
Data Analysis in Geophysics
ESCI 7205

Class 9

Bob Smalley

AWK

Computers make it easier to do a lot of things,
but most of the things they make it easier to do

don't need to be done.

Andy Rooney

"Simple" awk example:

Say I have some sac files with the horrid IRIS
DMC format file names

1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC!

and it would rename it to something more “user
friendly” like KMBO.LHZ to save on typing while

doing one of Chuck’s homeworks.

alpaca.540:> more rename.sh!
#!/bin/sh!
!
#to rename horrid iris dmc file names!
!
#call with rename.sh A x y!
#where A is the char string to match, x and y are the field!
#numbers in the original file name you want to use in the!
#final name, and using the period/dot for the field seperator!
!
#eg if the file names look like!
#1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC!
#and you would ;ike to rename it KMBO.LHZ!
#the 8th field is the station name, KMBO!
#and the 10th field is the component name, LHZ!
#so you would call rename.sh SAC 8 10!
#(it will do it for all file names in your directory!
#containing the string "SAC”)!
!
for file in `ls -1 *$1*`!
do!
mv $file `echo $file | nawk -F. '{print $'$2'"."$'$3'}'`!
done!
alpaca.541:>

Loop is in Shell,
not awk.

string functions

index(months,mymonth)!

Built-in string function index, returns the starting
position of the occurrence of a substring (the
second parameter) in another string (the first
parameter), or it will return 0 if the string isn't

found.

months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec”!
!
!
 000000000111111111122222222223333333333444444444!
 123456789012345678901234567890123456789012345678!

 é

print index(months,”Aug”)!
29!

To get the number associated with the month

(based on the string with the 12 months) add 3 to
the index (29+3=32) and divide by 4 (32/4=8, Aug

is 8th month).

The string months was designed so the
calculation gave the month number.

Good place for tangent –

Functions (aka Subroutines)

We have used the word functions quite a bit, but
what are they (definition with respect to

programming?)

Blocks of code that are semi-independent from
the rest of the program and can be used multiple

times and from multiple places in a program
(sometimes including themselves – recursive).

They can also be used for program organization.

<Placemark>!
 <name>PELD</name>!
 <styleUrl>#CAPStyleMap</styleUrl>!
 <description><![CDATA[!
<table width="580" cellpadding="0" cellspacing="0">!
 <tr>!
 <td align="left" valign="top">!
 <p>!
 !
PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue!
!
 </p>!
 <td width="10" align="left" valign="top"> </td>!
 <td align="right" valign="top">!
 <table border="0" cellspacing="0" cellpadding="0" bgcolor="white">!
 <tr>!
 </tr>!
 </table>!
 </td>!
 </tr>!
</table>]]></description>!
 <Point>!
<coordinates> -70.67493000, -33.14318000, 0.0000</coordinates>!
 </Point>!
 </Placemark>!
 <Placemark>!
 <name>COGO</name>!
 <styleUrl>#CAPStyleMap</styleUrl>!
 <description><![CDATA[!
<table width="580" cellpadding="0" cellspacing="0">!
 <tr>!
 <td align="left" valign="top">!
 <p>!
 !
COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti!
!
 </p>!
 <td width="10" align="left" valign="top"> </td>!
 <td align="right" valign="top">!
 <table border="0" cellspacing="0" cellpadding="0" bgcolor="white">!
 <tr>!
 </tr>!
 </table>!
 </td>!
 </tr>!
</table>]]></description>!
 <Point>!
<coordinates> -70.97526000, -31.15343000, 0.0000</coordinates>!
 </Point>!
 </Placemark>!

This is a piece of
kml code (the
language of
Google Earth).
Notice that the
only difference
between what is in
the two boxes is
the stuff in red.

