Vol/ sure they re absorhny oy NI%
NU ®)

all of this?

Basics of UNIX commn 7
AWK

~GZ. T

Rec]uest on homeworks

MB‘(C surc 9OUF name Is on ever Page ou hancl

in (es

Please inc

Decia”g if not stapleﬂ toget er)

ude your username (9ou could even
use that as your namel).

Please include where I can find the files on the

computer (’tl’)is was not a Problem wl’wen We onlg
had the Sun's, but now | have to check 2

sgstems) .

Shell note — how to drive goursclmc crazy

Do this!

echo don’'t ever do this

The shell will take what you think is an
apostrophe as a sir;gle c]uote and will start
escal:)ing evcrgtlning rom there on to the next
single c]uote (or the end of the file if there are no
more single quotes) causing major Problems as
the quotes will not match (ancl fJI’]C error report
will come from a usua”g ood line of code where
the shell finds the next quote!).
it will take you forever to find this one.!

559 $ echo don't ever do this<CR>

> as the shell will not see the newline and stop input to echo <CR>
> until you enter another

dont ever do this

as the shell will not see the newline and stop input to echo
until you enter another

560 $

Notice there are no quotes in the outl:)ut (even
though there are two in the inPut).

S echo I\'d recommend you do this
I'd recommend you do this

Unless this does not work either (we will see more
about this later).

Output formattin g

Printin g

printf: shell command for formatted Printing

rd

S50 Far We have Just been copginﬁ stmq: From
standard-in, filés, Pipes, etc to the screen or
another file.

Sag | have a file with names and Pl‘xone numbers. |
would like to Print it out with Verticaug aligned
columns.

(so my Printout is not in the same format as the input fHle)

File contents: Desired display:
Py

Bob 4929 Bob 4929
Chuck 4882 Chuck 4882

printf

is a command from the C Programming language
to control Printiﬂg.

cat printex.sh
#!/bin/bash
printf "Hello world. \n" represents a newline
a="echo "Hello world." | wc | awk '{print $2}' °
b="echo "Hello world." | wc -w"
printf "This phrase contains %d words from printf\n" S$a
echo This phrase contains $b words from echo
printex.sh
Hello world.
This phrase contains 2 words from printf
This phrase contains 2 words from echo

#!/bin/bash

printf "Hello world. \n" # represents a newline
a="echo "Hello world." | wc | awk '{print $2}' °
b="echo "Hello world." | wc -w"

printf "This phrase contains %d words from printf\n" S$a

echo This phrase contains $b words from echo

We need the double c]uotes w . . » todehine
an argument (’che stuft inside the quotes) for
Prin’mc.

No Parenthesis, string to Print out In quotes,
followed]39 list of variables separatecl bg spaces.

#!/bin/bash

printf "Hello world.\n"

a="echo Hello world. | wec | awk '{print $2}' °
printf "This phrase contains %d words\n" Sa

The argument in double c:]uotcs has

- Re Ular text (“Hello world”, “This phrase contains)
P

- Some Funng new tl’wing - 2d — a format sPechCicr.

- The alreaclg known sPeciFication for a new line -
\n

#!/bin/bash

printf "Hello world.\n"
a="echo Hello world. | wec | awk '{print $2}' °
printf "This phrase contains %d words\n| S$a

We also have another argument, the Sa, which is a
shell variable, at the end.

Note that the items are delimited with spaces, not
commas.

#!/bin/bash
printf "Hello world.\n"

a="echo Hello world. | wc awk '{print $2}'|"
printf "This phrase contains %d words\n" Sa

We also have an examl:)le of awk (which can be
understood from the quick introduction given
Previouslg to allow awk use in the homework).

lgnoring the details. this line assigns the value of
the shell variable a to be the number of words in
the string “‘Hello world.” The variable a therefore
contains an integer value (as a character string).

536 S echo Sa

hello world

537 $ printf "number words in a, %d\n" “echo $a | wc -w"
number words in a, 2

Simple errors — it have more data to Print out e
without any switches Prints out ? items) than ‘Format SPCCiFiCrS (the ¢
things) , It repeats the "..." until it runs out of stufH to

rint (or the format sPechCier cannot Print the
data type at which Point it will complain).

