Data Ana|95i5 N Geophgsics
ESCl 7205

Class 7

Bob Sma”eg

Basics of UNIX commands

A few comments —
“extended kegboarcl” kegs (arrow kegs) number
kegs, cut, Paste, etc.) t%Picang dor’t work

between sgstems, OF POSSs| 19 over the network.

Have to be careful while editing in vi/vim.

Simple example

gmore 0.5/run.csh

mkdir 0.5 3

tomoDD2 .pwave tomoDD.3.1inp
mv red* 0.5 3

cp tomo* 0.5 3

mv Vp* 0.5 3

mkdir 0.5 20

tomoDD2.pwave tomoDD.20.inp
mv red* 0.5 20

cp tomo* 0.5 20

mv Vp* 0.5 20

Use more command to
see what is in shell scriPt

(Hle) run.csh.

This csh scril:)t simplg
runs a series of
tomogra hic inversions
using digg@r@nt
Parameter setups.

Simple example

gmore 0.5/run.csh

mkdir 0.5 3

tomoDD2 .pwave tomoDD.3.inp
mv red* 0.5 3

cp tomo* 0.5 3

mv Vp* 0.5 3

mkdir 0.5 20

tomoDD2 .pwave tomoDD.20.inp
mv red* 0.5 20

cp tomo* 0.5 20

mv Vp* 0.5 20

When we run the scril:)t,
it runs the commands in
the file — so it runs the
program tomoDD2, and
moves the outl:)ut files
to sPcciaug named
directories.

It then does it again with
a different input data
set.

Simple example

gmore 0.5/run.csh

mkdir 0.5 3

tomoDD2.pwave tomoDD.3.inp Tl"lC l:)re WO!”‘? OF

my red* 0.5_3 writing tnhe scrllot allows
cp tomo* 0.5 3 , CJ

mv Vp* 0.5 3 us to save time an

mkdiz 0.5 20 etort later.

tomoDD2 .pwave tomoDD.20.inp
mv red* 0.5 20

cp tomo* 0.5 20

mv Vp* 0.5 20

Simple example

gmore 0.5/run.csh

mkdir 0.5 3

tomoDD2 .pwave tomoDD.3.inp
mv red* 0.5 3

cp tomo* 0.5 3

mv Vp* 0.5 3

mkdir 0.5 20

tomoDD2 .pwave tomoDD.20.inp
mv red* 0.5 20

cp tomo* 0.5 20

mv Vp* 0.5 20

This is an example only.
It we rea”g wanted to
run the same program
multiple times, we would
write this as some sort
of looP.

This way we would onlg
write the commands
once, and pass the info
that changes to the
commands.

Standard example

Create a file (typica” with an editor), make it
executable, run it.

vim hello.sh
i#!/bin/bash
echo hello world.

a="echo hello world. | wc"
echo This phrase contains Sa lines, words and characters<Esc>
:wqg
chmod ug+x hello.sh
./hello.sh
hello.sh

hello world.
This phrase contains 1 2 13 lines, words and characters

(1 and <Esc> etc. above in magenta don’'t show up on screen.)

Shell ScriPting
The #! in the first line (known as shebang).

TI’)C First |in<=: can be usecl to te” tl’]é system w]ﬁat
Ianguage (she“) to use For command
| nterpretation.

Itis a very sl:)echcic format

#!/bin/bash

Oor
#!/bin/csh —f

(tl*:e —f s optional for csh — gives “fast”
initialization — see man PAgZE (£ rast start. Reads neither

the .cshrc File3 nor the .login fle (hca |ogin shelD) upon startup.)>

hcyou want your she” scril:)’t to use the same slnc”
as the Parent process you don’t neecl to cleclare

the shell with the shebang at the beginniﬂg.
BUT

You can’t Put a comment (inciicateci]:)9 #) 1n the
Hrst line.

So the first line has to be one of

#1/shell to use
or

Some command (not a comment, and not
“shell to use” without the shebang

Scri P‘ci ng Etiquette

Most scril:)ts are read]39 bo‘ch a person ancl a
comPuter.

Don’t ignorc the person using Or revisin your

script (most likely you 6 months later — when you
will E])o’c remembc—:g V%Et you did, or Whg you Cl% it

that way — esPeciallg it you were in a UNIX mood
when you wrote it.)

\/erhcy inputs for le alitg, Print out error message
it somet ing wrong ({UNIX).