<Placemark>!
 <name>PELD</name>!
 <styleUrl>#CAPStyleMap</styleUrl>!
 <description><![CDATA[!
<table width="580" cellpadding="0" cellspacing="0">!
 <tr>!
 <td align="left" valign="top">!
 <p>!
 !
PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue!
!
 </p>!
 <td width="10" align="left" valign="top"> </td>!
 <td align="right" valign="top">!
 <table border="0" cellspacing="0" cellpadding="0" bgcolor="white">!
 <tr>!
 </tr>!
 </table>!
 </td>!
 </tr>!
</table>]]></description>!
 <Point>!
<coordinates> -70.67493000, -33.14318000, 0.0000</coordinates>!
 </Point>!
 </Placemark>!
 <Placemark>!
 <name>COGO</name>!
 <styleUrl>#CAPStyleMap</styleUrl>!
 <description><![CDATA[!
<table width="580" cellpadding="0" cellspacing="0">!
 <tr>!
 <td align="left" valign="top">!
 <p>!
 !
COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti!
!
 </p>!
 <td width="10" align="left" valign="top"> </td>!
 <td align="right" valign="top">!
 <table border="0" cellspacing="0" cellpadding="0" bgcolor="white">!
 <tr>!
 </tr>!
 </table>!
 </td>!
 </tr>!
</table>]]></description>!
 <Point>!
<coordinates> -70.97526000, -31.15343000, 0.0000</coordinates>!
 </Point>!
 </Placemark>!

This is a prime
example of when
one would want to
use a subroutine
(unfortunately kml
does not have
subroutines– but
we will pretend it
does).

(so in kml, if you have 500 points
this code is repeated 500 times
with minor variations)

Define it (define inputs)!
!
<Placemark>!
 <name>name</name>!
 <styleUrl>#CAPStyleMap</styleUrl>!
 <description><![CDATA[!
<table width="580" cellpadding="0" cellspacing="0">!
 <tr>!
 <td align="left" valign="top">!
 <p>!
 !
description!
!
 </p>!
 <td width="10" align="left" valign="top"> </td>!
 <td align="right" valign="top">!
 <table border="0" cellspacing="0" cellpadding="0" bgcolor="white">!
 <tr>!
 </tr>!
 </table>!
 </td>!
 </tr>!
</table>]]></description>!
 <Point>!
<coordinates> location</coordinates>!
 </Point>!
 </Placemark>!
!
Go back to calling routine!
!
!

We will also need to put some wrapping around it
(a name, ability to get and return data from
calling routine, etc.) and have a way to "call" it.

The idea of functions
and subroutines is to
write the code once
with some sort of
placeholder in the
red parts.

Function KML_Pooint (name, description ,location)!
!
<Placemark>!
 <name>name</name>!
 <styleUrl>#CAPStyleMap</styleUrl>!
 <description><![CDATA[!
<table width="580" cellpadding="0" cellspacing="0">!
 <tr>!
 <td align="left" valign="top">!
 <p>!
 !
description!
!
 </p>!
 <td width="10" align="left" valign="top"> </td>!
 <td align="right" valign="top">!
 <table border="0" cellspacing="0" cellpadding="0" bgcolor="white">!
 <tr>!
 </tr>!
 </table>!
 </td>!
 </tr>!
</table>]]></description>!
 <Point>!
<coordinates> location</coordinates>!
 </Point>!
 </Placemark>!
!
Go back to calling routine!
!
!

Let's say the
subroutine name is
KML_Point and it
takes 3 arguments, a
character string for
the name, a
character string with
the description and a
character string with
the location (lat,
long, elevation).

Function KML_Pooint (name, description ,location)!
!
<Placemark>!
 <name>name</name>!
 <styleUrl>#CAPStyleMap</styleUrl>!
 <description><![CDATA[!
<table width="580" cellpadding="0" cellspacing="0">!
 <tr>!
 <td align="left" valign="top">!
 <p>!
 !
description!
!
 </p>!
 <td width="10" align="left" valign="top"> </td>!
 <td align="right" valign="top">!
 <table border="0" cellspacing="0" cellpadding="0" bgcolor="white">!
 <tr>!
 </tr>!
 </table>!
 </td>!
 </tr>!
</table>]]></description>!
 <Point>!
<coordinates> location</coordinates>!
 </Point>!
 </Placemark>!
!
Go back to calling routine!
!
!
!
. !
!
Somewhere in my program!
!
Call KML_Point("PELD","PELD -33.14318 -70.67493 US|CAP [5] 1993 1997 1998 1999 2003 CHILE OKRT Peldehue","-70.67493000, -33.14318000, 0.0000")!
COGO_Name="COGO"!
COGO_Desc="COGO -31.15343 -70.97526 US|CAP [4] 1993 1996 2003 2008 CHILE OKRT Cogoti"!
COGO_Loc="-70.97526000, -31.15343000, 0.0000"!
Call KML_Point($COGO_NAME,$COGO_Desc,$COGO_Loc)!
!

