Data Ana|95i5 N Geophgsics
ESCl 7205

Class 6

Bob Sma”eg

Basics of UNIX commands

Some more USC{:UI Commancls

Basics of the Unix/Linux
En\/lronment

Additional useful commands

WC: word count

37753 253998 3561084 \sumal .hrdpicks

Reports number of lines, words
(separatorzspace) . and characters in the file.

. _—

Additional useful commands

Clp: COH‘IPBI’C HlCS aﬂCl FCPOYT CC]UBI or not.

cmp hwl.txt hwla.txt
hwl.txt hwla.txt differ{jchar 175, line 12]

No output it the same, else reports bgte and line

numbers at which the first ditference occurred
(starts at1).

Additional useful commands

diff: show differences between two files

diff hwl.txt hwla.txt
cl2

< 2) [2] Create a directory in your account for this course - you
might call it something like ESCI7205.

>12) [2*] Create a directory in your account for this course -
you might call it something like ESCI7205.
1l4cl4

Sometimes useful ¢ fes completely different is mess) .
| ess than sign, suck, for to left, file 1, greater
than sign, spit, for file to riglﬁt, file 2.
(i have extra |ines) will re—-sgnch, afterwards.)

Additional useful commands
sort: alphabetical or numeric sort function

(PELD

COGO
MORA
MOR2
TOFO
SILA

HUAS

ABAC
ABEL
ACOL
ACPM
ADLS
AGAL

sort alphabc‘cica”g

more samgps.dat

-33.14318 -70.67493
-31.15343 -70.97526
-30.20823 -70.78971
-30.20823 -70.78971
-29.45939 -71.23842
-29.24037 -70.74956
-28.47848 -71.22235

sort samgps.dat

CAP
CAP
CAP
CAP
CAP
CAP
CAP

[5]
[3]
[3]
[?]
[4]
[3]
[3]

1993 1997 1998
1993 1996 2002
1993 1996 2002
CHILE OKRT

1993 1996 2001
1993 1996 2002
1993 1996 2002

-24.433 -66.217 SAGA [-] ARGENTINA NORT
-25.667 -65.483 SAGA [-] ARGENTINA NORT
-30.78337 -66.21338 CAP [3] 1993 1997 2000 ARGENTINA OKRT
-33.447181 -70.537434 CAP2 [c] continuous (2005-) CHILE
-26.08449 -67.4191 CAP [2] 1993 1997 ARGENTINA OKRT
-24.317 -66.467 SAGA [-] ARGENTINA NORT

1999 2002 CHILE
CHILE OKRT
CHILE OKRT

2002 CHILE OKRT
CHILE OKRT
CHILE OKRT

more flong.dat

20

11
10

sort default is alplﬁabe’cical

sort flong.dat
1
10
11
2

20
9

Alplﬁabeticaug “10” comes before “2 ¢ (note the
space) because is is sorting on the first
character, then the second. ..

alpaca.ceri.memphis.edu506:> more flong.dat
2

1
20
9
11
10

Sort numerica”9

514:> sort -n flong.dat
1
2

9

10
11
20

Sort numcrica”g on second column or Position

sort -n samgps.dat | head -3

WOlA -87.41565 -149.43328 WAGN [2] 2002 2005 OKRT
WO1B -87.41518 -149.44311 WAGN [2] 2002 2005 OKRT
WO2A -85.61192 -68.55633 WAGN [3] 2002 2005 2008 OKRT

Sort numer:ca”g ancl remove CIUPIICatCS
more dirList
812
799
812
825
799
825
sort —n dirList
799
812
825

Sort using a ditferent sel:)arator (default is white
sPace)

% sort —n —k3 SUMA.NEW.loc.csv

1,1,1918,9,22,9,54,49.29,,,-1.698,,,98.298,,,15.0,,0.0,,0.0,ehb
10,10,1935,11,25,10,3,7.39,,,,5.886,,,93.737,,,35.0,,0.0,,0.0,ehb
i00,100,1964,1,7,0,50,7.03,,,,1.801,,,99.483,,,15.0,,5.0,,0.0,ehb

More sort fun

cat tsort.dat

M ™M 0
— — N

—
Q @© O

< w0
—
N
Q 0O

-k 2 tsort.dat

sort

RS

MM un un ¢
N~ —~ N

— o~~~ N
T Q O 0 .Q

sort -k 2,3 tsort.dat

all3
b1l113

1
— N
—
O 0

sort -k 2,3 -u tsort.dat

b 214

To Figure all this out

Read the man page to see what else it will do.