Advice

I. Use comments to tell the reader what theg
need to know. The # denotes a comment in
bash and csh.

2. Use indentation to mark the various levels of
program control. (loops, if-then-clse blocks)

5. Use meaningmcul names for variables and
Acvelop a convention that l’]ClPS readers
iclenth(y their function.

4. Avoid unnecessary Complexitg...keep it
readable ¢his rule s defintely not UNix philosophy compatible)s

Usua”g you will find the obvious stuff will be
commented and described Fu”g (as in
homeworks).

The stutt the original author did not understand
that well — but somehow got to work — will
genera”g not be commented (or usefull
commenteci, or may even be commentec?
incorrectlg!) (as in homeworks).

Header

Aciding a set of comments at the begirming that
Provicles information on

I. Name of the scril:)t
2. How the scriPt is called
3. What areguments the scril:)’c expects
4 What does the scril:)t accomplish
5. Who wrote the sc:riPt and when
6. When was it revised and how

#!/usr/bin/bash -f
#Script: prepSacAvVOdata.pl
#Usage: Sscript <unixDir> <dataDir> <staFile> <phaseFile> <eventFile>

#Purpose: To prepare SAC AVAO data for further processing

(1) generate event information file and add the event info

(name, event location) to the SAC headers

(2) generate event phase file and add the phase info

(time and weights) to the SAC headers

#0Original Author (prepSacData.pl: Wen-xuan Du, Date: Mar. 18, 2003
Modified: May 21, 2004

#

#Last Modified by Heather DeShon Nov. 30, 2004

A) Reads AVO archive event format directly (hypo71):
subroutines rdevent and rdphase

B) Reads SAC KZDATA and KZTIME rather than NZDTTM, which is
not set in AVO SAC data

H* FH FH

Variables

A variable is used to store some Piece of
(tgpica”g character string) information.

The $ tells the shell to return the value of the
spechcied variable.

CSI"I example bBS]"I example
¥set b = ”ﬁello world.” $b=“Hello WO.lt'J.d.”
¥set a = “echo S$b [wc™ $a="echo S$b | wc”
$echo Sa ¢%echo Sa

1 2 13 1 2 13

cs/csh and sh/bash have different syntax for

assigning the value of a shell variable.

(in bash cannot have spaces on either side of the ec]uals sign, csh does not care, works
with our without spaces.)

Constants
A constant is used to store some Piece of
(tgpica”g character 5trin§ information that is not
exl:)ectecl to changc.

In bash, variables are made constants bg using
the reaclonlg command.

X=2
readonly X
xX=4
-bash: x: readonly variable

R backquo’ces/ commanad substitution can be
used in shell scripts.

The output of backc]uotes can go into a variable,
switch, redirected input (<<), etc.

a="echo ls~
echo Sa

Reacling command line arguments.

You can send your scriPt input from the command
linejust like you do with built-in commands. It also
gets environment variables from the shell.

517:> vi hi.sh

"hi.sh" [New file]

i #!/bin/bash

echo Hello, my name is S$SHOST. Nice to meet you $1.<Esc>

:wq

"hi.sh" [New file] 2 lines, 63 characters

518:> x hi.sh

519:> hi.sh Bob

Hello, my name is alpaca.ceri.memphis.edu. Nice to meet you Bob.

820:>

think of the command line as an array whose
index starts with 0.
When you enter

command argl arg2 arg3 arg4 . . . arglO0 argll . . . Arg end

The shell Procluces the Fo”owing array that is
Passed to the shell sc:ript.

array|[0]=command
array[1l]=argl
array|[2]=arg2

array[end]=arg end

Within the scril:)’t) access to this array is
accomplishecl using the syntax $n, where n is the
array index.

S 0=command
Sl=argl
S2=arg?2
$9=arg9

${10}=argl0

S{ll}=argll

note the format for numbers >10, the braces are
rCC]U irCCl (theg are optional for numbers <9)

Remember the discussion of i&enti?ging the shell
you are running?

echo SO0
TI’IC 5he|l iS 9U5t> 3 Program.

Your shell receives these variables from its parent
Drocess,just like any other program.

So apply Unix think.

Readi ng user input
(even though it goes against the grain of Unix filter /think Philosophg)

read: reads screen inPut into the speciﬁecl
variable.

Scril:)t — introduce.sh

#!/bin/bash

echo Please, enter your firstname and lastname
read FN LN

echo "Hi! S$FN, SLN !"

Running it

introduce.sh
Please, enter your firstname and lastname
Bob Smalley
Hi! Bob Smalley !