538 $ printf "number words in a, %d\n" “echo $Sa | wC
number words in a, 1

number words in a, 2

number words in a, 12

539 $ printf "number words in a, %d %d\n" “echo $a | wc"
number words in a, 1 2

number words in a, 12 0

printf: format sPechCiers

How to sPechcg the format for Printing various
tgpes of things

printf "This phrase contains %d words\n" Sa

We are oing to Print out what is in the double
quotes | ling the $things with the values found
in the variables listed at the end.

printf: format 5Peciﬁer5

printf "This phrase contains %d words\n" $a
No Problem for evergthing but the 24d.

And what is that shell variable $a at the end?

printf: format 5Peciﬁer5

printf "This phrase contains| $d lwords\n"| Sa

The shell variable a contains the number of words
in “Hello Worlc” We want this (number}
information where the 2d is located in the format

specitication.

The 3d and the $a are “Pairecl”.

printf: format 5Pechciers

printf "This phrase contains| $d lwords\n"| Sa

The 2d format spechcier s used to control how
contents of the shell variablc) a, are Printed.

printf: format sl:)eciﬁers
SPechCy how to Print various tgl:)es of things
2d signed decimal integer

(The word decimal means base 10, as op osed to
octal — base 8, or hexadecimal — base 1 it does
not mean a number with a decimal Point.

The word integer means a whole number) no
decimal Point and fraction).

SO — a base 10 integer.

printf: format spechciers

Modhcging how decimal integers are Printed.

3<N>.<DIGITS>d

says use a field v characters wide, with p1cITS
digits (uses |eacling zeros to make it the specitied
number digits, DIGITS can be > N (in WI’)iCE\ case N

gets overridden), or DIGITS can be left out).

printf: format sPcchCiers

Spechcg how to Print various tgpes of things

printf "This phrase contains |%d words\n" |$a
This phrase contains 2 |words

printf "This phrase contains %3d words\n" $a
This phrase contains 2 |words

printf "This phrase contains [$3.0d words\n" [$Sa

This phrase contains 2 words

printf "This phrase contains $3.3d words\n! Sa
This phrase contains 002 %ords

printf "This phrase contains %3.4d words\n" Sa

This phrase contains 0002 words

printf: format speciﬁers

Specity how to print various tupes of things
pecty P yp g

0.

Print the associated argument as
Same as %d

Print the associated argument as
Print the associated argument as
x Print the associated argument as
with lower-case hex-digits (a-f)

o o o° o©
S O k-

o©

signed decimal number

unsigned octal number
unsigned decimal number
unsigned hexadecimal number

$X Same as %x, but with upper-case hex-digits (A-F)

o©

ov©

e Interpret associated argument as

o°

f Interpret & print associated argument as floating point number

double, print in <N>te<N> fmt

E Same as %e, but with an upper-case E in the printed format

ov o® o©° o©
()} Q) \Q

o©
(o)

o©
Q

printf: format spechciers

SPechCy how to Print various tgpes of things

Interprets associated argument as double, prints like %f or %e

Same as %g, but print it like &%E

Interprets the associated argument as character: only the
first character of a given argument is printed

Interprets the associated argument literally as string (bunch
of characters)

Interprets the associated argument as a string and interprets
escape sequences in it

Prints the associated argument in a format, that it can be re-
used as shell-input (escaped spaces etc..)

printf: format speciﬁers

Moditiers are sPechCiecl between the ¢ and the
character that sl:)echcies/ identifies the format:

<N> Any number-: sPechCies a minimum feld width,
if the text to Print IS 5ma”er, it's Paclclccl with
spaces

+ The asterisk: the width is gjven as an a:}ument
before the variable or string to be Printc . Usage - the

"*"conespondstothe”ZO”hﬂﬂmzexbeknw

printf "%$*s\n" 20 "test string"
test string
a="test string”
printf "%*s\n" $((11 + “echo Sa | wec -c~)) "sa"
test string

printf: format sl:)eciﬁers

Moditiers are sPechciecJ between the ¢ and the
character that sl:)echcics/ identifies the format:

“Alternative format” for numbers: see table below

- Left-bound text printing into the field (standard is right-
bound)

0 Pads numbers with zeros, not spaces

<space> Pad a positive number with a space, where a minus (-) is
for negative numbers

+ Prints all numbers signed (+ for positive, - for negative)

printf: format spechciers

Precision for singlc Precision or double Precision
Hoating Point numbers can be spechcied bg using
<DIGITST>.<DIGITSF>, where <DIGITST> Is the
total number of character positions (si n, decimal
point, and cligits) and <.DIGITSF> is the number
of cligits for Precision in the fractional Part atter
the decimal Point.