NAME
sort - sort, merge, or sequence check text files
SYNOPSIS
/usr/bin/sort [-bcdfimMnru] [-k keydef] [-0 output] [-

S kmem] |[-t char] [-T directory] [-y [kmem]] [-2 recsz] [+posl
[-pos2]] [file...]

/usr/xpgd/bin/sort [-bcdfimMnru] [-k keydef] [-0 output] [-
S kmem] [-t char] [-T directory] [-y [kmem]] [-2 recsz] [+posl
[-pos2]] [file...]

F'rom now one, ﬁou will be expectecl to read the
man pages for all the commands we have used or
will use to see how to use them and what theg will

do.

You have to read the man Pages For a“ thc
commands

and then think of all the side efHects each can
have to Figure out what you can do.

cal: clisplags a calendar
Default is current month

will also displag the year

Time

Good way to fioure out clag of year (clog - often
incorrectlg ca%ecljulian clag) using the —3 Hag

cal

September 2009
Su Mo Tu We Th Fr

i

B/ 8

13 14 15
B2, 22
27 28 29

2 3 4
9 10 11
16 17 18
23 24 25
30

Sa

5
12
19
26

cal -j

September

Su Mo

249 250
2568250
263 264
Za L0l

Tu
244
251
258
265
272

We
245
252
259
266
2

2009

Th Fr Sa
246 247 248
253 254 255
260 261 262
267 268 269

Time

date: clisplags date and time

2date
Wed Aug 27 17:12:01 CDT 2008

2date —u —r 10
Thu Jan 1 00:00:10 UTC 1970

Basic Math
be: basic math calculator
+l 4 *I /I %I Al Sqrt

also test Boolcan exl:)ressions ancl
>,<,==,1= ctc.

c]uit or CNTL-D to exit

expr: evaluate the exPression
more Poweﬁcul, command line calculator for
integcr math and string comparison

units: unit conversion

Job Control

tOQ: liStS 8” PI"OCCSSCS currentlg l"Uﬂﬂiﬂg

PS: process status, another way to clisplag

ps -aef

UID PID

root 0
root 1
rsmalley 9790
rsmalley 9578

PPID
0
0

9580
9575

C STIME TTY

0 Jun
0 Jun

1 23:17
1 18:50

TIME
13 ? 0:04
13 ? 0:10
:45 pts/12 0:00
:33 ? 0:04

process identification numbers (PID)

CMD
sched
/etc/init —

ps -aef
/usr/lib/ssh/sshd

kill: allows you to hard kill processes bg their

PID (g@t ‘FrOm P S> . You can onlg kill your ownjobs (unelss you are root).

kill -9 9578

CNTL-Z: susl:)encls the currentjob (use to end

man Program}.

fqg: resumejo]:) and runs it in the ?oregrouncl

(grabs screen).

bg: resume tlﬁejob in the backgroumd (initia”y set

on the command line bg adclingt
of the command/scri

ne & to the end
ot).

iobs: lists a”jobs running in the backgrouncl,
inclucling their PIDs.

Fincling/Searching

find: search for files

Syntax: find path expressions

Read the (comcusing) man page.

Is Powergul UNIX tool.

Starts where we are (), looks there and below in
the di rectory structure.

find . -name cap ice* -print
./dem/cap icezooms .5v2.ps

/from midtown/dem/cap ice .5v2.ps

Don’t need the “~Print” anymore (but you may
seeit).

In old days, found the files, but needed
instructions on what to do with them (did not
automatica”g send to standard out, ‘«:Pt it a

secret).

Fincling fles in the working clirectorg and below
which have been modified in the last n (=-1 here)
days:

find . -mtime -1

List all the files and subdirectories from the
subdirectories starti ng at root, with 777
Permissions?

find —perm 777

Use oPtion “_iname” for a case insensitive search
in working clirectorg and below, bg default find

searches are case sensitive.

find . —iname "error”

. _—

Delete temPorarg Hles in working clirectorg and
below using £ind and xargs commands together

with a PiPe
find . -name "*.tmp” | xargs rm —f

Xargs can be used to do whatever you want to

each file found bﬂ the find command.

xXargs along with £ind gives you immense power
to do whatever you want (inclucling stutt you
don’t want [and/or did not anticipate] — bi
oPPortunities for disaster) with each searcﬁ

result.