Reading (sucking in) multiplc lines.
Use the syntax << @C“.

Where @C defines the (character 5tring> end-of-
file delimiter.

This syntax redirects standard-in to the shell
scriPt (or the terminal hcgou are tgl:)ing) until it
finds the characters 5Pechciecl in the @C field.
(You have to be sure those characters are not in
the file /text being sucked in — else it will stop
there.)

Example.
File - mg_thoughts.clat

I have a thousand thoughts in my head
and one line of text is not enough to get them
all out. Hello world.

ScriPt - suckitin.sh

#!/bin/bash
cat << END

“cat my thoughts.dat"
END

Run it

540:> suckitin.sh

I have a thousand thoughts in my head

e line of text is not enough to get them
ello world.

Note — we would never program something this
way.

We could havejust done

cat my thoughts.dat

But we are trging to clemonstrate I’IOW in!:)ut
redirection (Plus command substitution).

How does this scril:)t work?

#!/bin/bash
cat << END

“cat my thoughts.dat"
END

The cat command reads standard-in, which is
redirected, bg the <<, to the lines that follow in
tl"lC Shé” ScriPt (or the kegboarcl if not in a shell script).

We then use command substitution to Procluce
inPut to the cat command from the file
my_thoughts.clat.
l:ina”y we terminate the inPut redirection with the
string A N

Thisis a very l:)owemcul way to process data.

my processing program << END
"my convert program input filel"
“cat input file2"

END

I we onlﬁ needed to process Het (no Hle2) ,we
could have used a Pipe or inPut redirect

my convert program < input filel | my processing program

BUt tl"\CrC iS no Wag (we have seen so far) to PIPC bOtI"\
outl:)uts into the program (the Pil:)e IS serial, not
Para”el).

Another example

my processing program << END
class example
10.3

41

my convert program input filel"
“cat input file2"

END

Here we have a character string inPut,
“class example”,
some numbers,

followed bﬂ the other data.

4

Again we can not use a pipe.

(Also notice that, Fo”owing the Unix Philosophgj the program is not “interactive”; it is not
Prompting for the inputs. You have to know what it wants and how it wants it.)

Another example
my processing program inputvaril inputva%iZ << END
S1

ss example
10.3
41
"my convert program input filel"
“cat input file2"

“1ls $2°

Now we have added two inputs from the command
line.
The first one Puts the string inputvaril into
stdin for my program to read
The second one Puts the results of looking for a
file called inputvari?2 into stdin for my program
to read.

further examples: command substitution in
corxjunction with the gmt PSXU command

#!/bin/sh

#missing beginning and end of script. This command alone will
not work

psxy -RSREGN -$PROJS$SSCALE S$CONT -W1/S$SGREEN << END >> SOUTFILE

-69.5 -29.5

-65 -29.5

-65 -33.5

-69.5 -33.5

-69.5 -29.5

"cat my map file.dat"
END

This will read the data between the PSXy
command and the END and plot it on the map
that is bei ng constructed gche redirected,
aPPenclecl outl:)ut}.

Further examplcs O{: <<
running sac from within a scril:)t.

Script to pick times in sac file using taup
Usage: picktimes.csh [directory name]

#
sacfile=S1

sac << EOF >&! sac.log

r S$sacfile

SSS

traveltime depth &l,evdp picks 1 phase P S Pn pP Sn sP sS
gs

W over

g
EOF

Shell Scripting

Lool:)s and Logic

do

done

Does the commands in the “block” between do
zﬂkjdone.

in bash, this construct is used in conjunction with
|ool:> structures for, while, and until and list

bBSCCl .

]COT':

A for loop' is a Programming |anguagc statement
which alE)WS code to be rePeatedlg executeci,
looks like it is based on counting (this first
example IS rea”g list based as we will see later).

for VARIABLE in 1 2 3 4 5 .. N
do

done

example

for 1 in 1 2 3 4 5
do

echo "Welcome $i times”
done

More examples

for 1 in $S(seqg 1 2 20)

do
echo "Welcome S$i times”
done
for ((c=1; c<=5; c++))
do
echo "Welcome Sc times..."
done
for ((5 7))
do

echo "infinite loops [hit CTRL+C to stop]”
done

while:

