Data Ana|95i5 N Geophgsics
ESCl 7205

Class 9

Bob Sma”ey

AWK

Computers make it easier to do a lot of things,
but most of the things they make it easier to do
clon't need to be done.

Anclg Rooneg

||u —

"Simple" awk examplc:

Sag | have some sac files with the horrid IRIS
DMC format file names

1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC

and it would rename it to something more “user
Hiendlg” like KMBO.LHZ to save on thing while
cﬂoiﬂg one of Chuck’s homeworks.

alpaca.540:> more rename.sh
#!/bin/sh

#to rename horrid iris dmc file names

#call with rename.sh A x y

#where A is the char string to match, x and y are the field
#numbers in the original file name you want to use in the
#final name, and using the period/dot for the field seperator

#eg if the file names look like
#1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC

#and you would ;ike to rename it KMBO.LHZ

#the 8th field is the station name, KMBO

#and the 10th field is the component name, LHZ

#so you would call rename.sh SAC 8 10

#(it will do it for all file names in your directory

#containing the string "SAC”) LooP 1S 1N Shén,

for file in "1ls -1 *$1*"

NOot awk.
s ot aw
mv $file “echo $file | nawk -F. '{print $'$2'"."$'$3'}'"
done

alpaca.541:>

string functions

index(months,mymonth)

Built-in string function index, returns the starting
Position ot the occurrence of a subs‘cring (the
second Parameter) in another string (the first
Parameter), or it will return 0 i the string isn't

found.

months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec”

000000000111111111122222222223333333333444444444
123456789012345678901234567890123456789012345678

d

print index(months, ”Aug”)
29

To get the number associated with the month
(based on the string with the 12 months) add 3 to
the index (29+3=%2) and divide bg 4 (B2/4=8, Aug

is 8t month).
The string months was designed so the
calculation gave the mont% number.

Good Place for tangent —
Functions (aka Subroutines)

We have used the word functions quite a]:)it) but
what are tlﬁeg (cléncinition with resPect to

Programming?)

Blocks of code that are semi»-inclepencient from
the rest of the program and can be used multiple
times and from multiple Places N a program
(sometimes including themselves — recursive) .

Théﬂ can also]DC USCCl ‘FOF Program organization.

<Placemark>
<name>PELD</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.67493000, -33.14318000,
</Point>
</Placemark>

0.0000</coordinates>

<Placemark>
<name>COGO</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.97526000, -31.15343000,
</Point>
</Placemark>

0.0000</coordinates>

This is a Picce of
kml code (the
|anguage of
Google Earth).
Notice that the
onlg ditterence
between what is in
the two boxes is
the stuft in red.

<Placemark>
<name>PELD</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.67493000, -33.14318000,
</Point>
</Placemark>

0.0000</coordinates>

<Placemark>
<name>COGO</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA|
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> -70.97526000, -31.15343000,
</Point>
</Placemark>

0.0000</coordinates>

This is a Prime
example of when
one would want to
use a subroutine
(umcortunately km
does not have
subroutines— but
we will Pretend it

does).

(soIn kml, it you have 500 Points
this code is repeatecl 500 times
with minor variations)

ttttttttttttttttttttttttttttttttt

<description><![CDATA[‘ ‘
<table width="580" cellpadding="0" cellspacing="0"> C I ea O unC lons
<tr>
<td align="left" valign="top">

/ /

<p>
Ztone.corors-o0000000° and subroutines is to
description
 P

</p>
write the code once

<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white"> 0
<tr>
<<<<< with some sort of
<<<<<<<<
/
<<<<<
Placeholder in the
<Point>
<coordinates> location</coordinates>
</Point> .t
c Par S.

Go back to calling routine

We will also need to put some wraPPing around it
(@ name, abilitg to get and return data from
ca“ing routine, etc.) and have a way to "call" it.

Function KML_Pooint (name, description ,location)

<Placemark>

<name>name</name>

<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA[

<table width="580" cellpadding="0" cellspacing="0">

<tr>
<td align="left" valign="top">
<p>

description

</p>

<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">
<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">
<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> location</coordinates>
</Point>
</Placemark>

Go back to calling routine

| et's say the
subroutine name is
KML_Point and it
takes) arguments, a
character string for
the name, a
character stri ng with
the description and a
character s’tring with
the location (lat,
|ong elevation) .