printf "%.10f\n" 14.3
14.3000000000

Combiﬂe Wlth <N> (total # characters, “-”, decimal point, e)

printf "$15.10f\n" 14.3
~14.3000000000

printf: format spechciers

f <DIGITST> Or <DIGITSF> is an asterisk (*), the
Srecision is read from the argument that precedes
the number to Print.

a=14.3

printf "$.*f\n" 10 Sa
14.3000000000

printf "$*.*f\n" 15 10 Sa
_14.3000000000

In the last example it moves rigl’]t to take a total of
15 spaces.

printf: format spechciers

Scientitic notation
(seems to ignore the <prGITT> field if itis too
small for the number of characters needed to
print out the number. rortran of ¢ would complain)

printf "$*.*e\n" 6 4 143200000000

1.4320e+11

printf "$*.*e\n" 6 4 -143.200000000
-1.4320e+02

printf "$*.*e\n" 6 3 -143.200000000

-1.432e+02
printf "%.*e\n" 3 -143.200000000

-1.432e+02
printf "$*.*e\n" 15 3 -143.200000000

-1.432e+02

| ater onwe wi” ta”< about hOW coml:)uters
represent numbers

Integer format
(integers, counting numbers)

Floa‘cing oint format
(humbers with decimal Point)

Floating Point numbers can be
Real or Complex

printf: format spechciers

For strings, the Precision specifies the maximum
number of characters to Print (i.e. the maximum

feld width).

(We alreadg saw) For integers, it speciﬁes the
number of characters/ cii%its to Print (With |eaciing
zero- or blan ~Paclcling}.

\\
\a
\b
\f
\n
\r
\t
\v

Prints
Prints
Prints
Prints
Prints
Prints
Prints
Prints

Escape codes

the character \ (backslash)
the alert character (ASCII code 7 decimal)

O 0 9 o9 o

a

backspace

form-feed (goes to end of page)

newline (is <CR><LF> on SUN and Mac O0S)
carriage-return (may or may not go to next line)
horizontal tabulator

vertical tabulator

\<NNN> Interprets <NNN> as octal number and prints the
corresponding character from the character set

\O<NNN> same as \<NNN> =*

\X<NNN> Interprets <NNN> as hexadecimal number and prints the
corresponding character from the character set (3 digits)*
\U<NNNN> same as \x<NNN>, but 4 digits *

\U<NNNNNNNN> same as \xX<NNN>, but 8 digits *

(* - indicates nonstandard, may not work)

A few of the most useful format sl:)echciers

%s String. Print all the characters of the corresponding
argument

3C ASCII character. Print the first character only of the
corresponding argument

&d Decimal integer

3t Floating-point format

$E Scientific notation floating-point format

Review

%ou can con’trol |now many spaces are reserved
or the Formattecﬂ Print (%) by aclcling numbers
between the % and specitier (s, d, T, etc)

210s - 10 character s’cring Print
25d -5 spaces for s{ignecl decimal integer
2$10.2f ~10 spaces ror Hoat and Prints 2
digits after decimal Point.
Default format is right justified. 1.02
To make formatted text emctjusthciecl, add a minus
sign, —, after the 3
%_10.2f becomes 1.02

Shell note — how to drive goursclmc crazy

Some more Funng business.

In GPS we use the DOY very hcavilg for the
“date”.

When using DOY, it is advantageous touse?

/ /

digi‘cs, Pad ing with zeros for dags < DOVY=100.
589 ’m working on data from dag 032

x=032
echo $x
032

So far so goocl

But if | use x in an arithmetic expression, the
((...)) construct, and use S to return the Value,

x=032
echo $x
032

echo $((x))
26

(ooPsl) What’s this?

Turns out that bash interprets numbers defined
with leaclinga zero(s) as octal (and a |eading 0x
or 0X as hexadecimal)

So 32 base 8 = 3*8+2=26 base 10
Not what | wanted!

To use 032 as a base 10 number you have to
override the assumption that it is octal (or hex)
using the <BASE># construct, where base
sl:)echcies the value of the base (here 10)

x=032

echo $x
032

echo $S((x))
26

echo S$((10#Sx))
32

Note that

echo S$((10#x))

s incorrect as x is not a valid cligit (gou need the
$x to get the value of %).

