribution
The shape of a distribution is harder to summarize than its location or
scale. The MATLAB hist function plots a histogram that provides a visual
summary:

figure

5-11

5 Data Analysis

hist(count)
legend('Intersection 1',...

'Intersection 2',...
'Intersection 3')

Parametric models give analytic summaries of distribution shapes.
Exponential distributions, with parameter mu given by the data mean, are a
good choice for the traffic data:

c1 = count(:,1); % Data at intersection 1
[bin_counts,bin_locations] = hist(c1);
bin_width = bin_locations(2) - bin_locations(1);
hist_area = (bin_width)*(sum(bin_counts));

figure
hist(c1)
hold on

5-12

Summarizing Data

mu1 = mean(c1);
exp_pdf = @(t)(1/mu1)*exp(-t/mu1); % Integrates

% to 1
t = 0:150;
y = exp_pdf(t);
plot(t,(hist_area)*y,'r','LineWidth',2)
legend('Distribution','Exponential Fit')

Methods for fitting general parametric models to data distributions
are beyond the scope of this Getting Started guide. Statistics Toolbox
software provides functions for computing maximum likelihood estimates
of distribution parameters.

See “Descriptive Statistics” in the MATLAB Data Analysis documentation for
more information on summarizing data samples.

5-13

5 Data Analysis

Visualizing Data

In this section...

“Overview” on page 5-14

“2-D Scatter Plots” on page 5-14

“3-D Scatter Plots” on page 5-16

“Scatter Plot Arrays” on page 5-18

“Exploring Data in Graphs” on page 5-19

Overview
You can use many MATLAB graph types for visualizing data patterns and
trends. Scatter plots, described in this section, help to visualize relationships
among the traffic data at different intersections. Data exploration tools let
you query and interact with individual data points on graphs.

Note This section continues the data analysis from “Summarizing Data”
on page 5-10.

2-D Scatter Plots
A 2-D scatter plot, created with the scatter function, shows the relationship
between the traffic volume at the first two intersections:

load count.dat
c1 = count(:,1); % Data at intersection 1
c2 = count(:,2); % Data at intersection 2

figure
scatter(c1,c2,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')

5-14

Visualizing Data

The covariance, computed by the cov function measures the strength of the
linear relationship between the two variables (how tightly the data lies along
a least-squares line through the scatter):

C12 = cov([c1 c2])
C12 =

1.0e+003 *
0.6437 0.9802
0.9802 1.7144

The results are displayed in a symmetric square matrix, with the covariance
of the ith and jth variables in the (i, j)th position. The ith diagonal element
is the variance of the ith variable.

Covariances have the disadvantage of depending on the units used to measure
the individual variables. You can divide a covariance by the standard

5-15

5 Data Analysis

deviations of the variables to normalize values between +1 and –1. The
corrcoef function computes correlation coefficients:

R12 = corrcoef([c1 c2])
R12 =

1.0000 0.9331
0.9331 1.0000

r12 = R12(1,2) % Correlation coefficient
r12 =

0.9331

r12sq = r12^2 % Coefficient of determination
r12sq =

0.8707

Because it is normalized, the value of the correlation coefficient is readily
comparable to values for other pairs of intersections. Its square, the coefficient
of determination, is the variance about the least-squares line divided by
the variance about the mean. Thus, it is the proportion of variation in the
response (in this case, the traffic volume at intersection 2) that is eliminated
or statistically explained by a least-squares line through the scatter.

3-D Scatter Plots
A 3-D scatter plot, created with the scatter3 function, shows the relationship
between the traffic volume at all three intersections. Use the variables c1,
c2, and c3 that you created in the previous step:

figure
scatter3(c1,c2,c3,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')
zlabel('Intersection 3')

5-16

Visualizing Data

Measure the strength of the linear relationship among the variables in the
3-D scatter by computing eigenvalues of the covariance matrix with the eig
function:

vars = eig(cov([c1 c2 c3]))
vars =

1.0e+003 *
0.0442
0.1118
6.8300

explained = max(vars)/sum(vars)
explained =

0.9777

The eigenvalues are the variances along the principal components of the data.
The variable explainedmeasures the proportion of variation explained by the

5-17

5 Data Analysis

first principal component, along the axis of the data. Unlike the coefficient
of determination for 2-D scatters, this measure distinguishes predictor and
response variables.

Scatter Plot Arrays
Use the plotmatrix function to make comparisons of the relationships
between multiple pairs of intersections:

figure
plotmatrix(count)

The plot in the (i, j)th position of the array is a scatter with the i th variable
on the vertical axis and the jth variable on the horizontal axis. The plot in the
ith diagonal position is a histogram of the ith variable.

For more information on statistical visualization, see “Plotting Data” and
“Interactive Data Exploration” in the MATLAB Data Analysis documentation.

5-18

Visualizing Data

Exploring Data in Graphs
Using your mouse, you can pick observations on almost any MATLAB graph
with two tools from the figure toolbar:

• Data Cursor

• Data Brushing

These tools each place you in exploratory modes in which you can select data
points on graphs to identify their values and create workspace variables to
contain specific observations. When you use data brushing, you can also copy,
remove or replace the selected observations.

For example, make a scatter plot of the first and third columns of count:

load count.dat
scatter(count(:,1),count(:,3))

Select the Data Cursor Tool and click the right-most data point. A datatip
displaying the point’s x and y value is placed there.

5-19

5 Data Analysis

Datatips display x-, y-, and z- (for 3-D plots) coordinates by default. You
can drag a datatip from one data point to another to see new values or add
additional datatips by right-clicking a datatip and using the context menu.
You can also customize the text that datatips display using MATLAB code.
For more information, see the datacursormode function and “Interacting with
Graphed Data” in the MATLAB Data Analysis documentation.

Data brushing is a related feature that lets you highlight one or more
observations on a graph by clicking or dragging. To enter data brushing

mode, click the left side of the Data Brushing tool on the figure toolbar.
Clicking the arrow on the right side of the tool icon drops down a color palette
for selecting the color with which to brush observations. This figure shows
the same scatter plot as the previous figure, but with all observations beyond
one standard deviation of the mean (as identified using the Tools > Data
Statistics GUI) brushed in red.

5-20

Visualizing Data

scatter(count(:,1),count(:,3))

After you brush data observations, you can perform the following operations
on them:

• Delete them.

• Replace them with constant values.

• Replace them with NaN values.

• Drag or copy, and paste them to the Command Window.

• Save them as workspace variables.

For example, use the Data Brush context menu or the
Tools > Brushing > Create new variable option to create a new
variable called count13high.

5-21

5 Data Analysis

A new variable in the workspace results:

count13high

count13high =
61 186
75 180

114 257

For more information, see the MATLAB brush function and “Marking Up
Graphs with Data Brushing” in the MATLAB Data Analysis documentation.

Linked plots, or data linking, is a feature closely related to data brushing. A
plot is said to be linked when it has a live connection to the workspace data it
depicts. The copies of variables stored in a plot object’s XData, YData, (and,
where appropriate, ZData), automatically updated whenever the workspace
variables to which they are linked change or are deleted. This causes the
graphs on which they appear to update automatically.