Based on condition - continues to lOOP as long as
the condition tests true

#!/bin/bash

while| read varil vari2 .. varin
do

done < inputfile

This will read from the inPut file till it hits EOF
(reacl returns O, true, if there were no errors,
on EOF |or an error] it returns a non zero
value — false)

f:u” example

Script / , ,

. This SCFlPt first
#!/bin/bash)
cat<<EOF>cities.dat makes the mPut data
105.87 21.02 Hanoi LM ‘F1 lﬁ (J p (J
282.95 -12.1 LIMA LM |< ne, then reads it an
178.42 -18.13 SUVA LM . t t t {:
EOF F)FHW S outa anf' O

while read clon clat city junk 12 NOthC WI"!C!’C thC

do | redirected inPut IS
echo Scity $clon Sclat
|ocatecﬂ — at tl’]é end

done < cities.dat
\GF the “command?” ar

junk.sh gptomﬂﬁsmgwhennuwylhesawag
Hanoi 105.87 21.02 [beoi ,g}
LIMA 282.95 -12.1 1O DCOLLUSS

SUVA 178.42 -18.13

The structure of the while looP

While the test is true, do the block of code
between the “do” and “done”

while test
do

. block of code . . .

done |

The structure of the while IooP
The redirected inPut goes at the end.

As we saw before, one can enter the while
command from the command line
(there is no’thing special about it as far as the
shell is concerned)
(also notice where the semicolons, that separate
lines, and the inPut redirect goes).

while read line; do echo "Sline \n"; done < cities.dat
105.87 21.02 Hanoi LM \n
282.95 -12.1 LIMA LM \n
178.42 -18.13 SUVA LM \n

until:

Based on condition - until continues to IooP as
|ong as the condition exits unsuccessguuy (I1s

false)

(the until loop is used much less than the while looP)

#!/bin/bash

myvar=0

until [Smyvar —eq 5] #until this expression is true
do

echo $myvar

myvar=$((Smyvar + 1))

done

sh —f junk.sh

= W N - O

Break:
allows you to break out of a looP

can be used with a number to spechcg what do

IOOP to break out of
while conditionl # Outer loop, loop 2
do
while condition2 # Inner loop, loop 1
do
break 2 # Break out of outer loop (usually after
some test)
done
done

Execution continues here after break

List based - using a list to Proviclc the items to
|ooP over.

list="1s z*xyz
for ITEM in Slist
do

#echo plot contour S$ITEM
psxy —-RSREGION -$PROJSSCALE -M$ -W5/SVLTGRAY $CONTINUE\

SITEM S$SVBSE >> SOUTPUTFILE
Done

(in the first examlale | wrote out the list

for VARIABLE in 1 2 3 4 5 .. N)

-bash 623 rinex # fs="1ls anit*o"
-bash 624 rinex # echo $fs
anit0770.11o0 anit0780.110

-bash 625 rinex # for £ in S$fs

do head -10 $f
done

//' 2.11
GPP.DLL V3.00
ANIT

OBSERVATION DATA

G (GPS)
15 - APR - 11 04:25

RINEX VERSION / TYPE
PGM / RUN BY / DATE
MARKER NAME

MARKER NUMBER
OBSERVER / AGENCY
REC # / TYPE / VERS
ANT # / TYPE

APPROX POSITION XYZ
ANTENNA: DELTA H/E/N
WAVELENGTH FACT L1/2

Z-XII3 1D02
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
\\‘ 1 1
2,11 OBSERVATION DATA G (GPS)
GPP.DLL V3.00 15 - APR - 11 04:25
ANIT
Z-XII3 1D02
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

RINEX VERSION /

PGM / RUN BY / DATE
MARKER NAME

MARKER NUMBER
OBSERVER / AGENCY
REC # / TYPE / VERS
ANT # / TYPE

APPROX POSITION XYZ
ANTENNA: DELTA H/E/N

WAVELENGTH FACT

it /then/elit /else /4

If the test is true, then run the block of code
between the then and the ﬁ (i{: spelled backwards
= logical way to signhcg the encr of an if block).

if [S1 = "Heather”]
then
printf "Hi %s. We were expecting you.\n" $1

fi

it /then/elit /else /H

If the test is true, run block of code between then
and else. If the test is false, run block of code
between else and ﬁ

if [S1 = "Heather”]

then
printf "Hi %s. We were expecting you.\n" $1

els

printf "Hi %s. Nice to meet you.\n" $1

fi

it /then/elit /else /4

If [test] is true, run block of code between then
and el_hc. If it was ?alse, do next [test]. I true,
run block of code between else and ii?. I False,

do next [test], etc., or, Fina”g (evcrgthing false
to here) do block of code between @ and ﬁ