Now in my program I can
call this "subroutine"
and don't have to
repeat all the common
information.

An even better way to
do below is to have the
data in an array (soon)

and do a loop over the
elements in the array.

Recursion (just for fun for you out of the box
thinkers, or those of you who will do it

accidently.)

definition of recursion.

Recursion: See "Recursion".

Recursion.

A routine that calls itself.

Classic example – Factorial.

N!=N*(N-1)*(N-2)*…*2!
For N≥2!

N!=1 for N=1!
N!=1 for N=0!

!

N! undefined for N<1.!

How to calculate.

Say I have a routine NFact that calculates the
factorial of a number.

Recursion.

One possible way to implement the Factorial
function.

My main program will call the subroutine NFact
with the number N whose factorial I want.

My subroutine NFact will then do this.

Look at the number.

If it is 0 or 1, return 1.

If N is ≥2, calculate N*NFact(N-1)!

Recursion.

So this is what would get done for N=4!

NFact(4)!
!

4*NFact(3)!
!

4*3*Nfact(2)!
!

4*3*2*Nfact(1)!
!

4*3*2*1!
!

And now, finally, I can evaluate it.

definition of recursion.

Recursion: If you still don't get it, see
"Recursion". .

Can also use subroutines to organize your
program rather than just for things you have to

do lots of times.

This also allows you to easily change the
calculation in the subroutine by just replacing it

(works for single use or multiple use subroutines
– e.g. raytracer in inversion program.)

Functions (aka Subroutines)

(nawk and gawk, not awk)

Format -- "function", then the name, and then
the parameters separated by commas, inside

parentheses.

Followed by "{ }", the code block that contains the
actions that you'd like this function to execute.

function monthdigit(mymonth) {!

!return (index(months,mymonth)+3)/4!
}!

awk provides a "return" statement that allows the
function to return a value.

function monthdigit(mymonth) {!
!return (index(months,mymonth)+3)/4!

}!

This function converts a month name in a 3-letter
string format into its numeric equivalent. For

example, this:

print monthdigit("Mar")

....will print this:

3!

Example

607 $ cat fntst.sh!
#!/opt/local/bin/nawk -f!
#return integer value of month, return 0 for "illegal" input!
#legal input is 3 letter abbrev, first letter capitalized!
{!
 if (NF = 1) {!
 print monthdigit($1)!
 } else {!
 print;!
 }!
}!
!
function monthdigit(mymonth) {!
months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec";;!
if (index(months,mymonth) == 0) {!
return 0!
} else {!
return (index(months,mymonth)+3)/4!
}!
}!

Example

607 $ cat fntst.dat!
Mar!
Jun!
JUN!
608 $ fntst.sh fntst.dat!
3!
6!
0!
609 $ cat callfntst.sh!
#!/bin/sh!
echo $1 is month number `echo $1 | fntst.sh`!
610 $ callfntst.sh May!
May is month number 5!
611 $!
!

substr(string,StartCharacter,NumberOfCharacters)!

cut specific subset of characters from string

string: a string variable or a literal string from
which a substring will be extracted.

StartCharacter: starting character position.

NumberOfCharacters: maximum number

characters or length to extract.

(if length(string) is shorter than StartCharacter+NumberOfCharacters,

your result will be truncated.)

substr() won't modify the original string, but
returns the substring instead.

Back to strings

Sub-strings

substr(string,StartCharacter,NumberOfCharacters)!

oldstring=“How are you?”!

newstr=substr(oldstring,9,3)!

What is newstr in this example?

 match() searches for a regular expression.

match returns the starting position of the match,
or zero if no match is found, and sets two

variables called RSTART and RLENGTH.