Linking plots to variables lets you track specific observations through
different presentations of them. When you brush data points in linked plots,

5-22

Visualizing Data

brushing one graph highlights the same observations in every graph that is
linked to the same variables.

Data linking establishes immediate, two-way communication between
figures and workspace variables, in the same way that the Variable Editor
communicates with workspace variables. You create links by activating the

Data Linking tool on a figure’s toolbar. Activating this tool causes the
Linked Plot information bar, displayed in the next figure, to appear at the top
of the plot (possibly obscuring its title). You can dismiss the bar (shown in
the following figure) without unlinking the plot; it does not print and is not
saved with the figure.

The following two graphs depict scatter plot displays of linked data after
brushing some observations on the left graph. The common variable, count
carries the brush marks to the right figure. Even though the right graph
is not in data brushing mode, it displays brush marks because it is linked
to its variables.

figure
scatter(count(:,1),count(:,2))
xlabel ('count(:,1)')
ylabel ('count(:,2)')
figure
scatter(count(:,3),count(:,2))
xlabel ('count(:,3)')
ylabel ('count(:,2)')

5-23

5 Data Analysis

The right plot shows that the brushed observations are more linearly related
than in the left plot.

Brushed data observations appear highlighted in the brushing color when you
display those variables in the Variable Editor, as you can see here:

openvar count

5-24

Visualizing Data

In the Variable Editor, you can alter any values of linked plot data, and the
graphs will reflect your edits. To brush data observation from the Variable

Editor, click its Brushing Tool button. If the variable you brush is
currently depicted in a linked plot, the observations you brush highlight in
the plot as well as in the Variable Editor. When you brush a variable that is
a column in a matrix, the other columns in that row are also brushed. That
is, you can brush individual observations in a row or column vector, but all

5-25

5 Data Analysis

columns in a matrix highlight in any row you brush, not just the observations
you click.

For more information, see the linkdata function, “Making Graphs Responsive
with Data Linking” in the MATLAB Data Analysis documentation, and
“Viewing and Editing Values in the Current Workspace” in the MATLAB
Desktop Environment documentation.

5-26

Modeling Data

Modeling Data

In this section...

“Overview” on page 5-27

“Polynomial Regression” on page 5-27

“General Linear Regression” on page 5-28

Overview
Parametric models translate an understanding of data relationships into
analytic tools with predictive power. Polynomial and sinusoidal models are
simple choices for the up and down trends in the traffic data.

Note This section continues the data analysis from “Visualizing Data” on
page 5-14.

Polynomial Regression
Use the polyfit function to estimate coefficients of polynomial models, then
use the polyval function to evaluate the model at arbitrary values of the
predictor.

The following code fits the traffic data at the third intersection with a
polynomial model of degree six:

load count.dat
c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';
p_coeffs = polyfit(tdata,c3,6);

figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = polyval(p_coeffs,tfit);
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Polynomial Fit','Location','NW')

5-27

5 Data Analysis

The model has the advantage of being simple while following the up-and-down
trend. The accuracy of its predictive power, however, is questionable,
especially at the ends of the data.

General Linear Regression
Assuming that the data are periodic with a 12-hour period and a peak around
hour 7, it is reasonable to fit a sinusoidal model of the form:

y a b t= + −cos((/)())2 12 7π

The coefficients a and b appear linearly. Use the MATLAB mldivide
(backslash) operator to fit general linear models:

load count.dat
c3 = count(:,3); % Data at intersection 3

5-28

Modeling Data

tdata = (1:24)';
X = [ones(size(tdata)) cos((2*pi/12)*(tdata-7))];
s_coeffs = X\c3;

figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = [ones(size(tfit)) cos((2*pi/12)*(tfit-7))]*s_coeffs;
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Sinusoidal Fit','Location','NW')

Use the lscov function to compute statistics on the fit, such as estimated
standard errors of the coefficients and the mean squared error:

[s_coeffs,stdx,mse] = lscov(X,c3)
s_coeffs =

5-29

5 Data Analysis

65.5833
73.2819

stdx =
8.9185

12.6127
mse =

1.9090e+003

Check the assumption of a 12-hour period in the data with a periodogram,
computed using the fft function:

Fs = 1; % Sample frequency (per hour)
n = length(c3); % Window length
Y = fft(c3); % DFT of data
f = (0:n-1)*(Fs/n); % Frequency range
P = Y.*conj(Y)/n; % Power of the DFT

figure
plot(f,P)
xlabel('Frequency')
ylabel('Power')

predicted_f = 1/12
predicted_f =

0.0833

5-30

Modeling Data

The peak near 0.0833 supports the assumption, although it occurs at a
slightly higher frequency. The model can be adjusted accordingly.

See “Regression Analysis” and “Fourier Transforms” in the MATLAB Data
Analysis and Mathematics documentation for more information on data
modeling.

5-31

5 Data Analysis

5-32

6

Creating Graphical User
Interfaces

• “What Is GUIDE?” on page 6-2

• “Laying Out a GUI” on page 6-3

• “Programming a GUI” on page 6-7

6 Creating Graphical User Interfaces

What Is GUIDE?
GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools greatly simplify the process of designing and building GUIs. You can use
the GUIDE tools to perform the following tasks:

• Lay out the GUI.

Using the GUIDE Layout Editor, you can lay out a GUI easily by clicking
and dragging GUI components—such as panels, buttons, text fields,
sliders, menus, and so on—into the layout area. GUIDE stores the GUI
layout in a FIG-file.

• Program the GUI.

“GUIDE automatically generates a MATLAB program file that controls
how the GUI operates. The code in that file initializes the GUI and
includes function templates for the most commonly used callbacks for
each component—the commands that execute when a user clicks a GUI
component. Using the MATLAB editor, you can add code to the callbacks
to perform the functions you want.

Note You can also create GUIs without GUIDE, by writing MATLAB code.
For information on how to get started, see “How to Create a Simple GUI
Programmatically” in the MATLAB Creating Graphical User interfaces
documentation.

6-2

Laying Out a GUI

Laying Out a GUI

In this section...

“Starting GUIDE” on page 6-3

“The Layout Editor” on page 6-4

Starting GUIDE
Start GUIDE by typing guide at the MATLAB command prompt. This
command displays the GUIDE Quick Start dialog box, as shown in the
following figure.

From the GUIDE Quick Start dialog box, you can perform the following tasks:

• Create a new GUI from one of the GUIDE templates—prebuilt GUIs that
you can modify for your own purposes.

• Open an existing GUI.

6-3

6 Creating Graphical User Interfaces

The Layout Editor
When you open a GUI in GUIDE, it is displayed in the Layout Editor, which
is the control panel for all of the GUIDE tools. The following figure shows the
Layout Editor with a blank GUI template.

$��������
�������

�� ��������

(���	���
	�����������

�������������
��	�����

(���	����	��������
��������

You can expand the tool icons in the Layout Editor to include component
names. Open File > Preferences from GUIDE or the MATLAB Desktop
and select Show Names in Component Palette, as shown in the following
illustration.

6-4

Laying Out a GUI

See “GUIDE Preferences” in the MATLAB Creating Graphical Interfaces
documentation for details.

You can lay out your GUI by dragging components, such as panels, push
buttons, pop-up menus, or axes, from the component palette, at the left side of
the Layout Editor, into the layout area. For example, if you drag three push
buttons into the layout area, it might look like this.