Find all text Hiles in Working clirectory and below
which contain the word Excep‘cion using find
command

Two ways to do it
find . —name "*.txt" —print | xargs grep “Exception”

find . —name "*.txt" —exec grep “Exception” ‘{}‘’ \;

find . —name "*.txt" —exec grep “Exception” ‘{}’ \;

The —exec action takes a Unix command (along
with its oPtions) as an argument. The arguments
should contain (usua”g quoted), which is
replacecl in the command with the name of the
currentlg found file. The command is terminated
139 a semicolon, which must be quotcd (escapecﬂ}
so the shell will pass it |itera”3 to the find
command.

The —exec action in find is very useful, but since

it runs the command listed for every found file it

iIsn't very eftticient. Ona |arge system this makes
a ditterence!

l:incling Hles onlg in current clirectorg not
searcl’xing on sub directories:

find .[—maxdepth 1]—type f -newer first file

Or

find . -type f -newer first_file[—prune]

Find all files in current directorg and
subdirectorg, greater than some size using find
command in Unix (and then do and 1s =1 on them
using —exec)

find . |[-size +1000c -exec 1ls -1 {} \;

Use the ¢ after the number to sPech(y the size in
bgtes, otherwise you will get (corncusecl because
find —size rel:)orts> results basecl on size omc H‘)C

file in disk blocks not bgtes.

To find files using a ran%c of file sizes, a minus or
Plus sign can be speci ied before the number.

The minus sign means "less than," and the Plus
sign means "greater than."

SuPPose hcgou want to find all the files within a
range you can use find command as below

find .|[-size +10000c -size -50000c|-print

This find command example lists all files that are
greater than 10,000 bgtes, but less than 50,000
bgtes:

Find files which are some dags old and greater
than some size in Unix.

\/erg common scenario where you want to delete
some large old files to free some space In your
machine. You can use combination of "-mtime"

and "—size" to achieve this (and then do and 1s

—1 on them using —exec) .

find . -mtime +10 -size +50000c -exec 1ls -1 {} \;

This command will find which are more than 10
&ags old and size greater than 50K.

Common Find Gotcha:

i the given exl:)ression to ind does not contain
ang of the action Primaries —exec, -ok, Or —print,
the given expression Is egectivelg rel:)‘acecl by:

find \(expression \) —print.

The implied parenthesis can cause unexpected
pred p P
rc—:sults.

.e., consider these similar commands:

find -name tmp -prune -o -name *.txt
./bin/data/secret.txt

./tmp
./missingEOL.txt
find -name tmp -prune -o -name *.txt —print
./bin/data/secret.txt
./missingEOL.txt

The lack of an action in the first command means
itis equivalent to:

find . \(-name tmp -prune -o -name *.txt \) —print

This causes th to be included in the output.

The implies Parenthesis are iml:)ortant.

i.e., consider these similar commands:

find[—name tmp —prune]-o[-name *.txt —print]
./bin/data/secret.txt
./missingEOL.txt

find l-name tmp —prune —print]—o[—name *.txt —print]
./bin/data/secret.txXt
./missingEOL.txt
./tmp

For the second find command (top one here) the
normal rules of Boolean oPerator Prececlence
apply, so the Prunecl clircctorg does not appear
in the outl:)ut.

Compare with bottom command with action (-
print) for both arguments to —o (boolcan or).

You can use "awk " (will do it next) in combination
of find to print a formatted outPut c.g. next
command will find all of the sgmboiic links in your
home clirectorg, and Print the files your sym olic
links Points to:

find . -type 1 | xargs 1ls -1d | awk '{print $10}"’

11 11

. 5ays starts from current Aircctorff and include
all sub cﬂirectories, "-type 1"says ist all links

Fincling/Searching

find: search for files

To makc this rea”g usemcul (as it wlqat We have seen
alreaclg s not Aangerous eno%s%h), we need a way
to search for Pat’cems in the filenames (or within
les).

use regular expressions (not shell Wildcarcls).