RSTART contains the return value (the location of
the first match), and RLENGTH specifies its span in

characters (or -1 if no match was found).

string substitution

sub() and gsub().

Modify the original string.

sub(regexp,replstring,mystring)!

sub() finds the first sequence of characters in
mystring matching regexp, and replaces that

sequence with replstring.

gsub() performs a global replace, swapping out
all matches in the string.

string substitution sub() and gsub().

oldstring="How are you doing today?"!
sub(/o/,"O",oldstring)!
print oldstring ! !!
HOw are you doing today?!
!
oldstring="How are you doing today?"!
gsub(/o/,"O”,oldstring)!
print oldstring!
HOw are yOu dOing tOday?!

Other string functions

length : returns the number of characters in a
string

oldstring=“How are you?”

length(oldstring) # returns 12!
!
!

tolower/toupper : converts string to all lower or
to all upper case

(could use this to fix out previous example to take May or MAY.)

Continuing with the features mentioned in the
introduction.

awk does arithmetic (integer, floating point, and
some functions – sin, cos, sqrt, etc.) and logical

operations.

Some of this looks like math in the shell, but ...

awk does floating point math!!!!!

awk stores all variables as strings, but when math
operators are applied, it converts the strings to
floating point numbers if the string consists of

numeric characters (can be interpreted as a
number)

awk‘s numbers are sometimes called stringy
variables

Arithmetic Operators

All basic arithmetic is left to right associative

+ : addition

- : subtraction

* : multiplication

 / : division

% : remainder or modulus

^ : exponent

-  other standard C programming operators (++,
--, =+,…)

Arithmetic Operators

…| awk '{print $6, $4/10., $3/10., "0.0"}' |…!
!

Above is easy, fields 4 and 3 divided by 10

How about this

!

`awk '{print $3, $2, (2009-$(NF-2))/'$CIRCSC' }'!
 $0.tmp`!
!

(NF-2) is the number fields minus 2, then $(NF-2)
is the value of the field in position (NF-2), which is
subtracted from 2009, then everything is divided

by $CIRCSC passed in from script.!
!

Arithmetic Operators

Math functions

…| awk '{print $1*cos($2*0.01745)}'!
!

Arguments to trig functions have to be specified
in RADIANS, so if have degrees, divide by π/180.

!

MAXDISP=`awk '{print sqrt(3^2+4^2)}' $SAMDATA/
ARIA_coseismic_offsets.v0.3.table | sort -n -r |
head -1`!

a trick

If a field is composed of both strings and

numbers, you can multiply the field by 1 to remove
the string.

% head test.tmp!
 1.5 2008/09/09 03:32:10 36.440N 89.560W 9.4!
 1.8 2008/09/08 23:11:39 36.420N 89.510W 7.1!
 1.7 2008/09/08 19:44:29 36.360N 89.520W 8.2!
!
% awk '{print $4,$4*1}' test.tmp!
36.440N 36.44!
36.420N 36.42!
36.360N 36.36!

Selective execution

So far we have been processing every line (using
the default test pattern which always tests true).

awk recognizes regular expressions and
conditionals at test patterns, which can be used

to selectively execute awk procedures on the
selected records

Selective execution

Simple test for character string /test pattern/,
if found, does stuff in {…}, from command line!

root:x:0:1:Super-User:/:/sbin/sh

% awk –F":" '/root/ { print $1, $3}' /etc/passwd #reg expr!
root 0!

or within a script

$ cat esciawk1.sh!
#!/bin/sh!
awk -F":" '/root/ {print $1, $3}'!
$ cat /etc/passwd | esciawk1.sh!
root 0!

!

Use/reuse other UNIX features/tools to make
much more powerful selections.

!

Selective execution

Or using a scriptfile and input file

!

root:x:0:1:Super-User:/:/sbin/sh

!
$ cat esciawk1.nawk!
/root/ {print $1, $3}!
$ esciawk1.sh -f esciawk1.nawk < /etc/passwd!
root 0!

!
!

Relational Operators

Relational operators return 1 if true and 0 if false

!!! opposite of bash/shell test command

All relational operators left to right associative

< : test for less than

<= : test for less than or equal to

> : test for greater than

>= : test for greater than or equal to

== : test for equal to

!= : test for not equal

Unlike bash, the comparison and relational
operators in awk don’t have different syntax for

strings and numbers.

ie: == only in awk

rather than == or -eq using test.