6-5

6 Creating Graphical User Interfaces

The illustration also shows how the GUIDE tool palette looks when you set a
preference to show component names, as described above.

You can also use the Layout Editor (along with the Toolbar Editor and Icon
Editor) to create menus and toolbars, create and modify tool icons, and set
basic properties of the GUI components.

To get started using the Layout Editor and setting property values, see
“How to Create a GUI with GUIDE” in the MATLAB Creating Graphical
User Interfaces documentation. “Examples of GUIDE GUIs” in the same
documentation illustrates the variety of GUIs that you can create with
GUIDE.

6-6

Programming a GUI

Programming a GUI
After laying out the GUI and setting component properties, the next step is to
program the GUI. You program the GUI by coding one or more callbacks for
each of its components. Callbacks are functions that execute in response to
some action by the user. A typical action is clicking a push button.

A GUI’s callbacks are found in a MATLAB program file that GUIDE generates
automatically. GUIDE adds templates for the most commonly used callbacks
to this program file, but you may want to add others. Use the MATLAB
Editor to edit this file.

The following figure shows the Callback template for a push button.

To learn more about programming a GUI, see “How to Create a GUI with
GUIDE” in the MATLAB Creating Graphical User Interfaces documentation.

6-7

6 Creating Graphical User Interfaces

6-8

7

Desktop Tools and
Development Environment

If you have an active Internet connection, you can watch the Working in
The Development Environment video demo for an overview of the major
functionality.

• “Desktop Overview” on page 7-2

• “Command Window and Command History” on page 7-5

• “Getting Help” on page 7-7

• “Workspace Browser and Variable Editor” on page 7-20

• “Managing Files in MATLAB” on page 7-23

• “Finding and Getting Files Created by Other Users — File Exchange” on
page 7-27

• “Editor” on page 7-29

• “Improving and Tuning Your MATLAB Programs” on page 7-39

7 Desktop Tools and Development Environment

Desktop Overview

In this section...

“Introduction to the Desktop” on page 7-2

“Arranging the Desktop” on page 7-3

“Start Button” on page 7-3

Introduction to the Desktop
Use desktop tools to manage your work and become more productive using
MATLAB software. You can also use MATLAB functions to perform the
equivalent of most of the features found in the desktop tools.

The following illustration shows the default configuration of the MATLAB
desktop. You can modify the setup to meet your needs.

�������
	
��
���
�
	��������������

���������������
����������
	������������

������������
���������������
�
�������

������	
��
��
��������
���
�
������� ��
��������
�

7-2

Desktop Overview

For More Information For an overview of the desktop, watch the Working
in the Development Environment video demo. For complete details, see the
MATLAB Desktop Tools and Development Environment documentation.

Arranging the Desktop
These are some common ways to customize the desktop:

• Show or hide desktop tools via the Desktop menu.

• Resize any tool by dragging one of its edges.

• Move a tool outside of the desktop by clicking the undock button in the
tool’s title bar.

• Reposition a tool within the desktop by dragging its title bar to the new
location. As you drag, a blue box indicates the new tool position until you
release the mouse button. You can drag more than one tools to the same
position, in which case they become the same size and their title bars
become tabs. Access a tabbed tool by clicking the tab displaying its name.

• Maximize or minimize (temporarily hide) a tool within the desktop via
the Desktop menu.

• Change fonts, customize the toolbar, and access other options by using
File > Preferences.

Start Button
The MATLAB Start button provides easy access to tools, demos, shortcuts,
and documentation. Click the Start button to see the options.

7-3

7 Desktop Tools and Development Environment

For More Information See “Desktop” in the MATLAB Desktop Tools and
Development Environment documentation.

7-4

Command Window and Command History

Command Window and Command History

In this section...

“Command Window” on page 7-5

“Command History” on page 7-6

Command Window
Use the Command Window to enter variables and to run MATLAB functions
and scripts. MATLAB displays the results.

!��	����

,������

Press the up arrow key ↑ to recall a statement you previously typed. Edit the
statement as needed, and then press Enter to run it. For more information
about entering statements in the Command Window, see “Controlling
Command Window Input and Output” on page 2-31.

There are other tools available to help you remember functions and their
syntax, and to enter statements correctly. For example, to look for functions,
use the Function Browser to look for functions—click the button at the left
of the prompt to open the tool. For more information on ways to get help

7-5

7 Desktop Tools and Development Environment

while you work in the Command Window, see “Assistance While Entering
Statements”.

For More Information See “Running Functions — Command Window and
History” in the MATLAB Desktop Tools and Development Environment
documentation for complete details.

Command History
Statements you enter in the Command Window are logged with a timestamp
in the Command History. From the Command History, you can view and
search for previously run statements, as well as copy and execute selected
statements. You can also create a file from selected statements.

���������

(��������

To save the input and output from a MATLAB session to a file, use the diary
function.

For More Information See “Using the Command History Window” in the
MATLAB Desktop Tools and Development Environment documentation, and
the reference page for the diary function.

7-6

Getting Help

Getting Help

In this section...

“Ways to Get Help” on page 7-7

“Accessing Documentation, Examples, and Demos Using the Help Browser”
on page 7-9

“Searching for Documentation and Demos” on page 7-11

“Browsing for Documentation and Demos” on page 7-15

“Running Demos and Code in Examples” on page 7-16

Ways to Get Help
There are different ways to get help, depending on your needs. The following
table summarizes the main ways.

To... Try This More Information

Look for getting
started guides,
code examples,
demos, and
more.

In the Help browser
Contents pane, expand
the listing for a product.

“Browsing for
Documentation and
Demos” on page 7-15

Find
information
about any topic.

In the Help browser search
field, type words you
want to look for in the
documentation or demos.
Then press Enter.

“Searching for
Documentation and
Demos” on page 7-11

7-7

7 Desktop Tools and Development Environment

To... Try This More Information

View help for
a function or
block.

Run doc name to display
the reference page in the
Help browser.

For quick help in the
Command Window, run
help name. Sometimes,
the help text shows name
in all uppercase letters to
distinguish it. When you
use name, do not use all
uppercase letters.

doc reference page
help reference page

Find a function
and view help
for it.

Select Help > Function
Browser, then search or
browse.

“Finding Functions Using
the Function Browser”

Get syntax and
function hints
while using
the Command
Window and
Editor.

Use colors and other cues to
determine correct syntax.

While entering a function,
pause after typing the left
parenthesis. A summary of
syntax options displays in
a temporary window.

“Assistance While Entering
Statements”

View help for
a function or
block.

Run doc name to display
the reference page in the
Help browser.

For quick help in the
Command Window, run
help name. Sometimes,
the help text shows name
in all uppercase letters to
distinguish it. When you
use name, do not use all
uppercase letters.

doc reference page
help reference page

7-8

Getting Help

To... Try This More Information

Get specific help
while using a
tool.

Use the context-sensitive
help, which some tools
provide. Access the help
using standard methods,
such as Help buttons and
context menus.

See the documentation for
a tool to learn about any
special context-sensitive
help available.

Check code
for problems
and get
recommendations
for
improvements.

In the Editor, view M-Lint
messages.