S0 now we are going to have two kinds of sPecial
characters, or metacharacters.

Those that mean something special to the shell
(sucln asthe “$” on a shell or environment variable
orthe “/”ina Path).

Those that are usecl to 5l:><:chcg a Pattem as a
regular exl:)ression.

And will need a way to “turn og”, or escape, the
special meaning as either a shell or regular
expression metacharacter-.

These rules are global.

Sag | want to look for all files that start with a “v”
or “v”, and have any “extension” (the . dat”, Part
of the file name).

find . -name *olcanoes*
find: bad option Volcanoes.dat
find: path-list predicate-list

TI’HS CIOCS not WOF‘(FOF some reasorn.

The £ind command is not “using” the “x”

Pl’OPCFIH.

(T]ﬁis is because the shell recognizecl it as a shell
wildcard and got hold of it first and did something
with it instead of Passing itonto £find.)

Metacharacter
Escaping

T ——

We have to “escape” the shell’s interEretation of
the “*” soit icfjc:‘cfs Passecl to find to be used as a
reguiar exPression there. Use \

find . -name Volcanoes.dat
./Volcanoes.dat

find . -name *olcanoes*
find: volcanoes: unknown option

find . -name *olcanoes*
./volcanoes
./Volcanoes.dat
./volcanoes. f

find . -name *olcanoes*

./volcanoes

./Volcanoes.dat

./dem/volcanoes.f
cd ..

find . -name *olcanoes*

./dem/volcanoes

./dem/Volcanoes.dat

./dem/volcanoes.f

There are ’CI’]FCC ways to escape metacharactcr
| nterl:)retation.

Backslash “\”, escapes the next character from
interl:)retation [the Erst time \ is encountered],
i.e. the next character is treated as a regular
character.

*olcanoes\ *
'*olcanoes*’
"*0olcanoes*"

Works for all programs (thc shell isjust another
Program).

\ *olcanoes \ *

So the splat s not used as a wildcard bg the shell
(all the files in the clirectorg) , the first program to
encounter it, and it is Passecl as a* to the
program find where it 1s (]Cina“g) used as a
wildcard (ang combo of characters).

The backslash “\”1s the strongest method to
escape a character.

It works evergwl’]ere.

I5 you want to Place text on two or more lines for
readability, but the program expects one line, you
need a line continuation character. Just use t%e
backslash as the last character on the line:

echo This could be \

a very \
long line\!
This could be a very long line!

This escapes or quotes the end of line
(eol,<CR>) character, so it no |onger has a
special meaning.

(In the above example, the backslash before the exclamation Point IS necessary it you
are using the C shell, which treats the "I" as a special character.)

Another example of the thou‘%z'ht processes
e power of Unix.

involved in taking aclvantage of t

what would you enter it you were looking for aftile
named “*olcanoes”?

(rhetorical cluestion) .

Next two me’tlnods.

Protect metacharacters from interpretation bﬂ

the shell onlg.
Single quotcs.

‘quote’, ‘escape’, or ‘Protect’ ever{thing inside
the c]uotes them from the shell.

'*olcanoes*’

Next two methods.

Protect metacharacters from interpretation bﬂ
the S ’16” onlg.

Double quotes.

"*olcanoes*”

»n o«

‘quote”, “escape”, or “protect” everf?thinginsicﬂe
the quotes from the she

exce!:)t variables and backquo’ced ex!:)ressions ™)

(we will get to that soon) .

Wl"NCh arc CXPBHCICCI]DH th@ Sl"lé” ancl FCPIBCCCI

with their value.

Quote syntax
What haPPens if you Forget the c]uotes clepencls

on the shell and which quotes you Forgot/ used
| ncorrectlg.

- _—

In csh/ tcsh, the variable b below would be set to
He”o, and the shell would ignore the string world.

545:> echo $0

-tcsh

546:> set b=hello world
547:> echo Sb

hello

- _—

In slﬁ/bash, the variable b below would be set to
@, and the shell would trg to run the command
world Proclucing an error message.