Boolean (Logical) Operators

Boolean operators return 1 for true & 0 for false

!!! opposite of bash/shell test command

&& : logical AND; tests that both expressions are
true

left to right associative

|| : logical OR ; tests that one or both of the
expressions are true

left to right associative

! : logical negation; tests that expression is true

Selective execution

Boolean Expressions in test pattern.

awk '((/\|US/||/US\|/)&&!/continuous/)&&(/BOLIVIA/||/BODEGA/||/
^SP/)'$ARGONLY' {print $3,$2, " 12 0 4 1 ", $1$5}' $GPSDATA!
!

\| - have to escape the pipe symbol

(/\|US/||/US\|/) – group terms

/continuous/ - simple pattern match

Plus more self-modification

'$ARGONLY' - One of ARGONLY=<CR> or ARGONLY='&&/
ARGENTINA/' make it up as you go along (first one is nothing,

second adds a test and logical to combine with everything in
parentheses).

Selective execution

Relational, Boolean expressions in test pattern

… | awk '('$LATMIN'<=$2&&$2<='$LATMAX') {print
$0}' | …!
!

awk '('$LONMIN'<=$1)&&($1<='$LONMAX')&&
('$LATMIN'<=$2)&&($2<='$LATMAX')&&
($10>='$MINMTEXP')&&$3>50 {print $1, $2, $3, $4,
$5, $6, $7, $8, $9, $10, '$MECAPRINT' }'
$HCMTDATA/$FMFILE!
!

Also passing shell variables into awk

Selective execution

Regular Expressions in test pattern.

awk '((/\|US/||/US\|/)&&!/continuous/)&&(/BOLIVIA/||/BODEGA/||/
^SP/||/^AT[0-9]/||/^RL[0-9]/)'$ARGONLY' {print $3,$2, " 12 0 4 1
", $1$5}' $GPSDATA!
!

/^AT[0-9]/ - regular expressions (beginning of line
- ^, range of characters - [0-9])

Selective execution

shell variable in test pattern.

!
awktst_shal=\(\$3\<60\&\&\$4\>10\)!
awk ''$nawktst_shal' {print $0}'!
!

Notice the escapes in the definition of the
variable awktst.

These \ escape the (and $ and & and get
stripped out by the shell inside the ' ' before

going to nawk.

!

Also notice the quotes ''$nawktst_shal' …'!
(more self modifying code)!

Effect of \ and quotes.

513 $ awktst_shal=\(\$3\<60\&\&\$4\>10\)!
514 $ echo $awktst_shal!
($3<60&&$4>10)!
!

All the backslashes "go away" when there are no
quotes.

The backslashes get "consumed" by the shell
protecting the following metacharacter so it

"comes out".

Effect of \ and quotes.

!
515 $ awktst_shal="\(\$3\<60\&\&\$4\>10\)"!
516 $ echo $awktst_shal!
\($3\<60\&\&$4\>10\)!

!
The "…" protect most metacharacters from the

shell.

This keeps most the backslashes, but "…"
evaluates $ and `…`, so the backslashes in front

of the $ go away, they get "consumed" by the
shell, as they protect the $ from the shell.!

Effect of \ and quotes.

!
517 $ awktst_shal='\(\$3\<60\&\&\$4\>10\)'!
518 $ echo $awktst_shal!
\(\$3\<60\&\&\$4\>10\)!
519 $!
!

The '…' protects all metacharacters from the
shell.

This keeps all the backslashes.!

Selective execution

New structure

conditional-assignment expression - "?:"

Test?true:false

…| awk '{print ($7>180?$7-360:$7), $6,
$4/10., $3/10., "0.0 0.0 0.0"}' |…!
!
Does the test $7>180, then prints out $7-360 if

true, (else) or $7 if false.

Is inside the "print".

Write a file with nawk commands and execute it.