if [S1 = "Heather”]
then
printf "Hi %s. We were expecting you.\n" $1

elif [$1 = "Andy"]
printf "Hi %s. We were expecting you too.\n" $1

elif [$1 = "Gregg"]
printf "Hi %s. We were expecting you too.\n" $1

else
printf "Hi %s. Nice to meet you.\n" $1
TE

Can have logical combination of [tests]

| is or, && is and

if [$1 — "Heather"] || [Sl = ”AndY"]
then

printf "Hi %s. We were expecting you.\n" $1
elif [$1 = "Andy"]

printf "Hi %s. We were expecting you too.\n" $1
else

printf "Hi %s. Nice to meet you.\n" $1
fi

if [$1 = "Heather”] || [$1 = “Andy”]
then

printf "Hi %s. We were expecting you.\n" $1
elif [$1 = "Andy"]

printf "Hi %s. We were expecting you too.\n" $1
else

printf "Hi %s. Nice to meet you.\n" $1
fi

Would this scril:)t ever outl:)ut

“We were expecti ng you too”?
(i.e. what is wrong, WIth 1£7)

NOTE
The Formatting with respect to spaces, and lines
ofthe “if [17, “then”, (“else”, “elif”), “£i’
are very sPechCic.

if [.. L]
then

fi

It has to be written cxactlg as above — whcre thc

»

test and code to be performed replace the «. . .7 .

(look back at previous slide to see where spaces go)

The part in red is the test, it may be ditferent (but
still a rigjcl format)

Examplc - Do (at least simplc) error checking of
a ca” ancl Print some sort omc message For error.

if [$S# -ne 5]
then

printf "Usage:\t\tSscript <unixDir> <dataDirList>\
<staFile> <phaseFile> <eventFile>\n"

printf "<unixDir>:\tdirectory in the unix system\ where
pick file is stored;\n”

printf "<dataDirList>:\tlist of data directories\ under
<unixDir>; 'dataDir.list';\n”

printf "<staFile>:\tstation file;\n”

printf "<phaseFile>:\tphase info file for program)\
'ph2dt'; \n”

printf "<eventFile>:\tevent info file (one line for\
one event);\n”
exit (-1)

fi

if does ever tlﬁing between “then” and “£i” (n
the bOX) |‘F the test iS true. wewil get to the test later.

Check there are 5 inPut Parameters.
$ to have shell return the value of a variable.

iS tl’)@ 5!’]6” Va riable (the shell gives you this variable when it starts a
script) that contains the number of parameters (does
not include the shell name) ON iﬂPUt liﬂe.

-ne is the numerical test for not eclual (also have
alphabetical t€5t5> (—eq isthe numericaltestmcorequab.

if [$# -ne 5]
then

fi

So if the number of inPut parameters s not 9, it
will do what is between “then” and “£i”.

One of the things done in the error Processing (in
the box) is the command “exit (-1)".

if [S# -ne 5]
then

éxit.(—l)

fi

This returns a message, a numeric “return
value” (in this case a - e the Parent process.

The Parent process can access this return Value
using the shell variable ?
(to obtain the value one uses SRRCT)

This allows the Parent CFroc:e:fss to get information
about wlﬁat lﬁaPPene 13 tlne &aughter process.

You can set the return code to give you
information about the type or error, etc.

This information can be used to control the
execution of the parent process.

(does the parent process continue, qui’c, try to fix it, etc.?)

Mang programs return a value of O (zero) upon
successtul completion.

From the |5 man Page ~

EXIT STATUS
0 All information was written successfully.

>0 An error occurred.

So we can tell if it terminated successguuy (but
not what the error was if not).

The case statement 1s an elegant reEIacemeﬂt For
it /then/else it /else statements when making
numerous comparisons.

This recipe describes the case statement syntax
for the Bourne Family of shells

case "$var" in
valuel)

commands for wvalue 1;
r 7

value?2)

commands for value 2;
r s

*)

commands for every other value (did not do any of the above);

esacC

case "Svar" in
valuel)
commands;

T
*)
commands ;

esacC

The case statement compares the value of the
variable ($Svar in this example) to one or more
values (valuel, value2, ...

Once a match is found, the associated commands
are executed and the case statement is
terminated.

The oPtional last comParison “+)” is a default
case and will match angthing.

For example, branching on a command line
Parameter to the script, such as start’ or ’stol:)’
with a runtime control scriPt.