“Preventing and
Identifying Coding
Problems”

Accessing Documentation, Examples, and Demos
Using the Help Browser
The Help browser is the main tool you use to view documentation, examples
in the documentation, and demos.

To open the Help browser, from any desktop tool, select Help > Product
Help.

The Help browser shows Contents and Search Results in the left pane.
When you select an item in the left pane, the right pane displays that page of
documentation or that demo.

Use the Help browser to find and view documentation and demos for all
installed MathWorks products. To use documentation and demos for only
some of the installed products, see “Specifying Which Documentation to
Display”.

7-9

7 Desktop Tools and Development Environment

Types of Information in the Help Browser

Icon Type Description

Getting
Started guide

Introduction and overview of a topic. Intended
for first time use or a quick reminder of basics.

User guide Details and advanced topics about a tool or
product.

7-10

Getting Help

Icon Type Description

Reference page
for block

Detailed description of a block, and links to
related topics.

Reference page
for function

Syntax, description, short examples, and links
to related topics.

Examples Runnable code examples and tutorials in the
documentation.

Demos Runnable code, models, and video
demonstrations of product features.

Release Notes New features, compatibility considerations, and
bug reports for recent versions of products.

Searching for Documentation and Demos
Use the Help browser to find documentation and demos that contain your
search terms:

1 In the Help browser Search field, enter the words you want to look for.
Search finds sections containing all the words, unless you use any of the
syntax options described in the following table.

Option Syntax Example

Exact phrase " " around
phrase
(quotation
marks)

"word1 word2"

Wildcards for partial word
searching

* in place of
characters

word*

Some of the words OR between
words

word1 OR word2

Exclude words NOT before
excluded word

word1 NOT word2

For example, enter plot tool* label.

7-11

7 Desktop Tools and Development Environment

2 Press Enter.

The Search Results pane lists matching sections. An icon indicates the
type of information

3 Arrange results:

• The default sort order is by relevance. Change the order by clicking the
column header for Type or Product.

• For results sorted by Type or Product, you can collapse and expand
results for a type or product group. To expand or collapse all groups,
right-click in the Search Results pane, and select the option you want
from the context menu.

For example, to focus on introductory material:

a Click the Type column header.

7-12

Getting Help

b Right-click and select Collapse All.

c expand the Getting Started group.

4 Select a result to view the page.

• The Help browser highlights the search words in the display pane. To
clear highlights, select Refresh from the Actions button .

• To see where the result is within the contents, use the navigation bar at
the top of the page.

Or click the Contents tab.

5 The default presentation includes previews of text for each result found. To
show more results in the Help Navigator, you can hide the previews:

7-13

7 Desktop Tools and Development Environment

• Right-click in the Help Navigator and select Hide Previews from the
context menu.

The Help Navigator only displays section titles and icons for them.

• To see the previews again, right-click in the Help Navigator and select
Show Previews

The following illustration shows the effect of hiding text previews and the
context menu item for restoring them.

7-14

Getting Help

For more search options, see “Searching the Documentation” in the User
Guide.

Browsing for Documentation and Demos
You can find information by looking through a hierarchical view of
documentation and demos in the Help browser:

1 In the Help browser, click the Contents tab.

2 View the types of information available for a product by expanding the
product in the Contents listing. For example, expand MATLAB.

3 View available items within an information type by expanding it. For
example, within MATLAB, expand Demos, and then expand Graphics.

• Expand one item by clicking +. Or select the item and press the right
arrow key.

• Expand all items within the selected item by pressing the * key on the
numeric keypad.

4 To view an item in the display pane, select it. For example, within MATLAB
> Demos > Graphics, select Square Wave from Sine Waves.

7-15

7 Desktop Tools and Development Environment

5 To close all the topics in the Contents pane at one time, right-click any one
of them and select Collapse All from the context menu.

Running Demos and Code in Examples
From the Help browser, you can execute product demos, and code contained
in examples in the documentation.

Before you run demos or code in documentation examples, review the
workspace to avoid potential name conflicts. See “Review the Workspace
Before Running Demos and Code in Examples” on page 7-17

7-16

Getting Help

If you want to run code that is in a demo, the demo must be the type of
demo that executes MATLAB code, called a script demo. For instructions to
run a complete demo, see “Running a Script Demo” on page 7-17. You can
also run selected code in a demo; for instructions, see “Running Code in the
Documentation or a Demo” on page 7-18.

When you view documentation in the Help browser, if an example contains
code, you can execute the code. For instructions, see “Running Code in the
Documentation or a Demo” on page 7-18.

Review the Workspace Before Running Demos and Code in
Examples
Script demos and code in examples run as scripts. Scripts store variables
in the base workspace. There could be name conflicts if variables that you
already have in the base workspace use the same name as variables that the
demo or example code creates. For example, a demo could overwrite your data.

Before you run a demo or code in an example, review the base workspace
variables and address any potential name conflicts. For example, if your data
is important, save it to a MAT-file before running the demo or example code.

Running a Script Demo
For a script demo displayed in the Help browser:

1 Click Open filename in Editor. For example, with the MATLAB > Demos
> Graphics > Square from Sine Waves demo displayed, click Open
xfourier.m in the Editor. xfourier.m is the name of the demo file.

2 With the file open in the Editor, click Run .

The following figure illustrates the results of running the MATLAB > Demos >
Graphics > Square Wave from Sine Waves demo.

7-17

7 Desktop Tools and Development Environment

Running Code in the Documentation or a Demo
When a documentation page or demo displayed in the Help browser contains
code, you can select some or all of the code and run it:

1 Prepare variables the code uses, if needed to run a selection of code.

2 Select the code.

3 Right-click and select Evaluate Selection or press F9 (the default
keyboard shortcut).

To view the contents of a variable, right-click the variable and select Open
Selection.

Code in the documentation includes small fragments, as well as complete
executable example files. The documentation example files are in
matlabroot/help/.../examples for each product. The files in examples are
not on the search path. When the documentation instructs you to run an
example file, first make the file accessible to MATLAB in one of these ways:

7-18

Getting Help

• Change the current folder to the folder containing the example file.

• Add to the search path the folder containing the example file.

• Copy the example file to another location that MATLAB can access.

For More Information There are additional options for getting help. See
“Getting Help and Product Information”.

7-19

7 Desktop Tools and Development Environment

Workspace Browser and Variable Editor

In this section...

“Workspace Browser” on page 7-20

“Variable Editor” on page 7-21

Workspace Browser
The MATLAB workspace consists of the set of variables built up during a
MATLAB session and stored in memory. You add variables to the workspace
by using functions, running function and script files, and loading saved
workspaces.

To view the workspace and information about each variable, use the
Workspace browser, or use the functions who and whos.

To delete variables from the workspace, select the variables, and then select
Edit > Delete. Alternatively, use the clearvars or clear functions.

The workspace does not persist after you end the MATLAB session. To save
the workspace to a file that can be read during a later MATLAB session, select

7-20

Workspace Browser and Variable Editor

File > Save, or use the save function. Saving preserves the workspace in a
binary file called a MAT-file, which has a .mat extension. You can use options
to save to different formats. To read in a MAT-file, select File > Import
Data, or use the load function.

For More Information See “MATLAB Workspace” in the MATLAB Desktop
Tools and Development Environment documentation and the reference pages
for the who, clear, save, and load functions.