#!/bin/sh!
#general set up!
ROOT=$HOME!
SAMDATA=$ROOT/geolfigs!
ROOTNAME=$0_ex!
VELFILEROOT=`echo $latestrtvel`!
VELFILEEXT=report!
VELFILE=${SAMDATA}/${VELFILEROOT}.${VELFILEEXT}!
#set up for making gmt input file!
ERRORSCALE=1.0!
SEVENFLOAT="%f %f %f %f %f %f %f "!
FORMATSS=${SEVENFLOAT}"%s %f %f %f %f\\\\n"!
GMTTIMEERRSCFMT="\$2, \$3, \$4, \$5, ${ERRORSCALE}*\$6, ${ERRORSCALE}*\
$7, \$8”!
#make the station list!
STNLIST=`$SAMDATA/selplot $SAMDATA/gpsplot.dat pcc`!
#now make nawk file!
echo $STNLIST {printf \"$FORMATSS\", $GMTTIMEERRSCFMT, \$1, \$9,
$ERRORSCALE, \$6, \$7 } > ${ROOTNAME}.nawk!
#cat ${ROOTNAME}.nawk!
!
#get data and process it!
nawk -f $SAMDATA/rtvel.nawk $VELFILE | nawk -f ${ROOTNAME}.nawk!

Notice all the “escaping” (“\” character) in the
shell variable definitions (FORMATSS and GMTTIMEERRSCFMT)

and the echo.!

Look at the nawk file – it looses most of the
escapes.

The next slide shows the nawk file at the top

and the output of applying the nawk file to an
input data file at the bottom.

/ALGO/||/ANT2/||/ANTC/||/ARE5/||/AREQ/||/ASC1/||/AUTF/||/
BASM/||/BLSK/||/BOGT/||/BOR4/||/BORC/||/BRAZ/||/CAS1/||/
CFAG/||/COCR/||/CONZ/||/COPO/||/CORD/||/COYQ/||/DAV1/||/
DRAO/||/EISL/||/FORT/||/FREI/||/GALA/||/GAS0/||/GAS1/||/
GAS2/||/GAS3/||/GLPS/||/GOUG/||/HARB/||/HARK/||/HART/||/
HARX/||/HUET/||/IGM0/||/IGM1/||/IQQE/||/IQTS/||/KERG/||/
KOUR/||/LAJA/||/LHCL/||/LKTH/||/LPGS/||/MAC1/||/MARG/||/
MAW1/||/MCM1/||/MCM4/||/OHI2/||/OHIG/||/PALM/||/PARA/||/
PARC/||/PMON/||/PTMO/||/PWMS/||/RIOG/||/RIOP/||/SALT/||/
SANT/||/SYOG/||/TOW2/||/TPYO/||/TRTL/||/TUCU/||/UDEC/||/
UEPP/||/UNSA/||/VALP/||/VESL/||/VICO/||/HOB2/||/HRA0/||/DAVR/
{printf "%f %f %f %f %f %f %f %s %f %f %f %f\n", $2, $3, $4,
$5, 1.0*$6, 1.0*$7, $8, $1, $9, 1.0, $6, $7 }!
!
-78.071370 45.955800 -6.800000 -8.600000 0.040000 0.040000
0.063400 ALGO 12.296000 1.000000 0.040000 0.040000⏎!
-70.418680 -23.696350 26.500000 8.800000 1.010000 1.010000
-0.308300 ANT2 0.583000 1.000000 1.010000 1.010000⏎!
-71.532050 -37.338700 15.000000 -0.400000 0.020000 0.040000
-0.339900 ANTC 8.832000 1.000000 0.020000 0.040000⏎!
-71.492800 -16.465520 -9.800000 -13.000000 0.190000 0.120000
-0.061900 ARE5 3.348000 1.000000 0.190000 0.120000⏎!
-71.492790 -16.465510 14.100000 3.800000 0.030000 0.020000
-0.243900 AREQ 7.161000 1.000000 0.030000 0.020000⏎	
 .	
 .	
 .!

nawk '{print ($1>=0?$1:360+$1)}’!

Syntax: (test?stmt1:stmt2)

This will do a test

(in this case: $1>=0)

If true it will output stmt1 ($1)

(does this: nawk '{print $1}’!