Another solution to the DOY Problcm is to work
in “regular” numbers, x=32, and turn them into 3
ciigi‘c text strings using printf when you need
them in that format.

Introduction

AWK programming language
prog glanguag

awk Programming Language

standard UNIX language that is geareci for text
Processing and creating formatted rcPorts

But s very valuable to seismologists because it
uses Hoating Point math, and is esignecl to work
with columnar data

sgntax smilar to C and bash

one of the most useful UNIX tools at your
command

(So‘rt]:)anorama says “AWK 1s a simp[e ancl e[egant Pattern scanning ancl Processing

Ianguage.”)

awk considers text files as having records (lines) ,
which have fields (columns)

Performs Hoa‘cing & integer arithmetic and string
oPera‘cions

Has lool:)s and conditionals
Can define your own functions (subroutines)

Can execute UNIX commands within the scripts
ancl process the results

Basic structure of awk use
The essential organization of an awk program
Fo lows the Form:
pattern { action }

The Pattern spechcies when the action is

PCF{:OFmCCl .

Like most UNIX u‘cili‘ciesJ awk is line oriented.

[t may include an explici’c test Pattem that is
Pencormecl with each line read as inPut.

If there is no cxplici’t test pattern, or the condition
in the test pattern s true, then the action
spechcied is taken.

The default test Pattem (no explici’c test) is
something that matches every |ine, l.e. 1s alwags

true.
(This is the blank or null Pattem.)

Versions/ Implemcntations
awk: original awk

nawk: new awk, datesto 987

gawk: GNU awk has more Powemcul string
Functionalitg

. _—

_NOTE —

We are going to use awk as the generic Program
name (like Kleenex for facial tissue)

Wherever you see awk, you can use nawk (or
gawk hcgou are using that on a LINUX box).

E:verg CERJI UNIX sgstem has at least awk. The
SUNSs also have nawk.

You want to use nawk. | sug%es’t adding this line
to your cshrc or .bashrc File on the SUNs

alias awk ‘nawk’ (csh) or alias awk=nawk (bash)

Rumor has it that in OS X awk is actua”g nawk,
although 've not been able to establish this. It
this is ﬁwe case no clﬂanges to nawk codes are
NECESSANY (except the name). I you have lots of scripts
with nawk and it is not Founcl/ insta”ecl, ut the
?o”owing In your .cshrc or .bashrc {ﬁe

alias nawk='awk' (csh) or alias nawk=awk (bash)

Command line Functionalitg

you can call awk from the command line two ways,
we have seen/ used the first — Put the awk
commands on the command line in the construct
'{..}' or read awk commands from a scril:)t fle.

awk [options] 'pattern { commands }' variables infile(s)
awk —f scriptfile variables infile(s)

Or you can create an cxccutablc awk scril:)’t

cat << EOF > test.awk
#!/usr/bin/awk

some set of commands
EOF

chmod 755 test.awk
./test.awk

How awk treats text

awk commands are appliecl to every record or line
of a file that passes the test.

it is designed to separatc the data in each line
into a number of fields and can processes what is

in each of these fields.

essentia”gj each field becomes a member of an
array with the first field identified as $1, second
field $2 and so on.

$0 refers to the entire record (all fields) .

Field Separator

How does awk break the line into fields.
It needs a field separator.
The default field separator is one or more white
lspaces

$S1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11
1 1918 9 22 9 54 49.29 -1.698 98.298 15.1 ehb

50$1 =1, $2=1918, .., $10=15.1, $1ll=ehb

Notice that the fields ma% be integer, Hoating
Point (lﬁave a decima Point) or strings.

awk Is genera”g smart enougl*x to Figure out how
to use them.

print

print is one of the most common awk commands
(e.x. for an inPut line)

1 1918 9 22 9 54 49.29 -1.698 98.298 15.1 ehb

The owing awk command 4...}Y will Procluce

2awk '{ print $2 $8}' /somewhere/inputfile
1918-1.698

The two output fields (1918 and -1.698) are run
together _thisis Probablg not what you want.

This is because awk is insensitive to white space N
the inside the command ' {..}'

print

2awk '{ print $2 $8}' /somewhere/inputfile
1918-1.698

The two output fields (1918 and =1.698) are run
together — two solutions if this is not what you
want.

awk '{ print $1[::::J$8}' /somewhere/inputfile
1918 -1.698

awk '{ print $1,|$8}' /somewhere/inputfile
1918 -1.698

The awk Print command different from the UNIX
Prinhc commad (more similar to CChO).

aﬂg Striﬂg' (almost — we will see the caveat in a minute) OF ﬂumeric tCXt
can be explicitlg outPut using double cluotes R

Assume our inPut Hle looks like this

1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb

SPCC@ the character strings you want to Put out
with the "..".