Variable Editor
Double-click a variable in the Workspace browser, or use openvar
variablename, to see it in the Variable Editor. Use the Variable Editor to
view and edit a visual representation of variables in the workspace.

-����
����	������#�������������
��������#���
 ���
�������������
�������#����������

���������	
��
��������
������������

�����
���
�������� ���
��	�����������
�������#����������

������
�
	��������������

7-21

7 Desktop Tools and Development Environment

For More Information See “Viewing and Editing Workspace Variables
with the Variable Editor” in the MATLAB Desktop Tools and Development
Environment documentation and the reference page for the openvar function.

7-22

Managing Files in MATLAB®

Managing Files in MATLAB

In this section...

“How MATLAB Helps You Manage Files” on page 7-23

“Making Files Accessible to MATLAB” on page 7-23

“Using the Current Folder Browser to Manage Files” on page 7-24

“More Ways to Manage Files” on page 7-26

How MATLAB Helps You Manage Files
MATLAB provides tools and functions to help you:

• Find a file you want to view, change, or run

• Organize your files

• Ensure MATLAB can access a file so you can run or load it

Making Files Accessible to MATLAB
MATLAB limits where it looks for files so it can locate them more quickly.
To run or get help for a MATLAB program file, or to load a MAT-file, the
file must be in one of these locations:

• MATLAB current folder

• A folder that is on the MATLAB search path

Similarly, files called by files you run also must be in one of these locations.

Special cases are:

• Private, class, and package folders

• When there are multiple files with the same name accessible to MATLAB

By default, files provided with MathWorks products are in folders on the
search path. You do not have to do anything for MATLAB to access the
files. These files are in matlabroot/toolbox. To determine the location of
matlabroot, run the matlabroot function.

7-23

7 Desktop Tools and Development Environment

By default, the search path also includes a folder named MATLAB where you
can store files that you and other users create. To determine the location of
the MATLAB folder, run the userpath function.

To access files in any other location, either:

• Make the folder containing the files be the current folder

• Add the folders containing the files to the search path.

Note Do not store files under matlabroot/toolbox, or you could experience
problems.

Using the Current Folder Browser to Manage Files
The Current Folder browser is a key tool for managing files.

Open the Current Folder browser by selecting Desktop > Current Folder
from the MATLAB desktop.

7-24

Managing Files in MATLAB®

Use the Current Folder browser to:

• See the contents of the current folder.

• View and change the current folder using the address bar.

• Find files and folders using the search tool .

• Arrange information about files and folders using the View menu.

• Change files and folders, such as renaming or moving them.

7-25

7 Desktop Tools and Development Environment

• Run, open, get help for, and perform other actions on the selected file or
folder by right-clicking and using the context menu.

More Ways to Manage Files

• Change the search path using the Set Path dialog box. To open it, select
File > Set Path.

• Find files and content within files across multiple folders using the Find
Files tool. To open the tool, select Edit > Find Files.

• View and change the current folder using the Current Folder field in the
desktop toolbar.

• Manage files programmatically using functions. See the function category,
“Managing Files”.

For More Information See “Managing Files in MATLAB” in the MATLAB
Desktop Tools and Development Environment documentation

7-26

Finding and Getting Files Created by Other Users — File Exchange

Finding and Getting Files Created by Other Users — File
Exchange

Use files created by other MATLAB users to save you time and provide you
with new ideas for your own work.

Users who want to share their files submit them to the File Exchange
repository at the MathWorks Web site.

You can then:

• Access the repository using the File Exchange desktop tool.

• Log in using your MathWorks Account.

• Use the tool to find, view details about, and download files to use.

7-27

7 Desktop Tools and Development Environment

For an overview, watch this video: Accessing the File Exchange from the
MATLAB Desktop.

For More Information See “File Exchange — Finding and Getting Files
Created by Other Users” in the MATLAB Desktop Tools and Development
Environment documentation.

7-28

Editor

Editor

In this section...

“Editing MATLAB Code Files” on page 7-29

“Identifying Problems and Areas for Improvement” on page 7-31

“Publishing MATLAB Code Files” on page 7-33

Editing MATLAB Code Files
Use the Editor to create and debug programs you write for running MATLAB
functions. The Editor provides a graphical user interface for text editing
and debugging MATLAB code.

To create or edit a file select File > New or File > Open, or use the edit
function.

The following image shows the Editor with two documents, collatzall.m and
collatz.m open. Notice the following:

• Colors highlight various MATLAB language elements — blue for keywords,
green for comments.

• The code analysis message bar contains an orange box and bar, indicating
there are areas for improvement in the code.

Other Editor features are described in the image.

7-29

7 Desktop Tools and Development Environment

�������%�����	����
��������	
��
����������

��������#���
$�������� �
�����
��#�

.�	������#�����������
/��	%��		�����������
��	������

(������#�������	����
	����������������	�����
���#������	��������	������

You can use any text editor to create files, such as Emacs. Use
Editor/Debugger preferences (accessible from the desktop by selecting
File > Preferences > Editor/Debugger) to specify your default editor. If
you use another editor, you still can use the MATLAB Editor for debugging,
or you can use debugging functions, such as dbstop, which sets a breakpoint.

To view the contents of a file, you can display the contents in the Command
Window using the type function.

Use code analysis to help you identify problems and potential improvements
in your code. For details, see “Improving and Tuning Your MATLAB
Programs” on page 7-39.

7-30

Editor

You can evaluate your code in sections (called code cells). Also, you can publish
your code, including results, to popular output formats like HTML. For more
information, see “Evaluating Subsections of Files Using Code Cells” in the
MATLAB Desktop Tools and Development Environment documentation.

For More Information See “Editing and Debugging MATLAB Code”, the
function reference pages for edit, type, and the list of “Debugging Functions”
functions.

Identifying Problems and Areas for Improvement
Use code analysis to help you write correct and efficient MATLAB code. Code
analysis:

• Identifies areas for improvement by underlining code in orange

• Identifies errors by underlining code in red

• Provides short messages, called M-Lint messages, to describe all suspected
trouble spots

• Provides extended M-Lint messages for many suspected trouble spots

• Provides automated fixes for many trouble spots

The following images show code with a message at line 23 and 24. The
Details button in the first message indicates that an extended message is
available for that first problem. To have MATLAB fix a problem for you, click
the Fix button, if displayed.

7-31

7 Desktop Tools and Development Environment

When you click a Details button, the message extends and provides a detailed
explanation, a suggested action, and sometimes links to the documentation.

7-32

Editor

For More Information See “Preventing and Identifying Coding Problems”.

Publishing MATLAB Code Files
While or after you create a MATLAB code file, you can use the Editor’s Cell
> Insert Text Markup menu options to specify the formatting you want
for publishing the file to various output types. For example, you might
want to publish a file to present at a meeting, include in a blog, or share
with colleagues.

Insert Text Markup options include options that enable you to do the
following and more:

• Create titles for the document and sections within it.

7-33

7 Desktop Tools and Development Environment

• Specify the text format — bold, italic, monospaced, or hyperlinked

• Insert an image

• Format lists

7-34

Editor

7-35

7 Desktop Tools and Development Environment

After adding text markup, click the Publish button on the Editor toolbar.
By default, MATLAB software generates formatted HTML output and
presents the document in the MATLAB Web Browser.