If false it will output stmt2 (360+$1)

(does this: nawk '{print 360+$1}’!

!
(in this case we are changing longitudes from the range/format

-180<=lon<=180 to the range/format 0<=lon<=360)!

Selective execution

$ cat tmp!
isn't that special!!
!
$ cat tmp | nawk '$2=="that" {print $0}'!
isn't that special!!
!
$ cat tmp | nawk '{ if ($2=="that") print $0}'!
isn't that special!!
!
$ cat tmp | nawk '{ if ($2=="I") print $0}'!
$!

Looping Constructs in awk

awk loop syntax are very similar to C and perl

while: continues to execute the block of code as
long as condition is true.

If not true on first test, which is done before going
through the block, it will never go through block.

Do stuff in “block” between { … }!

while (x==y) {!
!. . . !
!block of commands!
!. . .!

}!

do/while!
do the block of commands between { … } and

while, while the test is true

do {!

!. . .!
!block of commands!
!. . .!

} while (x==y)!

The difference between while (last slide) and do/
while (notice the while at the end) is when the
condition is tested. It is tested prior to running

the block of commands for a while loop, but
tested after running the block of commands in a
do/while loop (so at least one trip through the

block of commands will occur)

for loops

The for loop, allows iteration/counting as one
executes the block of code in {…}.

It is one of the most common loop structures.

for (x=1; x<=NF; x++) {!
!. . .!
!block of commands!
!. . .!

}!
!

This is an extremely useful/important construct
as it allows applying the block of commands to

the elements of an array

(at least numerical arrays with all the elements “filled-in”).

break and continue!

break: breaks out of a loop

continue: restarts at the beginning of the loop

x=1!
while (1) {!
!if (x == 4) {!
! !x++!
! !continue!
!}!
!print "iteration",x!
!if (x > 20) {!
! !break!
!}!
!x++!

}!

if/else if/else blocks

similar to bash but syntax is different (no then or
fi, uses braces { . . . } to define block instead)

if (conditional1) {!

. . .!
block of commands!
. . .!

} else if (conditional2) {!
. . .!
block of commands!
. . .!

} else {!
!. . . !
block of commands!
. . .!

}!
!

you can have an if loop w/o an else if or else,
but you can’t have an else if or else w/o an if!

else if and
else are optional

Example

Checkbook balancing program in awk!

- Simple tab-delimited text file into which recent
deposits and withdrawals are entered.

- The idea is to hand this data file to an awk script
that would automatically add up all the amounts

and report the balance.

Input file format:

Fields are separated by one or more tabs.

After the date (field 1, $1), there are two fields:
”exp field" and "inc field”.

When entering an expense, a four-letter nickname
is entered in the exp field, and a "-" (blank entry)

in the inc field.

When entering a deposit, a four-letter nickname is
entered in the inc field, and a "-" (blank entry) in

the exp field.

Here's what an expense (debit) looks like:

23 Aug 2000 !food !- !- !Y !Jimmy's Buffet ! !30.25!

Here's what a deposit looks like:

23 Aug 2000 !- ! !inco !- !Y ! Boss Man ! ! 2001.00!
!

Fields

11111111111è2 è 3333 è 4 è 5 è 66666666 è 7777777!

Note, there are tabs (not spaces) between the

fields, which you can’t see in the display.

Now for the code

set up global variables!
!

#!/usr/bin/awk -f!
BEGIN { ! ! ! ! !!

!FS="\t+"!
!months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"!

}!
!

"#!...” allows execution directly from shell.

BEGIN block gets executed before nawk starts
processing our checkbook file.

Set FS to "\t+” (one or more tabs).

In addition, we define a string called months.

More functions/subroutines

three basic kinds of transactions, credit
(doincome), debit (doexpense) and transfer

(dotransfer).

function doincome(mybalance) {!

!mybalance[curmonth,$3] += amount!
!mybalance[0,$3] += amount !!

}!
function doexpense(mybalance) {!

!mybalance[curmonth,$2] -= amount!
!mybalance[0,$2] -= amount !!

}!
function dotransfer(mybalance) {!