1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb FEQ x

awk '{print("latitude:",$9,"longitude:",$10,"depth:”,$11}’ SUMA.Loc
‘latitude: |-1.698 longitude: 98.298 depth: 15.0

latitude: 9.599 longitude: -92.802 depth: 30.0

latitude: 4.003 longitude: 94.545 depth: 20.0

Does it for each line.

Notice that the outPut does not come out in nice
columnar output (similar to the inPut) .

I you wanted to put each Piece of information on
a ditferent line, you can speci{y a newline several
ways

awk '{print "latitude:",S 'a print "longitude:",$10}' SUMA.Loc
awk '{print "latitude:",$9}{print "longitude:",$10}' SUMA.Loc
awk '{print "latitude:",S ‘ longitude:",$10}’ SUMA. Loc
latitude: -1.698
longitude: 98.298

Stolo Printing with “;” or } (the } marks the end
of statement/block) and then do another Print
statement (you need to start a new block with
another { | you closed the Previous Hock),

or Put out a new line character (\n) (it is a
character so it has to be in double quotes ' el

awk variables

You can create awk variables inside your awk
blocks in a manner similar to 51’1/12)85?1. These
variables can be character strings or numeric ~
integer, or Hoati ng Poi nt.

awk treats a number as a character string or
various tgpes 01C numbcr basecl on context.

awk variables
In Shell we can do this

a=text
b="test STEXT'
c="check $0"
d=10.7
echo $Sa b, SSc, $d
text test STEXT, check —bash, 10.7

No comma between $a and $b) SO No comma in

()LftF)Lrt(5Pacescountandznecnﬁputasspace5¢umﬂmaFxo&ucescomnwﬂn
outPut)

In awk we would do the same tlﬁing like this paces

don't count here, comma Procluces spaces N output)

text test STEXT test STEXT -bash 10.7

1 echo text | nawk '{%="test STEXT";a=b;c="'$0'";d=10.7;print $1,
text -bash 10.7

echo text | nawk '{b="test $TEXT";a=b;c="'$0'";d=10.7;print $1, af b, cossdiss

, ¢, d}'

Aside - Several ways to enter awk command (s)
(some more reaclable tlﬁan others

Q)

5eParate commands on the commancl |ine bg -

echo text | nawk '{b="test S$TEXT";a=b;c="'$0'";d=10.7;print $1, a, b, c, d}'
text test STEXT test STEXT -bash 10.7

Or you can Put each command on its own line
(newlines replace the “;7s)

echo text | nawk '{
b="test STEXT"
a=b
c=""'$0""
d=10.7
print $1, a, b, ¢, d

}
text test STEXT test STEXT -bash 10.7

Aside - Several ways to enter awk command (s)
(some more reaclable tlﬁan others)

Or you can make an executable shell file —
tst.awk — the file has what you would tg be On
tl’]@ termiﬂal (Plusa #1/bin/sh at the beginning).

vi tst.awk
i#!/bin/sh
nawk '{
b="test STEXT"
a=b
c=""'$s0""
d=10.7
print $1, a, b, ¢, d
}'esc
e
X tst.awk
echo text | tst.awk
text test STEXT test STEXT ./tst.awk 10.7

Aside - Several ways to enter awk command (s)

Make a File, tst.awk.in, containing an awk
“Program” (the commands you would type in).
Notice that here we do not need the sin ?e quotes
(stuff not going through shell) OF the {} around tlﬁegi) ock o
COMMANAS (outside most set of braces optional as file is used to define the
bl . Use —f to id file with commands.

vi tst.awk.in

i#!/bin/sh .
b="test STEXT" cat tst.awk.1in

- b="test STEXT"
c=u|$0|u (a:.ilflso"'
d=10.7

rint $1, a, b, ¢, d e
gsc ST printeSliiasabrsticias
e

echo text | tst.awk —f tst.awk.in
text test STEXT test STEXT ./tst.awk 10.7

Back to awk variables
#!1/bin/sh
column=S1
nawk '{print $'Scolumn'}’

ls -1 *tst
—IWX=————— @ 1 robertsmalley staff 2250 Aug 16 2004 az map tst
—IWX—————-— @ 1 robertsmalley staff 348 Aug 16 2004 tst

ls -1 *tst | Column2.s
az _map_ tst
tst

Here column is a shell variable that is set to the
first command line ar ument, S1.
'$column’ is then expanded to 9 , the value of
the first command line argument above, creating
the awk variable $9

nawk '{print $9}'

And another tangent ~ this example also
clemonstrates a very Poweﬁcul (ana’ very

cfangerous) idea and Capabi ity.