7-36

Editor

7-37

7 Desktop Tools and Development Environment

You can publish MATLAB code files to HTML, XML, LaTeX, and PDF. If your
system is a personal computer (PC), you also can publish files to Microsoft
Word and PowerPoint®.

For More Information See “Publishing MATLAB Code” in the MATLAB
Desktop Tools and Development Environment documentation, and the
publish reference page.

7-38

Improving and Tuning Your MATLAB® Programs

Improving and Tuning Your MATLAB Programs

In this section...

“Finding Errors Using the Code Analyzer Report” on page 7-39

“Improving Performance Using the Profiler” on page 7-41

Finding Errors Using the Code Analyzer Report
The Code Analyzer Report displays potential errors and problems, as well as
opportunities for improvement in your MATLAB programs.

Access the Code Analyzer Report from the Current Folder browser. From the
Actions button , select Reports.

You run a report for all files in the current folder.

7-39

7 Desktop Tools and Development Environment

The Code Analyzer Report displays a message, sometimes called an M-Lint
message, for each line of MATLAB code it determines might be improved. For
example, a common message is that a variable is defined but never used.

�
��������������� ������������#������������
�����
��	
��������������#�����������������������������

���������
�����������
�����������
�
�����������	������	��	%��
����������#���

Alternatively, you can use automatic checking to view messages while you
work on a file in the Editor. You can also use the mlint function to get results
for a single file.

7-40

Improving and Tuning Your MATLAB® Programs

For More Information See “Tuning and Managing MATLAB Code Files”
and “Preventing and Identifying Coding Problems” in the MATLAB Desktop
Tools and Development Environment documentation, and the reference page
for the mlint function.

Improving Performance Using the Profiler
The MATLAB Profiler helps you improve the performance of your MATLAB
programs. Run a MATLAB statement or an program file in the Profiler and it
produces a report of where the time is being spent. Access the Profiler from
the Desktop menu, or use the profile function.

For More Information See “Tuning and Managing MATLAB Code Files” in
the MATLAB Desktop Tools and Development Environment documentation,
and the reference page for the profile function.

7-41

7 Desktop Tools and Development Environment

7-42

8

External Interfaces

Use MATLAB External Interfaces to connect MATLAB to programs, devices
and data. Application developers use external interfaces to integrate
MATLAB functionality with their applications. External interfaces also
facilitate data collection, such as from peripheral devices like an oscilloscope
or a remote network server.

• “Programming Interfaces” on page 8-2

• “Interface to .NET Framework” on page 8-4

• “Component Object Model Interface” on page 8-5

• “Web Services” on page 8-6

• “Serial Port Interface” on page 8-7

8 External Interfaces

Programming Interfaces

In this section...

“Call MATLAB Software from C/C++ and Fortran Programs” on page 8-2

“Call C/C++ and Fortran Programs from MATLAB Command Line” on
page 8-2

“Call Sun Java Commands from MATLAB Command Line” on page 8-3

“Call Functions in Shared Libraries” on page 8-3

“Import and Export Data” on page 8-3

Call MATLAB Software from C/C++ and Fortran
Programs
Use the MATLAB engine library to call MATLAB from C/C++ and Fortran
programs. When you call MATLAB from your own programs, MATLAB acts
as a computation engine. For example, you can:

• Use MATLAB as a programmable mathematical subroutine library.

• Build an application with a front end (GUI) programmed in C/C++ and a
back end (analysis) programmed in MATLAB.

Call C/C++ and Fortran Programs from MATLAB
Command Line
Use MEX-files to call your own C/C++ or Fortran subroutines from the
MATLAB command line as if they were built-in functions. For example, you
can:

• Call preexisting C/C++ and Fortran programs from MATLAB without
having to rewrite them as MATLAB functions.

• Code bottleneck computations that do not run fast enough in MATLAB
in C/C++ or Fortran for efficiency.

The mxArray access library creates and manipulates MATLAB arrays. The
mex library performs operations in the MATLAB environment.

8-2

Programming Interfaces

Call Sun Java Commands from MATLAB Command
Line
Every installation of MATLAB software includes Java Virtual Machine
(JVM™) software. The JVM software allows you to use the MATLAB
interpreter with Java commands and to create and access Java objects. For
example, you can:

• Access Java API class packages that support I/O and networking.

• Access third-party Java classes.

• Construct Java objects in MATLAB.

• Call Java methods, using either Java or MATLAB syntax.

• Pass data between MATLAB variables and Java objects.

Call Functions in Shared Libraries
Use the MATLAB interface to shared libraries to interact with functions
in a dynamic link library (.dll) on Microsoft Windows platforms, a shared
object file (.so) on UNIX and Linux® platforms, or a dynamic shared library
(.dylib) on Apple Macintosh platforms based on Intel® technology.

MATLAB supports any shared library written in C, or in any language that
can provide a C interface.

Import and Export Data
MAT-files and the MAT-file access library provide a convenient mechanism
for moving MATLAB binary data between platforms, and for importing and
exporting data to stand-alone MATLAB applications.

8-3

8 External Interfaces

Interface to .NET Framework
MATLAB provides an interface to the Microsoft .NET Framework which
lets you leverage the capabilities of programming in .NET on the Microsoft
Windows platform.

8-4

Component Object Model Interface

Component Object Model Interface
With Microsoft COM (Component Object Model) tools and technologies, you
can integrate application-specific components from different vendors into
your own applications. With COM, MATLAB software can include Microsoft®

ActiveX® controls or OLE server processes, or you can configure MATLAB as
a computational server controlled by your client application programs.

For example, you can:

• Include ActiveX® components, like a calendar, in your MATLAB program.

• Access existing applications that expose objects via Automation, like
Microsoft Excel.

• Access MATLAB as an Automation server from an application written in
Microsoft® Visual Basic® or C programming languages.

COM support in MATLAB is only available on the Microsoft Windows
platform.

8-5

8 External Interfaces

Web Services
Web services are XML-based technologies for making remote procedure calls
over a network. They enable communication between applications running
on disparate operating systems and development platforms. Web service
technologies available in the MATLAB software are:

• Simple Object Access Protocol (SOAP)

• Web Services Description Language (WSDL)

8-6

Serial Port Interface

Serial Port Interface
The MATLAB serial port interface provides direct access to peripheral devices
that you connect to your computer’s serial port, such as modems, printers,
and scientific instruments. For example, you can perform the following tasks:

• Configure serial port communications.

• Use serial port control pins.

• Write and read data.

• Use events and callbacks.

• Record information to disk.