!mybalance[0,$2] -= amount!
!mybalance[curmonth,$2] -= amount!
!mybalance[0,$3] += amount!
!mybalance[curmonth,$3] += amount!

}!

The main code block will process each line of the
checkbook file sequentially, calling one of these
functions so that the appropriate transactions

are recorded in an awk array.

All three functions accept one argument, called
mybalance.

mybalance is a placeholder for a two-dimensional

array, which we'll pass in as an argument.

We will be storing the data in a 2-dimensional
“array”.

What is an “array”?

An array is a table of values, called elements.

The elements of an array are distinguished by
their indices.

Indices in awk may be either numbers or strings.

(arrays are "associative", not numerical)

(as awk maintains a single set of names for naming variables, arrays and functions, you
cannot have a variable and an array with the same name in the same awk program.)

awk arrays

numerical array indices in awk start at 1 (in most
computer programming languages, except fortran

and matlab, arrays start at 0)

arrays are commonly indexed by numbers, but in
awk, they can be indexed by strings

to explicitly set an array element, use brackets to
specify which index of the array you are setting

myarray[1]=“jim” #note, strings appear in quotes!
myarray[2]=456

or

myarray[“name”]=“jim” #index strings appear in quotes too!

or

!
for (x in myarray) { !!

! !print myarray[x]!
}!

x gets set to an index variable by use of the in
function, but the access order of the index

variables is random

!
!
!

Arrays in awk superficially resemble arrays in
other programming languages; but there are

fundamental differences.

The most fundamental or significant difference is
that any number or string may be used as an

array index in awk, not just consecutive integers.

(in the end in awk, array indicies, even numerical ones, are strings)

In awk, you also don't need to specify the size of

an array before you start to use it.

Arrays in awk are associative.

This means that each array is a collection of pairs:

an index, and its corresponding array element
value:

Element 4 Value 30!
Element 2 Value "foo"!
Element 1 Value 8!
Element 3 Value ""!

The pairs are shown in jumbled order because the
array index order is irrelevant and has nothing to

do with storage in memory.

One advantage of associative arrays is that new
pairs can be added at any time.

Adding a 10th element whose value is "number ten”

to our example array.

Element 10 Value "number ten"!
Element 4 Value 30!
Element 2 Value "foo"!
Element 1 Value 8!
Element 3 Value ""!

Now the array is sparse, which just means some
indices are missing: it has elements 1 through 4
and 10, but doesn't have elements 5 through 9.

Indices of associative arrays don't have to be
positive integers.

Any number, or even a string, can be an index.

Here is an array which translates words from

English into French:

!
Element "dog" Value "chien"!
Element "cat" Value "chat"!
Element "one" Value "un"!
Element 1 Value "un”!
!

We use the number one in each language spelled-
out and in numeric form--a single array can have

both numbers and strings as indices.

(array subscripts in awk are actually always strings)

The principal way of using an array is to refer to
one of its elements.

An array reference is an expression which looks

like this:

array[index]!

Here, array is the name of an array.

The expression index is the index of the element
of the array that you want.

Array elements are assigned values just like awk
variables:

array[subscript] = value!

array is the name of your array.

subscript is the index of the element of the array

that you want to assign a value.

value is the value you are assigning to that
element of the array.

mis-indexing of arrays (when they are indexed by
integers) is one of the most common bugs in

programming.

If you mis-index an array in awk, it just makes a
new element with that index and a null value. (Wastes

space and does not return value you were trying to obtain.)

To explicitly set an array element, use brackets to
specify which index of the array you are setting.

strings – when used as indices or values – have to
be in quotes

BEGIN {!
animals["dog"] = "perro"!
animals["cat"] = "gato"!
stuff[1]=1!
stuff[4]=4!
stuff[-1]=-1!
stuff[0]=0!
print animals["dog"]!
print stuff[1]!
print stuff[2]!
print stuff[3]!
print stuff[4]!
print stuff[-1]!
print stuff[0]!
 }!

Reference to elements that don’t

exist

Execute the nawk script

smalley$ nawk -f arrays.nawk!
perro!
1!
!
!
4!
-1!
0!
smalley$!

Null output for the ones that don’t exist

to delete an array element, use the delete
command

!
delete myarray[1]!