The Held to be Printed is determined in real-time
while the program IS being executed.

It is not “hard coded?”.

So the program 1S egectivelg wri’cing itselt
This is a very, very simple form of selﬁ-—mocji@ing—-
code.
(sehgmoclhcging—-cocle IS very hard to clebug
because you don’t know what is actua”g being
executed! You better hoPe is is the guiltg Partg.)

You will find that it is very convenient to write
scriPts to write scriptsl

You can write she“ scriPts (or C or Fortran For
that matter) to write new shell scrip’cs.

You can write shell sc:ril:)ts (or C or Fortran for
that matter) to write SAC macros, etc.
(\/oc:abularg/jargon - SAC macros are like shell
scriPts, but aré in the SAC command “language”.)

Built-In Variables

Fs: Field Scparator

The default Held seParator is the
we want to use some otl’lcr C

The Passworcl fle looks i

root:x:0:1:Super-User:/:/sbin/sh

The field separator seems to be (is) “:

space, what if
naracter.

ce this

(G

We can reset the field 56Parator usiﬂg the —F
commaga n& Iiﬂe SWitCI"l (the lower case switch, -f, is for s[:)echcging

scriphciles as we saw bencore).

awk —F":" '{print $1, $3}' /etc/passwd

root 0

Built-In Variables
FS: Field Scparator

There is another way to reset the FS variable that
IS more general (in that it does not clepend on
having a command line switch to do it — so it works
with other built-in variables) .

awk 'BEGIN {FS=":"} {print $1, $3}' /etc/passwd
root 0O

More awk Program sgntax

BEGIN {..} : the bcgin block contains evergthing
?ou want done before awk Proceclures are
imP emented (before it starts Processing the file)
{3 {.)] (list of Procedures to be carried out
on all lines)

END {..} : the end block contains evergtlﬁinggou
want done after the whole file has been
Processecl.

BEGIN and END sPecth actions to be taken
before any lines are read, and after the last line is
read.

The awk program:

BEGIN { print "START" }
{ print }
END { print "STOP" }

adds one line with “sTART” before Printirl% out
the file and one line “sToP” at the end.

Field Sel:)arator

Can use multiple characters for Field Sel:)arators
simultaneouslg

FS — ll[:, —]+"

Built-In Variables

NR: record number is another useful built-in awk
variable
it takes on the current line number, starting from1

root:x:0:1:Super-User:/:/sbin/sh

% awk —F":" '{print NR, $1, $3}' /etc/passwd
1l root O

RS :record separator specifies when the current
record ends and the next begins
defaultis “\n” (newline)
useful oPtion is " (blank line)

OFS : outl:)ut feld sel:)arator
defaultis " (whitesl:)ace)

ORS : outl:)ut recorcl 56:Parator
defaultis a "\n" (newline)

NF : number of Helds in the current record

think of this as awk looking ahead to the next rs
to count the number of felds in advance

echo 1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0.0 ehb
FEQ x | nawk '{print NF}'’
16

FILENAME : stores the current filename
OFMT : outPut Format For numbers

examlole OFMT="%.6f" woulcl ma|<e a” numbc—:rs
output as Hoati ng Poi nts

Accessing shell variables in awk

b, methods to access shell variables inside a awk
scriPt

Method 1 - Sag | have a scril:)t with command
arguments and | want to include them in the
output of awk Processing of some inPut data file:

Now we have a little Problem

The Shell takes s0, $1, etc. as (the value of)
variables for the command that is running, its first
argument, etc.

While awk takes $0, $1, etc. as (the value of)
variables that refer to the whole |ine, first Fielcl,
second field, etc. of the inPut file.

So what does {print S$1}' refer to?

So what does {print S$1}' refer to?

It refers to the awk definition (thc—: single quotes

protect it from the shell) —

the first field on the

line coming from the inl:)ut Hle.