8-7

8 External Interfaces

8-8

Index

IndexSymbols and Numerics
: operator 2-8
2-D scatter plots

getting started 5-14
3-D scatter plots

getting started 5-16

A
algorithms

vectorizing 4-31
annotating plots 3-24
ans function 2-5
application program interface (API) 1-4
array operators 2-25
arrays 2-18

and matrices 2-25
cell 4-11
character 4-13
columnwise organization 2-27
deleting rows and columns 2-20
elements 2-12
generating with functions and operators 2-17
listing contents 2-11
loading from external data files 2-18
multidimensional 4-9
notation for elements 2-12
preallocating 4-32
structure 4-16
variable names 2-11

arrow keys for editing commands 2-33
aspect ratio of axes 3-67
axes

managing 3-67
visibility 3-68

axis
labels 3-68
titles 3-68

axis function 3-67

B
bit map 3-81
break function 4-7
browser

Help 7-9
built-in functions

defined 2-14

C
callbacks 6-7
catch function 4-8
cell arrays 4-11
char function 4-15
character arrays 4-13
characteristic polynomial 2-24
coefficient of determination

described 5-16
colon operator 2-8
colormap 3-74
colors

lines for plotting 3-59
Command History 7-6
command line

editing 2-33
Command Window 7-5
complex numbers 2-13

plotting 3-62
concatenation

defined 2-19
of strings 4-14

constants
special 2-14

continue function 4-6
continuing statements on multiple lines 2-33
control keys for editing commands 2-33
correlation coefficient

example using corrcoef 5-16
covariance

example using cov 5-15

Index-1

Index

current folder 7-23
Current Folder browser 7-24

D
data analysis

getting started 5-1
data source

for graphs 3-39
debugging MATLAB code files 7-29
deleting array elements 2-20
demos 7-7

running from the Start button 7-3
searching for 7-11

desktop
for MATLAB 1-7
tools 7-1

determinant of matrix 2-22
diag function 2-5
distribution modeling

getting started 5-11
documentation 7-7

searching 7-11

E
editing command lines 2-33
Editor 7-29 7-33
eigenvalue 2-23
eigenvector 2-23
elements of arrays 2-12
entering matrices 2-4
eval function 4-28
examples 7-7
executing MATLAB 1-7
exiting MATLAB 1-8
exporting graphs 3-53
expressions

evaluating 4-28
examples 2-15

using in MATLAB 2-11

F
figure function 3-64
figure tools 3-7
figure windows 3-64

with multiple plots 3-65
figures

adding and removing graphs 3-4
files

debugging 7-29
editing 7-29
managing 7-23
publishing 7-33

filtering data
getting started 5-6

find function 2-29
finding object handles 3-93
fliplr function 2-7
floating-point numbers 2-12
flow control 4-2
folders

managing 7-23
for loop 4-5
format

of output display 2-31
format function 2-31
function files 4-20
function functions 4-29
function handles

defined 4-28
using 4-30

function keyword 4-23
function of two variables 3-72
function program files

naming 4-22
functions

built-in, defined 2-14
defined 4-22

Index-2

Index

how to find 2-14
running 7-5
variable number of arguments 4-23

G
global variables 4-26
graphical user interface

creating 6-1
laying out 6-3
programming 6-7

graphics
files 3-83
Handle Graphics 3-85
objects 3-86
printing 3-82

grids 3-68
GUIDE 6-1

H
Handle Graphics 3-85

defined 1-3
finding handles 3-93

Help browser 7-7 7-9
searching 7-11

help functions 7-7
highlighted search words 7-13
hold function 3-63

I
images 3-80
imaginary numbers 2-12

K
keys for editing in Command Window 2-33

L
legend

adding to plot 3-58
legend function 3-58
library

mathematical function 1-3
lighting 3-76
limits

axes 3-67
line continuation 2-33
line styles of plots 3-59
linear regression

getting started 5-28
load function 2-18
loading arrays 2-18
local variables 4-23
log of functions used 7-6
logical vectors 2-28

M
magic function 2-9
magic square 2-5
markers 3-60
MAT-file 3-80
mathematical functions

library 1-3
listing advanced 2-14
listing elementary 2-14
listing matrix 2-14

MATLAB
application program interface 1-4
desktop 1-7
executing 1-7
exiting 1-8
history 1-2
language 1-3
mathematical function library 1-3
overview 1-2
quitting 1-8

Index-3

Index

running 1-7
shutting down 1-8
starting 1-7

matrices 2-21
creating 2-17
entering 2-4

matrix 2-2
antidiagonal 2-7
determinant 2-22
main diagonal 2-6
multiplication 2-22
singular 2-22
swapping columns 2-10
symmetric 2-21
transpose 2-5

measures of location
getting started 5-10

measures of scale
getting started 5-11

mesh plot 3-72
missing data

getting started 5-3
modeling data

getting started 5-27
multidimensional arrays 4-9
multiple data sets

plotting 3-58
multiple plots per figure 3-65
multivariate data

organizing 2-27

N
numbers 2-12

complex 2-13
floating-point 2-12

O
object oriented programming 4-33

object properties 3-88
objects

finding handles 3-93
graphics 3-86

online help 7-7
operators 2-13

colon 2-8
outliers

getting started 5-4
output

controlling format 2-31
suppressing 2-32

overlaying plots 3-63

P
path. See search path
periodogram 5-30
plot edit mode

description 3-24
plot function 3-57
Plot Selector tool

introduction to 3-15
plots

editing 3-24
plotting

adding legend 3-58
adding plots 3-63
basic 3-57
complex data 3-62
complex numbers 3-62
contours 3-63
editing 3-24
functions 3-57
line colors 3-59
line styles 3-59
lines and markers 3-60
mesh and surface 3-72
multiple data sets 3-58
multiple plots 3-65

Index-4

Index

overview 3-2
tools 3-10

polynomial regression
getting started 5-27

PostScript 3-83
preallocation 4-32
preprocessing data

getting started 5-3
present working directory. See current folder
presentation graphics 3-44
principal components 5-17
print function 3-82
print preview

using 3-49
printing

example 3-49
graphics 3-82

Profiler 7-41
program files

creating 4-20
function 4-20
scripts 4-20

Property Editor
interface 3-29

Property Inspector 3-26
using 3-26

publishing code files 7-33

Q
quitting MATLAB 1-8

R
reference pages 7-11
release notes 7-11
return function 4-8
running

functions 7-5
MATLAB 1-7

S
scalar expansion 2-28
scatter plot arrays

getting started 5-18
scientific notation 2-12
script files 4-20
scripts 4-21
search path 7-23
searching

Help browser 7-11
semicolon to suppress output 2-32
shutting down MATLAB 1-8
singular matrix 2-22
smoothing data

getting started 5-6
special constants

infinity 2-15
not-a-number 2-15

specialized graphs 3-64
Start button 7-3
starting MATLAB 1-7
statements

continuing on multiple lines 2-33
executing 4-28

strings
concatenating 4-14

structures 4-16
subplot function 3-65
subscripting

with logical vectors 2-28
subscripts 2-7
sum function 2-5
summarizing data

getting started 5-10
suppressing output 2-32
surface plot 3-72
symmetric matrix 2-21

Index-5

Index

T
text

entering in MATLAB 4-13
TIFF 3-83
title

figure 3-68
toolboxes 1-2
tools in the desktop 7-1
transpose function 2-5
try function 4-8

U
userpath 7-23

V
Variable Editor 7-21
variables 2-11

global 4-26

local 4-23
vectorization 4-31
vectors 2-2

logical 2-28
preallocating 4-32

visibility of axes 3-68
visualizing data

getting started 5-14

W
while loop 4-6
windows

in MATLAB 1-7
windows for plotting 3-64
wireframe

surface 3-72
working directory. See current folder
workspace 7-20
Workspace browser 7-20