Function KML_Pooint (name, description ,location)

<Placemark>
<name>name</name>
<styleUrl>#CAPStyleMap</styleUrl>
<description><![CDATA[
<table width="580" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top">
<p>

description

</p>
<td width="10" align="left" valign="top"> </td>
<td align="right" valign="top">

<table border="0" cellspacing="0" cellpadding="0" bgcolor="white">

<tr>
</tr>
</table>
</td>
</tr>
</table>]]></description>
<Point>
<coordinates> location</coordinates>
</Point>
</Placemark>

Go back to calling routine

Somewhere in my program

Now 1n my program | can
call this "subroutine”
and don't have to
repeat all the common
inrormation.
An even better way to
o below is to have the
data in an array (soon)

Call KML Point("PELD","PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue","-70.67493000, -33.14318000, 0.0000")

COGO_Name="COGO"

COGO_Desc="COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti"

COGO_Loc="-70.97526000, -31.15343000, 0.0000"
Call KML_Point ($COGO_NAME, $COGO_Desc, $COGO_Loc)

ancl CIO a loo over the
elements in the array.

Recursion (just For fun 1Cor you out O{: the box
tl’winkers, or those of you who will do it
accident 5.)

definition of recursion.

Recursion: See "Recursion”.

. _—

Recursion.
A routine that calls itself.

Classic examlale — Factorial.

N!=N*(N-1)*(N-2)*..*¥2
For N=2
N!=1 for N=1
N!=1 for N=O0

N! undefined for N<1.

How to calculate.

Sag | have a routine NFact that calculates the
factorial of a number-

Recursion.

One Possible way to implement the Factorial
Functlon.

l\/\g main program will call the subroutine NFact
with the number N whose factorial | want.

Mg subroutine NFact will then do this.

| ook at the number-

ifitis 0 or 1, return 1.

fNis >2, calculate N*NFact (N-1)

Recursion.

So this is what would get done for n=4

NFact (4)
4*NFact(3)
4*3*Nfact(2)
4*3*2*Nfact (1)

dx3xIDx]

nd now, finall ,lcanev

definition of recursion.

Recursion: If you still don't getit, see
"Recursion”. .

Can also use subroutines to organize our
Program rather thanjus‘c For things you nave to
o lots of times.

This also allows you to easilg clnange the
calculation in the su?)routine bﬂjus’c re |aciﬂg it
(works for sing e use or multiple use suEroutines

— e.g. raytracer N INvVersion Program.)

Functions (aka Subroutines)
(nawkzﬂkigawk,notawk)

Format -~ "function”, then the name, and then
the parameters separatecl bg commas, inside
Parentlneses.

Followed bﬂ (1", the code block that contains the
actions that 9ou'cl like this function to execute.

function monthdigit (mymonth) {
return (index(months,mymonth)+3)/4

}

awk Proviclcs a "'return' statement that a”ows tl’lé
function to return a value.

function monthdigit (mymonth) {
return (index(months,mymonth)+3)/4

}

This function converts a month name in a §~let’cer
5tring format into its numeric ec]uivalent. For
example) this:

print monthdigit("Mar")
...will Print this:

3

Example

607 $ cat fntst.sh
#!/opt/local/bin/nawk -f
#return integer value of month, return 0 for "illegal" input
#legal input is 3 letter abbrev, first letter capitalized
{

if (NF = 1) {

print monthdigit(S$S1)

} else {

print;

}

}

function monthdigit (mymonth) ({
months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec";;

if (index(months,mymonth) == 0) {
return 0
else {

index (months, mymonth)+3) /4

E‘xamP|e
607 $ cat fntst.dat

Mar

Jun

JUN

608 S fntst.sh fntst.dat
3

6

0

609 $ cat callfntst.sh

#!/bin/sh

echo $1 is month number “echo $1 | fntst.sh"
610 $ callfntst.sh May

May is month number 5

611 $

substr(string,StartCharacter,NumberOfCharacters)
cut spechcic subset of characters from string

string: a string variable or a literal striz(g from
which a substring will be extracted.

StartCharacter: starting character Position.
NumberOfCharacters: maximum number

characters or |eng’th to extract.

(if length(string) is shorter than StartCharacter+NumberOfCharacters,
your result will be truncated.)

substr () won't mOCth%H‘)C original string, but
returns the su string instead.