The Problcm IS getting stut-
what is Coming from the in

[into awk other than

>ut stream (a ‘Eile, a

pipe, stndin).

In addition to the shell command line Parameter/
field Position variable name Problem, say | have
some variable in my shell scril:)t that | want to
include in the awk Processing (using the shellvariables $0, 1,

IS rea”g the same as this Problem with the addition of the variable name congusion) .

What haPPeﬂs it | try

a=1
awk '{print $1, $2, Sa}'

awk will be very clisappointecl N 3oul

Unlike the shell awk does not evaluate variables
within strings.

1 tr Put’cing the shell variables into quotes to
ma|<e them Par‘c OIC a character s’tring to be outl:)ut

'{print "$0\tSa" }'
awk would Print out
SO Sa

Inside quotes INn awk, the $ is not a metacharacter
(unlike inside double quotes in the shell where
variables are expanclecb. Outside quotes in awk,
the $ corresponds to a field (so Far) , hot evaluate
and return the value of a variable ou could think of the feld

as a Variable, but you are limited to variables with integer names).

The \t is a tab

{print "s$0\t$a" }

Another difference between awk and a shell
Procc—:ssing the characters within double c:]uotcs.

AWK understands sl:)ecial characters Fo”ow the
"\" character like "t”.

The Bourne and C UNIX shells do not.

Jo make a long storg short, what we have to do is
stop brotecting the $ from the shell bﬂjuciicious

use of the 5inge quo’ces,

Id

For number valued variables. just use single
quotes, for text valued variables you need to tell
awk it is a character string with double quotes.

a=A;b=1;c=C

echo $a $c | nawk '{print $1 'S$b'l $2, "

Al1C —bash

I$Ol|l

.

It you dor’t use double quotes for character variables, it may not work

echo $a $b | nawk '{print $1 'S$b' $2,
AlC -0

l$0l

.

The single c]uotes rea”g group like this.

echo $a SC | aWk '{print $1 ISbl $2, |Il$0lll}l
Al1C —bash

The first single quote turns off shell
| nterl:)rctation of cvergthing after it until the next
single c]uote. So the single c]uote before the sb
turns off the cluote eére the {. The $b gets
Passecl to the shell for interpretation. Itis a
number so awk can handle it without further ado.
The single quote after the Sb turns ot shell
interpretation again, U}Tﬁl the single quote before
the $0.

The single quotcs rea”g group like this.

echo $a $c | awk '{print $1 'Sb' $2, "'S0|'"}'
AlC —Dbash

The S0 returns the name of the program you are
running, in this case the shell -bash. Thisis a
character string so it needs to be in double
quotes, thus the " $O'". The single quote after
the $0 turns "quotin "back on and it continues to
the end of the awk block of code , clignhciecﬂ bg
the }.

The c]uotes are switches that turn shell
interpretation ot First one) ANA back on (second one) .

The single c]uotes rea”g group like this.

eChO $a $C | aWk l{print $1 l$bl $2, Hl$0l"}l
AlC —bash

Practica”y) since you alwags have the first and
last, you can think about the ones about the Sb'
and '$0' as Pairs ~ but theg rea”g match up
ol:)erationang as discussed.

Same for variables you define - it it is a text string
you have to say it 1s a text string with the double
quotes.

b=B

echo $a $b | nawk '{print $1 "'Sb'" $2}'
ABC

If the variable was a number, you can still Print it
out as a text string (awk treats numbers as text
strings or numbers as necessary in context, while
text strings are stuck as text strin gs.)

B

echo $a $b | nawk '{print $1 "'Sb'" 'Sb' $2}'
AllC

Aside

How to Print out quotes
(this is a very Iong ine, no \ for continuation —
wraps on its own).

'{print $1, '$b', $2, "'s0'", ["\"", "\"ab
""14'b /

Aside

How to Print out quotes

nawk 'BEGIN { print "Dont Panic!" }'
Dont Panic!

nawk 'BEGIN { print "Don'\''t Panic!" }'
Don't Panic!

nawk 'BEGIN { print "Don'"'"'t Panic!" }'
Don't Panic!

echo Don”’”t Panic! | nawk "{print}"
Don't Panic!

echo Don\'t Panic! | nawk|'{print}'
Don't Panic!

echo Don\'t Panic! | nawk|"{print}"

Don't Panic!

ook caréncung at the 2 lines above — you can
(sometimes) use either quote (‘or® to protect
the nawk program (Glepends on what you are
trging to also Protect from the she”).