The Fo”owing example uses the first command line
Parameter ($1):

case "$1" in

'start’')
/usr/app/startup-script
'stop')
/usr/app/shutdown-script

r 7
'restart’)
echo "Usage: $0 [start|stop]"

esacC

Shell Scri tmg

Intro — relational a c”og al oper. rators

test

Test or [..]: condition evaluation utili‘cg

common scril:)ting tool that tests exl:)ressions and
many details about fles using a long list of Hags

Returns

0if exl:)ression true and
1if expression false or does not exist

(backwarcls to normal logicl)

test
two formats in bash scripting

test [flags] expression
test ! -s "$1”; echo §$?
0

or

[expression]

['abc' == 'abc']; echo $?
0

['abc' = 'abc']; echo S?
0

["abc" != "def"];echo S?

Note — we are testing character strings.

[(the lett bracket sPecial charactcr) IS a
dedicated command. It is a synonym for test, and
a builtin for egiciencg reasons.

(you also need the closing 1)

RelatiOﬂal @) Derators (between character strings)

Returns 1 i true and O it false

All relational oPerators are left to right
associative.

= or == :test for equal to
< :testforless than
> . test for greater than
1= :testtornot equal

To test numerical values

test 3 -gt 4, echo $?
1

[3 -gt 4], echo §$?
1

Note — the numerical tests are sPcchCiccl with a
ditferent format (Fortran like).

Returns

0if exPression true and
1if expression false or does not exist
(backwarcls to normal |ogjc!)

RelatiOﬂal OPCratorS (between numerical values)
Returns 1 if true and O if false

All relational oPcra’tors are left to riglnt
associative

-1t (<)
-gt (>)
-le (<=)
-ge (>=)
_eq (::
-ne (!=)

bash-2.05$ a=1
bash-2.05$ b=2
bash-2.05$ c=3

bash-2.055 [Sa = 1];echo $? Or [Sa =1]

0

bash-2.055 [$Sa -eqg 1];echo §?

0

bash-2.05$ [$a > 1];echo $? W%atBtHB?Seemstosagﬂﬁsﬁue?
0

bash-2.055 [$a \> 1];echo $? Nee&shabeﬁﬁcaped,butwhg?

bash-2.055% [[$Sa > 1]];echo §$? W%ngrksw&hdoubkkrad«ﬁsw/o
1 excape?
bash-2.055 [Sa -gt 1];echo $?

bash-2.055 [$b -eqg 1];echo $?
bash-2.055 [$b -eq $Sc];echo S$?

bash-2.055 [Sb -eq $((Sc-1))];echo $?

[$b == $(($c-1))];echo $?

Test combinations with

—a (and) and —o (or)

if [$S# -eq 0 -0 S$# -ge 3]
then

fi

if [\(SREGPARM = spat -o SREGPARM = chile \) -a S$CMT = 1]
then

£i
(the[. . . 7’sabove are aform of the test
expression)

(the backslashes alre needed to “escalz)e” the
Parentheses in the test exl:)ression)

You can use the return Values togetlﬂer With &&
and | |

using the two test constructs

exam 165

test 3 -gt 4 && echo True || echo false
false

[$a = 1 1&&[$b == $(($c-1))];echo §?
0

[$a = 1]&&[$b == $(($c-1))]1&&[$b -eq S$c];echo §?
1

[$a = 1]&&[$b == $(($c-1)) 1||[$b -eq $c];echo $?

[sa = 1 1&&([$b == $(($c-1)) 1||[$b -eq $c]);echo $?

[sa =1 1|[([$b == $(($c-1))]&&[$b -eq $c]);echo $?

Some tests

-d Directorg
_e FExists (also -a)
—f Regular fle
-h SHmbolic link (also -1.)

(remember O is TRUE and 1 if FALSE!

[-e 'egs.vim']; echo §$?

filename=eqgs.vim
echo $filename
egs.vim
S [-e Sfilename]; echo $?

$
0
S [-e 'egqs']; echo $?
1
$
$

More fun with syntax

The [[...]] constructis the more versatile Bash
version of [..].

It is know as the extended test command,

(although [[isa kegword, not a command) .

No flename exl:)ansion or word sl:)litting takes
Place between [[and 11, but there is Parameter
exl:)ansion and command substitution.

More fun with syntax

Usingthe [[...]] testconstruct, rather
than [...] can Prevent many Iogic errors in

scriPts.
For example, the &&, ||, < and > oPerators
work within a [[1] test, clespite givVing an error

within a [] construct.