Back to stri ngs
Sub-stri ngs

substr(string,StartCharacter,NumberOfCharacters)
oldstring=“How are you?”

newstr=substr(oldstring,9,3)

What is newstr in this example?

match () searches for a regular exPression.

match returns the startin% Position of the match,
or zero if no match is found, and sets two
variables called RsTART and RLENGTH.

RSTART contains the return value (thf: location of
the first match) . and RLENGTH sPechCies its span In
characters (or -1 if no match was found) .

string substitution
sub() and gsub().
Moclhcg the original string.
sub (regexp,replstring,mystring)

sub () finds the first sequence of characters in
mystring matching regexp, and replaces that
sequence with replstring.

gsub () Pemcorms a %‘lobal replace, swaPPing out
all matches in the string.

string substitution sub () and gsub ().

oldstring="How are you doing today?"
sub(/0o/,"0",oldstring)

print oldstring

HOw are you doing today?

oldstring="How are you doing today?"
gsub(/0o/,"0"”,0ldstring)

print oldstring

HOw are yOu dOing tOday?

Other stri ng functions

length : returns the number of characters in a
string

oldstring=“How are you?”

length(oldstring) # returns 12

tolower/toupper :converts string to all lower or
to all upper case

(coulcl use this to fix out Previous example to take Mag or MAY.)

Continuing with the features mentioned in the
introduction.

awk does arithmetic (integer, Hoating Point, and
some functions — sin, cos, sqrt, etc.) and |ogica|
oPerations.

Some of this looks like math in the shell, but ...

awk stores all variables as strings, but when math
Oﬁerators are appliecl, it converts the strings to
oating Point numbers if the string consists of
numeric characters (can be interl:)reted as a
number)

awk‘s numbers are sometimes called stringg
variables

Arithmetic Operators
All basic arithmetic is left to right assoclative
+ : addition
- . subtraction
* multiplica‘tion
/ - division
S . remainder or modulus
- :exponent

other standard C Programming operators (++,
I o)

Arithmetic Operators

.| awk '{print $6

Above is easy

,[$4/10., $3/10.,]"0.0"}" |..

) fields 4 and % divided }39 10

How about this

“awk '{print $3, $2, £(2009—$())/'$CIRCSC'}}'

SO.tmp"

(NF-2) is the number fields minus 2, then $ (NF-2)
is the value of the field in position (NF-2), which is

subtracted 1Crom

2009, then evergthing is divided

bﬂ SCIRCSC Passecl in from scril:)t.

Arithmetic Operators
Math functions

.| awk '{print $1%cos($2%0.01745)}'

Arguments to trig functions have to ecitied
in RADIANS, so it have clegrees, divide]:)3 t/180.

MAXDISP= awk '{print[sqrt($3A2+$4A2ﬂ}' SSAMDATA/
ARIA coseismic offsets.v0.3.table | sort -n -r |
head -1

a trick
if atieldis comPosecl of both strings and
numbers, you can multiplg the field bg | to remove
the string.

head test.tmp
2008/09/09 03:32:10 36.44EN:89.560W

1.5 9.4
1.8 2008/09/08 23:11:39 36.420N [89.510wWw 7.1
1.7 2008/09/08 19:44:29 36.360N [89.520W 8.2

awk '{print $4,S4*1}' test.tmp
36.440N 36.44
36.420N 36.42
36.360N 36.36

Selective execution

So far we have been Processin every line (using
the default test Pat‘cern which a ways tests true).

awk recognizes regular expressions and
conditionals at test patterns, which can be used
to selec‘ci\/elg execute awk Proceclures on the
selected records

Selective execution

Simple test for character strir;g /test pattern/,
it found, does stutt in {...}, from command line

root:x:0:1:Super-User:/:/sbin/sh

awk —F":" ' { print $1, $3}' /etc/passwd #reg expr
root 0

or within a scriPt

cat esciawkl.sh

#!/bin/sh

awk -F":" '|/root/| {print $1, S$3}'
cat /etc/passwd | esciawkl.sh

root 0

Use/reuse other UNIX features/tools to make
much more powerful selections.