Aside
How to Print out quotes

alpaca 587:> nawk 'BEGIN { print "\"Don’\’’t Panic!\"" }'
"Don’t Panic!”

Method 2. Assign the shell variables to awk
variables after tlﬁeiodg of the scriPt, but before
you spechcg the inl:)ut fle

VAR1=3
VAR2="H1"

awk '{print vl1, v2}' v1=$VAR]l v2=$VAR2 input file

3 Hi

Also note: awk variables are referred to usingjust
their name (no $ in front)

There are a couple of constraints with this
method

Shell variables assignecﬂ usiﬂg this method are not
available in the BEGIN section (will see this, and

END section, soon).

4

if variables are assnfned after a flename, they will
not be available when Processing that filename

awk '{print vl1l, v2}' v1=SVAR1l filel v2=SVAR2 file2

In this case, v2 is not available to awk when
Processing filer.

Method 5. Use the -v switch to assign the shell
variables to awk variables.

This works with awk, but not all Havors.

awk -v v1=$VAR1l -v v2=$VAR2 '{print vl1l, v2}' input file

. _—

Aside - w|r19 use variables?

Sag ’m cﬂoing some calculation tl’lat uses the
number TT.

| can Put 3.1416 1n whenever | need to use it.

But say later | decide that | need more Precision
anci want to change the V8|UC og nto3.1415926.

It 1s a Pain to have to Change this and as we have
seen global eclits sometimes havc unexpec’t@d

(mostlg because we were not rea”g paying
attention) side effects.

Aside - Whg use variables?

USin Variables (the Firststep to avoid hard—-coding) — I‘FHOU usce
variables CJ\xjou don’t have to moclhcg the code in a
thousan Places wherc you used 3.1416 For TT.

hcgou had set a variable
pi1=3.1416

And use $pi, it becomes trivial to clﬁange its value
evergwhere in the script bﬂjus‘c edi’ting the single line

pi=3.1415926

you c:lon’t have to |oo|< For it & change it
e\/ergwhere

Examl:)lcs:
589 we want to Print out the owner of every Hle
Record/Field/column separator (RS=" ")

The output of1s —1is

—-rwXrwxrwx 1 rsmalley user 7237 Jun 12 2006 setup expl.sh

So we need fields 3 and 9.

Do using an executable shell scriPt

Create the file owner . nawk and make it
executable.

S vi owner.nawk

i#!/bin/awk -f

BEGIN { print "File\tOwner" }
{ print $9, "\t", $3}

END { print " - DONE -" }esc
:wq

S X owher.nawk

Now we have to get the inl:)ut into the program.

PiPe the long clirectorg |isting into our shell

SCr Pt.
507:> 1ls -1 | owner.nawk
File Owner
CHARGE-2002-107 rsmalley
022285A.cmt rsmalley
190-00384-07.pdf rsmalley
zreal2.f rsmalley
zreal2.o rsmalley
— DONE —

508:>

So far we hav%lust been selectingl and
rearranging telds. The OUtEUt IS a simP e copy of
the inPu’c ield.

What if you wanted to change the format of the
output with resl:)ect to the input

Considerin]g that awk was written bg some of
UINX’s deve opers, it might seem reasonable to
guess that thcg “reused” some usetul UNIX tools.

i you gucssecl that you would be correct.

Soit you wanted to changc the format of the
output with respect to the input — 3ouju5‘c use
the UNIX printf command.

We alreadg saw this commancJ, so we don’t need
to discuss it any further (another UINIX
Philosophg based attitude).

echo text | awk '{
b="test STEXT"
a=b
g=2"'S0"'"
d=10.7
printf("%s, %s, %s, %s, %6.3f\n", $1, a, b, c, d)
y
text, test STEXT, test STEXT, -bash, 10.700

Notice a few differences with the UNIX printf
command

You need parens (..) around the arguments to the
printf comman&.

You need commas between the items in the
variable list.

echo text | awk '{
b="test STEXT"
a=b
c=""'s0""
d=10.7
printf("%s, %s, %s, %s, %6.3f\n", $1, a, b, c, d)
y
text, test STEXT, test STEXT, -bash, 10.700

The outl:)ut of printf goes to stndout.

sprintf

Same as printf but sends formatted Print
outl:)ut toa string variable rather to stndout

n=sprintf ("%d plus %d is %d", a, b, atb);