569 $ decimal=15

570 $ octal=017 # = 15 (decimal)
571 $ hex=0x0f # = 15 (decimal)
572 $ if ["Sdecimal" -eq "Soctal"]

> then

> echo "$decimal equals $octal”

> else

> echo "S$decimal is not equal to Soctal" # 15
> fi # Doesn't evaluate within [single brackets

15 is not equal to 017
573 $ if [["Sdecimal" -eq "Soctal" 1]

> then

> echo "S$decimal equals Soctal” # 15
> else

> echo "S$decimal is not equal to Soctal"”

> fi # Evaluates within [[double brackets]]!
15 equals 017

574 S

574 $ if [["Sdecimal" -eq "Shex" 1]

> then

> echo "S$decimal equals S$hex" # 15
> else

> echo "S$decimal is not equal to S$hex"

i # [[Shexadecimal]] also evaluates!

15 equals 0x0f
BELS.. S

is not equal to 017
]!

equals 017

equals 0x0f

More fun with syntax

Similar to the let command, the double
Parentlﬁeses((...)) construct Permits
arithmetic expansion and evaluation.

In its simplest form,a=$((5 + 3)) would set
ato5 + 3,0r8.

However, this clouble-——l:)arentheses construct is
also a mechanism for a”owing C—-stgle
manipula‘cion of variables in Bash, for example,
((var++)).

var=1

((var++))

echo Svar
((var>3));echo S$?
((var==2));echo S$?

((var=1l));echo $?

echo Svar

Without the $ the ((construct returns the exit
status of the mathematical or |ogica| oPeration.
Wltlﬁ tlﬁ@ $ lt returns the Value (and you still have the exit status) .

B=S((A + 1)); echo $?, SA, SB
2 3

A=$((var++));echo $?, S$SA
0, 3

For completcness since | mentioned it

The let command carries out arithmetic
oPerations on variables.

In many cases, it functions as a less complex
version of expr.

let a=11 # Same as 'a=11l"’

let a=a+5 # Equivalent to let "a = a + 5" #
echo "11 + 5 = Sa" # 16

let "a <<= 3" # Equivalent to let "a = a << 3"

RelatiOﬂal OPCratOrS (in arithmetic expressions $((« .« .)))
Returns 1 if true and O if false

All relational oPerators are left to right
associlative

== . test for equal to
< :testforlessthan
<=: test for less than or equal to
> . test for greatc—:r than
>= . test for greater than or ec]ual to
1= . test for not equal

Bash does not unclerstancl ﬂoating Point
arithmetic.

It treats numbers containinga decimal Point as
strings.

Boolean (Logical) OPerators

Boolean oPerators return i For true ancl O For
false

§& : |ogica| AND

tests that both exl:)ressions are true left to ri g]ﬁt
assoclative

echo $(((3 < 4) && (10<15)))
1

echo $(((3<4) && (10>15)))

0

|| logical OR

tests that one or both o1C tlne exPressions are true
left to right associlative.

2echo $(((3<4) || (10>15)))
1

[|ogical negation

tests negation of exl:)ression.

. =

Bitwise OPerators

Bitwise OPerators treat ogeran&s as 16 (ctually
clepencls on word size on computer) lt biﬂa rg VBIUCS

Example: 4019 equals 0oo0oIIONOON,, .,
(OFB?3,. in hexadecimal) in integer format.

(lnterna”9 in the computer, integers are exl:)ressecl in a format called two’s-complement.
Positive integers are in straight base 2. Negative integers are “Funng” §

Bitwise OPerators

~ . bitwise negation clﬁaﬂges Osto1’s (bits) and
vViCe versa

& : bitwise AND
~ . bitwise exclusive OR
| bitwise OR
<< : bitwise left shift (numerically is *2)
<<=n : bitwise left shift]:)3 n bits (numerically is *27)
>> : bitwise right shift qunercallyis -29
<<=n : bitwise left shift]39 n bits (numerically is <21

Shell Scripting

Intro - arithmetic

Arithmetic
bash shell arithmetic resembles C Programming
language arithmetic

G@qjhek%uhggoudon%aheadgknow(]).