Selective execution

Or using a scriphcile and inPut Hle

root:x:0:1:Super-User:/:/sbin/sh

S cat esciawkl.nawk
| /root/|{print $1, $3}

S esciawkl.sh -f esciawkl.nawk < /etc/passwd
root 0

Relationa

Relational ol:)erators re
Hi oPPosite of bas

Operators
urn 1 ik true and O it false

h/shell test command

All relational operators left to right associative

< :test For |ess than

<=:test For |ess than or cqual to

> . test For greater tl’)aﬂ

>= . test 1Cor greater than or equal to

== test For cqual to

= : test For not equal

Unlike baslm the comParison and relational
ol:)erators in awk don’t have different sgntax for
strings and numbers.

e: == onlg N awk

rather than == or —eq using test.

Boolean (Logical) OPerators

Boolean oPerators return 1 For true & 0O 1Cor False
Hi oPPosite of bash/she” test command

&& : logical AND; tests that both exPressions are
true

left to right associative

|| logical OR ; tests that one or both of the
expressions are true

left to right associative

! . |ogica| negation; tests that exPression s true

Selective execution
Boolean Expressions N test Pattern.

awk '((US/| | /US\|/)&&!/continuous/)&&(/BOLIVIA/||/BODEGA/ ||/
"SP/)'$SARGONLY' {print $3,$2, " 12 0 4 1 ", $1$5}' SGPSDATA

- have to escape the Pipe 59mbo|
(/\|us/||/Us\|/) - groupterms

/continuous/ - simple Pa’ttem match

Plus more self~-moditication

' SARGONLY' - One of ARGONLY=<CR> or ARGONLY='&&/
ARGENTINA/' make it up as you go along (First one Is nothing
second adds a test and Iogical to combine with evergthing In
pa rentheses).

Selective execution

Rclational) Boolean cxpressions in test pattern

. | awk '('SLATMIN'<=$2&&$2<='SLATMAX') {print
SO}' | ..

awk ' ('SLONMIN'<=$1)&&($S1<='SLONMAX')&&
('SLATMIN'<=$2)&&($2<='SLATMAX')&&
($10>='SMINMTEXP')&&S$3>50 {print $1, $2, $3, $4,
$5, $6, $7, $8, $9, $10, 'SMECAPRINT' }'
SHCMTDATA/SFMFILE

Also Passing shell variables into awk

Selective execution

Regular E‘xpressions N test Pattem.

awk '((/\|us/||/us\|/)&&!/continuous/)&&(/BOLIVIA/||/BODEGA/ ||/
*Sp/||/"AT[0-9]/|[/"RL[0-9]/) '$ARGONLY' {print $3,$2, " 12 0 4 1
", $1$5}" $GPSDATA

/"AT[0-9]/ - regular exPressions (beginning of line
- %, range of characters - [0-97)

Selective execution

shell variable in test Pattem.

awktst shal=\(\$3\<60\&\&\$4\>10\)
awk ''Snawktst shal' {print $0}'
Notice the escapes in the definition of the
variable awktst.

P

hese \ escape the (and S and & and get
stri DPCCl out bg the shell insidethe ' ' before
going to nawk.

Also notice thc c]uotes ' 'Snawktst shal' ..'

(more self moclifzging code)

Effect of \ and c]uotes.

513 $ awktst shal=\(\$3\<60\&\&\$4\>10\)
514 $ echo Sawktst shal
($3<60&&$4>10)
A” tlnc backslaslﬁes "go awag" when therc—: are no

c]uotes.

""he backslaslﬁes ﬁe‘c "consumecﬂ" bg the sl*we”
Qrotecting the fo owing metacharacter so it
"comes out'.

EHect of \ and quotes.

515 $ awktst shal="\(\$3\<60\&\&\$4\>10\)"
516 $ echo Sawktst shal

\($3\<60\&\&$4\>10\)

Tl’we " Protect most metaclﬁaracters From the

shell.

This keeps most the backslaslﬁes, but ".."
evaluates $ and ..., so the backslashes in front
of the $ go away, tlﬁeg get "consumed" bg the
she”, as theg Protect the s from the shell.

Effect of \ and cluotes.

517 $ awktst shal="\(\$3\<60\&\&\$4\>10\)"'
518 $ echo Sawktst shal
\(\$3\<60\&\&\$4\>10\)

519 $

Thc Protccts a” metacharacters From the

shell.