Index-6

	toc
	Getting Started
	Introduction
	Product Overview
	Overview of the MATLAB Environment
	The MATLAB System
	Desktop Tools and Development Environment
	Mathematical Function Library
	The Language
	Graphics
	External Interfaces

	Documentation
	Starting and Quitting the MATLAB Program
	Starting a MATLAB Session
	The Desktop

	Quitting the MATLAB Program
	Confirm Quitting

	Matrices and Arrays
	Matrices and Magic Squares
	About Matrices
	Entering Matrices
	sum, transpose, and diag
	Subscripts
	The Colon Operator
	The magic Function

	Expressions
	Variables
	Numbers
	Operators
	Functions
	Examples of Expressions

	Working with Matrices
	Generating Matrices
	The load Function
	Saving Code to a File
	Concatenation
	Deleting Rows and Columns

	More About Matrices and Arrays
	Linear Algebra
	Arrays
	Building Tables

	Multivariate Data
	Scalar Expansion
	Logical Subscripting
	The find Function

	Controlling Command Window Input and Output
	The format Function
	Suppressing Output
	Entering Long Statements
	Command Line Editing

	Graphics
	Overview of Plotting
	Plotting Process
	Creating a Graph
	Exploring Data
	Editing the Graph Components
	Annotating Graphs
	Printing and Exporting Graphs
	Adding and Removing Figure Content
	Saving Graphs for Reuse

	Graph Components
	Figure Tools
	Accessing the Tools
	Figure Toolbars
	Plotting Tools
	Using Plotting Tools and MATLAB Code

	Arranging Graphs Within a Figure
	Choosing a Type of Graph to Plot
	Creating Graphs with the Plot Selector
	Creating Graphs with the Plot Catalog

	Editing Plots
	Plot Edit Mode
	Enabling Plot Edit Mode
	Setting Object Properties
	Using the Property Editor
	Accessing Properties with the Property Inspector

	Using Functions to Edit Graphs

	Some Ways to Use Plotting Tools
	Plotting Two Variables with Plotting Tools
	Changing the Appearance of Lines and Markers
	Adding More Data to the Graph
	Changing the Type of Graph
	Modifying the Graph Data Source
	Providing New Values for the Data Source

	Preparing Graphs for Presentation
	Annotating Graphs for Presentation
	Printing the Graph
	Exporting the Graph
	Specifying the Size of the Graph
	Specifying the Font Size
	Selecting the File Format

	Using Basic Plotting Functions
	Creating a Plot
	Plotting Multiple Data Sets in One Graph
	Specifying Line Styles and Colors
	Plotting Lines and Markers
	Placing Markers at Every Tenth Data Point

	Graphing Imaginary and Complex Data
	Adding Plots to an Existing Graph
	Figure Windows
	Clearing the Figure for a New Plot

	Displaying Multiple Plots in One Figure
	Controlling the Axes
	Setting Axis Limits
	Setting the Axis Aspect Ratio
	Setting Axis Visibility
	Setting Grid Lines

	Adding Axis Labels and Titles
	Saving Figures
	Saving Workspace Data
	Generating MATLAB Code to Recreate a Figure
	Saving Figures That Are Compatible with the Previous MATLAB Soft

	Creating Mesh and Surface Plots
	About Mesh and Surface Plots
	Visualizing Functions of Two Variables
	Example — Graphing the sinc Function
	Example — Colored Surface Plots
	Making Surfaces Transparent
	Illuminating Surface Plots with Lights
	Manipulating the Surface

	Plotting Image Data
	About Plotting Image Data
	Reading and Writing Images

	Printing Graphics
	Overview of Printing
	Printing from the File Menu
	Exporting the Figure to a Graphics File
	Using the Print Command

	Understanding Handle Graphics Objects
	Using the Handle
	Graphics Objects
	Key Graphics Objects
	Creating Objects
	Functions for Working with Objects

	Setting Object Properties
	Setting Properties from Plotting Commands
	Setting Properties of Existing Objects
	Setting Multiple Property Values

	Specifying the Axes or Figure
	Finding the Handles of Existing Objects
	Finding All Objects of a Certain Type
	Finding Objects with a Particular Property
	Limiting the Scope of the Search
	Using findobj as an Argument

	Programming
	Flow Control
	Conditional Control — if, else, switch
	Array Comparisons in Conditional Statements

	Loop Control — for, while, continue, break
	for
	while
	continue
	break

	Error Control — try, catch
	try

	Program Termination — return
	return

	Other Data Structures
	Multidimensional Arrays
	Cell Arrays
	Characters and Text
	Structures
	Dynamic Field Names

	Scripts and Functions
	Overview
	Scripts
	Functions
	Types of Functions
	Anonymous Functions
	Primary and Subfunctions
	Private Functions
	Nested Functions
	Function Overloading

	Global Variables
	Passing String Arguments to Functions
	Constructing String Arguments in Code

	The eval Function
	Function Handles
	Function Functions
	Vectorization
	Preallocation

	Object-Oriented Programming
	MATLAB Classes and Objects
	Learn About Defining MATLAB Classes

	Data Analysis
	Introduction
	Preprocessing Data
	Overview
	Loading the Data
	Missing Data
	Outliers
	Smoothing and Filtering

	Summarizing Data
	Overview
	Measures of Location
	Measures of Scale
	Shape of a Distribution

	Visualizing Data
	Overview
	2-D Scatter Plots
	3-D Scatter Plots
	Scatter Plot Arrays
	Exploring Data in Graphs

	Modeling Data
	Overview
	Polynomial Regression
	General Linear Regression

	Creating Graphical User Interfaces
	What Is GUIDE?
	Laying Out a GUI
	Starting GUIDE
	The Layout Editor

	Programming a GUI

	Desktop Tools and Development Environment
	Desktop Overview
	Introduction to the Desktop
	Arranging the Desktop
	Start Button

	Command Window and Command History
	Command Window
	Command History

	Getting Help
	Ways to Get Help
	Accessing Documentation, Examples, and Demos Using the Help Brow
	Types of Information in the Help Browser

	Searching for Documentation and Demos
	Browsing for Documentation and Demos
	Running Demos and Code in Examples
	Review the Workspace Before Running Demos and Code in Examples
	Running a Script Demo
	Running Code in the Documentation or a Demo

	Workspace Browser and Variable Editor
	Workspace Browser
	Variable Editor

	Managing Files in MATLAB
	How MATLAB Helps You Manage Files
	Making Files Accessible to MATLAB
	Using the Current Folder Browser to Manage Files
	More Ways to Manage Files

	Finding and Getting Files Created by Other Users — File Exchange
	Editor
	Editing MATLAB Code Files
	Identifying Problems and Areas for Improvement
	Publishing MATLAB Code Files

	Improving and Tuning Your MATLAB Programs
	Finding Errors Using the Code Analyzer Report
	Improving Performance Using the Profiler

	External Interfaces
	Programming Interfaces
	Call MATLAB Software from C/C++ and Fortran Programs
	Call C/C++ and Fortran Programs from MATLAB Command Line
	Call Sun Java Commands from MATLAB Command Line
	Call Functions in Shared Libraries
	Import and Export Data

	Interface to .NET Framework
	Component Object Model Interface
	Web Services
	Serial Port Interface

	Index