In bash, the syntax $(()) can be used to
calculate arithmetic cxl:)ressions or to set
variables to Complex arithmetic expressions

echo $((3+4)) echo $x
7 4
echo $((x=2)) ((y=10))
2 echo Sy
echo S((++x)) 10

g
echo §((x++))
3

Basic Arithmetic OPerators

shell arithmetic is intcger onlg

+ : addition
- : subtraction
* :muitiplication
/ + division
2 : remainder or modulus

echo $((10%3))
1

echo $((10/3))
3

Ass| gnment OPcrators

= . setvariable equal to value on riglnt

(no spaces allowed around equals sign)

X=2; echo $x
2

+= . set variable equal to itself Plus the value on
ri gl"lt (spaces allowed, but not requirecb

x=2; echo $((x +=2))
4

= . setvariable ec]ual to itself minus the value on
rlgl'Tt (spaces allowed, but not requirecb

X = 2; echo $((x-=2))
0

Assignment Operators

*= . setvariable equal to itself times the value on
ri gl’]t (spaces allowed, but not rec]uirecb .

$x = 2; echo $((x *= 4))

Ass| gnment Operators

/= :setvariable equal to itself divided bg value
on ﬂgl’]t (sl:)aces allowed, but not required).

x = 2; echo $((x/= 2))
1

%= . setvariable ec:]ual to the remainder of itself

divided bg the value on the riglﬁt

X = 4; echo S$((x %= 3))
L

Unarg OPerations

A unary exPression contains one operancl an&
}
one operator.
}

++ . increment the oPerancl bg]

Unarg Operations

it ++ occurs after the oPerancl, Sx++, the original
value of the oPerand s used in the ex Dression
and then incremented.

it ++ occurs before the oPerancJ, ++$x%, the
incremented value of the oPerancl is used in the
exPression.

Una:y Ol:)erations
- : clecrement the operancl bﬂ]

+: unary Plus maintains the value of the ol:)erancl,
X=+X

—: unary miNUS negates the value of the operancl,
_1*X=_X

—1. Iogical negation

Some tcsh/csh syntax
A shell with C Ianguage-like syntax.

Control structures

~ Foreach, it switch and while

FOFCBC}') . ad tCSl"l commancl

IS a Powemcul way to iterate over fles from the tcsh command
line (can also Put in shell scril:)ts — don’t get Prompts).

$foreach file (828/*BHZ*)#set variable file to each sac file
foreach? echo sfile

foreach? set name = “echo $file | cut -f2 -d'/' °

foreach? set sta = “echo Sname | cut -f1 -d'.' °
foreach? echo “copy S$file to Ssta.BHZ.SAC
foreach? cp Sfile Ssta.BHZ.SAC

foreach? end

828/GAR.BHZ 00.D.1989.214:10.24.59

copy 828/GAR.BHZ 00.D.1989.214:10.24.59 to GAR.BHZ.SAC

Aside — new command
cut

The cut command has the abilit9 to cut out
characters or felds. cut uses delimiters.

file = 828/GAR.BHZ 00.D.1989.214:10.24.59

Set name = “echo $file | cut -f2 -d’/’'"

Says return the second field (-£2), usin]% ‘/* as a delimiter (-
d'/”) (assign it to the variable name)

name = GAR.BHZ 00.D.1989.214:10.24.59

set sta = “echo $name | cut -fl -4d'.'

Says return the first field (1), using ‘.’ as a delimiter (-d’.%)
?assign it to the variable sta)

if-then-else block in tcsh/csh

Two formats

if (expression) simple command

or
if (expression) then

else

endif

The tcslq/ csh switch statement can replace
several it ... then statements.

switch (string)

case patternl:

commands. ..
breaksw

case pattern2:

commands. ..
breaksw
default:
commands. ..
breaksw
endsw

For the string given in the switch
statement's argument,
commands Fo”owing the case

statement with the matchin
Pattem are executed until the
endsw statement.

These Pattems may contain ?
and * to match groups of
characters or spechcic
characters.

switch/case in tcsh syntax

foreach plane(0035.0 0050.0)
set cnt=expr S$cnt + 1°
switch (Scnt)
case 1:
set xpos=-5.
set ypos=4.75
set min=-2.5
set max=2.5
breaksw
case 2:
set xXpos=-6.6
set ypos=-3.5
set min=2.5
set max=7
breaksw
endsw
such as excessive amounts of GMT

Another examl:)le

Get the arguments BUiIt"in Shé”
set source dir = §1)
set target dir = $2 Var]ablés
shift argv
shift argv
while (S$#argv > 0) . .
cet input = (Sarqy) ggySPeaal variable
switch(sinput[1]) used in shell scripts
case -m:
set module = $input[2] to hold the value o
breaksw)
case -auto: COmmaﬂC{ Ilﬂe
set auto = 'Y'
breaksw arguments.
case -full:
set full = 'Y'
breaksw
endsw
shift argv

end