This |<<:<-:Ps all the backslashes.

||u —

Selective execution
New structure

conclitional—-assignmcnt exPression - "2

Test?true:false

.| awk '{print ($7>18072$7-3601$$7), $6,

$4/10., $3/10. /O .0 0.0 O%X\

Does the test $7>180, then Prmts out S7-360 i
true, (else) orS7 \nc false.
s inside the "Prmt ,

Write a file with nawk commands and execute it.

#!/bin/sh

#general set up

ROOT=$HOME

SAMDATA=$ROOT/geolfigs

ROOTNAME=$0_ ex

VELFILEROOT="echo $latestrtvel”

VELFILEEXT=report
VELFILE=S${SAMDATA}/${VELFILEROOT}.S${VELFILEEXT}

#set up for making gmt input file

ERRORSCALE=1.0

SEVENFLOAT="%f %f %f %f %f %f %f "

FORMATSS=$ {SEVENFLOAT}"%s %f %f %f 2£f\\\\n"
GMTTIMEERRSCFMT="\$2, \$3, \$4, \S$5, S{ERRORSCALE}*\$6, S{ERRORSCALE}*\
$7, \$8”

#make the station list

STNLIST="$SAMDATA/selplot S$SAMDATA/gpsplot.dat pcc”

#now make nawk file

echo $STNLIST {printf \"$SFORMATSS\", SGMTTIMEERRSCFMT, \$1, \$9,
SERRORSCALE, \$6, \$7 } > ${ROOTNAME}.nawk

#cat ${ROOTNAME}.nawk

#get data and process it
nawk -f S$SAMDATA/rtvel.nawk S$VELFILE | nawk -f ${ROOTNAME}.nawk

Notice all the “cscaping” (“\” character) in the
Shé” variable CléﬁﬂitiOﬂS (FORMATSS and GMTTIMEERRSCFMT)

and the echo.

Loo|< at the nawk File — 1t looses most cnc the
escapes.

The next slide shows the nawk file at the t_olg
and the outl:)ut of a Plgin the nawk file to an
iﬂPut data Ele at the bottom.

/ /
BASM/
CFAG/
DRAO/
GAS2/
HARX/
KOUR/
MAW1 /
PARC/
SANT/
UEPP/
{printf
$5, 1.0

| /ANT2/ | | /ANTC/
/BLSK/ | | /BOGT/
/COCR/ | | /CONZ/
/EISL/||/FORT/
/GAS3/ | |/GLPS/
/HUET/ | | /IGMO/
/LAJA/ | | /LHCL/
/MCM1/ | | /MCM4/
/PMON/ | | /PTMO/
/SYOG/ | | /TOW2/
/UNSA/ | | /VALP/
$6, 1.0$7, $8,

| / | /AREQ/ | | /AaScC1/ | |/AUTF/ ||/
/BOR4/||/BORC/||/BRAZ/||/CAS1/| |/
/COPO/ | |/CORD/ | |/COYQ/||/DAV1/| |/
/FREI/||/GALA/||/GASO/||/GAS1/ ||/
/GOUG/ | | /HARB/ | | /HARK/ | | /HART/ | |/
/IGM1/||/IQQE/||/IQTS/||/KERG/| |/
/LKTH/ | |/LPGS/||/MAC1/||/MARG/ | |/
/OHI2/||/OHIG/||/PALM/||/PARA/| |/
/PWMS/ | | /RIOG/ | |/RIOP/||/SALT/| |/
/TPYO/||/TRTL/||/TUCU/||/UDEC/| |/
/VESL/||/vVICO/||/HOB2/||/HRAO/ | |/DAVR/
$f %f %s %f %f %f %f\n", $2, $3, $4,
$1, $9, 1.0, $6, S$7 }

-78.071370 45.955800 -6.800000 -8.600000 0.040000 0.040000

0.063400
-70.418680 -23.
-0.308300 ANT?2

-71.532050 -37.
-0.339900 ANTC
-71.492800 -16.

-0.061900

-71.492790 -16.

-0.243900

12.296000 1.000000 0.040000 0.040000<J

696350 26.500000 8.800000 1.010000 1.010000
0.583000 1.000000 1.010000 1.010000<J
338700 15.000000 -0.400000 0.020000 0.040000
8.832000 1.000000 0.020000 0.040000<
465520 -9.800000 -13.000000 0.190000 0.120000
3.348000 1.000000 0.190000 0.120000<J
465510 14.100000 3.800000 0.030000 0.020000
7.161000 1.000000 0.030000 0.020000<J .

nawk '{print ($1>=0?$1:360+S$1)}"

Syntax: (test?stmtl:stmt2)

This will do a test

(in this case: $1>=0)

i true it will outl:)ut stmtl! s

(does this: nawk " {print S$1}’

it false it will outl:)ut stmt2 Géo+si)
{

(does this: nawk print 360+S1}’

(in this case we are changing longitudes from the range/format
-180<=10on<=180 to the range/format 0<=lon<=360)

Selective execution

S cat tmp
isn't that speciall!

$ cat tmp | nawk '$2=="that" {print $0}'
isn't that speciall!

$ cat tmp | nawk '{ if ($2=="that") print $0}'
isn't that speciall!

$ cat tmp | nawk '{ if ($2=="1I") print $0}'

LooPing Constructs in awk
awk |ool:> sgntax are very similar to C and Perl

while: continues to execute the block of code as
long as condition is true.

If not true on first test, which is done before oing

through the block, it will never 2o through block.
Do stuf in “block” between { ..}

while (x==y) {

block of commands

do/while
do the block of commands between { .. } and

while, while the test is true

block of commands

}[Wﬂiie.(X==y)J

The ditference between while (last slide) and do/
while (notice the while at the encl) is when the
condition is tested. It is tested lm to running

the block of commands for a while looP, but
tested after running the block of commands in a
do/while lool:) (so at least one triP throug}w the
block of commands will occur)

forICK”DS

The for |OOP, allows iteration,/ counting as one
executes the block of code in {..}.

It 1s one o1C t]’]c most common looP structures.

for (x=1; x<=NF; x++) {
block of commands

}

This is an extremelg useful / imPortant construct
as it allows aPPI ing the block of commands to
the elements omc an array

(at least numerical arrays with all the elements “filled-in?).

break ancﬂ continue
break: breaks out 01(: a IooP

continue: restarts at the beginning of the Ioop

x=1
while (1) {
if ((x == 4) {
X++
continue
}
print "iteration",x
if (x> 20) {
break

}

X++

if/else if/else]i)lOC‘(S

similar to bash but syntax s different (no then or
£1i, uses braces { . . . } to define block instead)

if (conditionall) {
block of commands

} else if (conditional2) {

];lc.)c]; of commands else 1f and
! olles else are oPtional

block of commands

}

](iou can have an if IooP w/0 anelse if orelse,
ut you can’t have anelse if orelse w/oan if

Example
Checkbook balancing program In awk

~ Simple tab-delimited text file into which recent
deposits and withdrawals are entered.

_ The idea is to hand this data file to an awk script

that would automatica”g add up all the amounts
and rePort the balance.

[nPut Hle format:
l:ields are seParatecJ bg one or more tabs.

After the date (Held 1, $1), there are two fields:
”exP beld" and “inc feld”.

When entering an expense, a four-letter nickname
is entered in the exp field, and a "~ (blank entrg}
in the inc tield.

When entering a Aefosit) a four-letter nickname is

entered in the inc field, and a "~ (blank entry) in
the exp field.

Here's what an expense (debit) looks like:

23 Aug 2000 [food -] _ Y Jimmy's Buffet 30.25

Here's what a cleposit looks like:

23 Aug 2000 [- inco] - Y Boss Man 2001.00
Fields
111111111112 = 3333 D 4 D 5 > 66666666 &> 7777777

Note, there are tabs (not sPaces) between the
fields, which you can't see in the clisl:)lag.

Now for the code

set up global variables

#1/usr/bin/awk -f
BEGIN {
FS="\t+"
months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"

}

#1...” allows execution clirectlg from shell.

BEGIN block ge’ts executecl]I)C]CO!”CE nawk starts
Processing our checkbook file.

Set FS to “\t+” (one or more tabs).

In addition, we define a string called months.

More functions/subroutines

three basic kinds of transactions, credit
(cloincome), debit (c:loexgense) and transter
(dotranster).

function doincome(mybalance) {
mybalance[curmonth,$3] += amount
mybalance[0,$3] += amount

}

function doexpense(mybalance) {
mybalance[curmonth,$2] -= amount
mybalance[0,$2] -= amount

}

function dotransfer(mybalance) {
mybalance[0,$2] -= amount
mybalance[curmonth,$2] -= amount

mybalance[0,$3] += amount
mybalance[curmonth,$3] += amount

The main code block will process each line of the
checkbook file sequentia”g, ca”ing one of these
functions so that the aPProPriate transactions
are recorded in an awk array.

All three functions ac:cel:)t one argument, called
mgbalance.

mgbalance s a placeholder for a two-dimensional
array, which we'll pass in as an argument.

We will be storing the data in a 2-dimensiona
“arrag”.

What is an “arrag”’:’

An array s a table of values, called elements.

The elements of an arraﬁ are distinguishecl by
their indices.

Indices in awk may be either numbers or strings.
(arrags are "associative", not numerical)

(as awk maintains a sinigle set of names for naming variables) arrays and Functions, you
cannot have a variab e ancl an array with the same name in the same awk Program.)

awk arrags

numerical array indices in awk start at| (in most
comPuter pro ramming |anguages, exccl:)t fortran
and matlab, arrays start at O)

arrays are commoniy indexed Zﬂ numbers, but in
awk, theg can be indexe }39 strings

to cxplici‘cl set an arra{jxj element, use brackets to
spcchc which index of the array you are setting

myarray[1l]=*7jim” #note, strings appear in quotes
myarray[2]=456

or

myarray[“name”]=*jim” #index strings appear in quotes too

or

for (X in myarray) {
print myarray[Xx]

}

x?@tﬁ set to an index variable bﬂ use of the in
unction, but the access order of the index
variables is random

Arrags IN awk supemciciang resemble arrays 18
other Pro;:gramming lan uz{ajges; but there are
undamental ditferences.

The most fundamental or signhcicant ditference is
that any number or string may]:)c usecl as an
array index in awk, notjust consecutive integers.

(in the end in awk, array indicies, even numerical ones, are strings)

In awk, you also don't need to sl:)ec:hcy the size of
an array before you start to use it.

Arrags iN awk are associative.
This means that each array is a collection of Pairs:
an index, and its corresponding array element
value:

Element 4 Value 30
Element 2 Value "foo"
Element 1 Value 8
Element 3 Value ""

The Pairs are shown injumbled order because the
array index order is irrelevant and has nothing to
do with storage N memory.

One acivantage of associative arrays is that new
Pairs can be added at any time.
Aclcling a 10th element whose value is "number ten”
to our examl:)le array.

Element 10 Value "number ten”
Element 4 Value 30

Element 2 Value "foo"
Element 1 Value 8

Element 3 Value ""

Now the array is sparse, WI’IiChJUSt means some

indices are missing: it has elements 1 through 4
and 10, but doesn't have elements 5 throug 9.

Indices of associative arrays don't have to be
Positive integers.
Any number, or even a string, can be an index.
Here 1s an array which translates words from
English into French:

Element "dog" Value "chien"
Element "cat" Value "chat"
Element "one" Value "un"
Element 1 Value "un”

We use the number one in each language sl:)e”ecL
out and in numeric form--a single arrjy can have
both numbers and strings as indices.

(arrag subscripts in awk are actua y alwags strings)

The Principal way of usin%an array is to refer to
one of its elements.

An array reference is an exPression which looks

like this:

array[index]
Here, array is the name of an array.

The exPression index is the index of the element
omc the array that you want.

Arrag elements are assigned Valuesjust like awk
variables:

array[subscript] = value

array IS the name oggour array.

subscript is the index of the element of the array
that you want to assign a value.

value is the value you are assigﬂing to that
element cnc the array.

mi5~indexing of arrays (when theg are indexed bg
integers) is one of the most common]:)ugs in
Programming.

hcgou mis-index an arr.zy N awk, itjust makes a
new element with that index and a null value. wastes

space ancl cloes not return value you were trging to obtain.)

To explicitlg set an array elementj use brackets to

/

specncy which index of the array you are setting.

animals["dog"] = "perro"
animals["cat"] = "gato"
stuff[l]=1

stuff[4]=4

stuff[-1]=-1

stuff[0]=0

print animals["dog"]
print stuff[1l]

print stuff[2]
print stuff[3]

)
IR Reference to elements that don’t

prJ:_nt stuff[-1] exist
print stuff[0]

}

Execute the nawk scril:)t

smalley$S nawk -f arrays.nawk
perro

Null output for the ones that don’t exist

smalley$

to delete an array element, use the delete
command

delete myarray[1l]