/bin/sh
b="hello world'
echo S$b
hello world
b=hello world
world: not found

Singlc vs. double c:]uotcs examplc.

set a = A
echo Sa

set b = ‘letter Sa’
echo Sb
letter Sa

Shell did not expancl variable a to its value.
Treated string $a litera”g as the characters sa.

set ¢ = “letter Sa”

echo Sc
letter A

Now shell exPanclecl variable a to its value, a, and
Passecl value on.

Works same in csh/tcsh and sh/bash.

Back to commands

grep: search for a Pattem inside files (or
standard in, or <<).

(general @gular expressiom
general [egular EXPression processor,

)
(name created using UNIX naming Philosophg)

highly useful and it is worth your time to sit down
with the man page.

Simple examplc—:s
Find the string PELD in the fle samgps.clat.

grep sends all lines in inPut (standard in, file

[don’t need rechrect) but can use it], or Pipe) that
contain the string “PELD?” to the standard out.

grep PELD samgps.dat
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT

Takes standard Unix “regular exEressions”) of
which we have seen a few.

This finds all the lines that start with a “P” (“~” s
the metacharacter for the beginning of aline) and
sends them to stanclard out.

grep "P samgps.dat
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT
PSTO -28.17157 -69.79377 CAP [3] 1993 1996 2002 CHILE OKRT
PNAZ -26.14822 -70.65368 CAP [3] 1993 1996 2001 CHILE OKRT

Finds all the lines with “ARGEN?” and sends them
to standard out.

535:> grep ARGEN samgps.dat
TND2 -37.3 -59.2167 CAP|C1960 [0] ARGENTINA NORT dropped
ZAPX -38.82775 -70.02394 CAP|C1960 [?] ARGENTINA OKRT

Finds all the lines with “3 ARGEN” and sends them
to standarcl out.

510:> grep "3 ARGEN" samgps.dat
ZAPL -38.82775 -70.02394 CAP|C1960 [4] 1993 1997 1997 2003 ARGENTINA
BSON -42.01391 -71.20485 CAP|C1960 [3] 1993 1997 2003 ARGENTINA OKRT

What does this do?

grep CAP.*ARGENTINA samgps.dat

grep CAP.*ARGENTINA samgps.dat
TNDL -37.32423 -59.08637 US|CAP|C1960 [7] 1993 1997 1997 1998 1998 2001
2003 ARGENTINA OKRT Tandil
TND2 -37.3 -59.2167 US|CAP|C1960 [0] ARGENTINA NORT dropped
ZAPL -38.82775 -70.02394 US|CAP|C1960|C2010 [5] 1993 1997 1997 2003 2010
ARGENTINA OKRT Zapala

Finds all lines with the string cap followed bﬂ O or
more clﬁaracters then the 5tring ARGENTINA.

(like find but for file contents rather than file

names. Combined with regular exl:)ressions IS very
cowerrul)

[Probablg use grep every time I’'m on a Unix
sgstem!

Command Substitution

Command substitution

Invoked bg using the back or grave c]uotes

|

(actua”g French grave accent, 7). (exin bash)

a="echo ”hello world." | wc

What does this do?

. _—

Command substitution tells the shell to run what
is inside the back quotes and substitute the
output of that command for what is inside the
c]uotes.

So the shell runs the commmand

echo hello world. | wc

Proclucing (which you don’t see)

1 2 13

takes the OUtpUL (the 125" above), substitutes it for
Wl"lat 1S 1N tl"lC baCk ClUOtCS (echo "hello world | wc.),
and sets the shell variable ec]ual to it

a="echo "hello world." | wc"

does this (is as if you tgpecl)

a=‘1 2 13’

Coml:)are/ contrast this to what the Pil:)e G
does.

Trivial example of substituting into a switch.
As a variable (wlﬁg do I need the quotes?)

509:> set options=‘-la
510:> 1ls Soptions
total 2203891
-rw-rw-rw—- 1 rsmalley user 54847 Mar 7 2009 CHARGE-2002-107
drwxr-xr-x 94 rsmalley user 31232 Sep 19 17:46

dr-xr-xr-x 3 root root 3 Sep 19 17:51

drwxr-xr-x 2 rsmalley user 512 Oct 1 2004 .acrobat

-rw-r--r—-- 1 rsmalley user 237 Oct 1 2004 .acrosrch
Direct Yy

511:> ls—echo—Soptions—

total 22p389

-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 CHARGE-2002-107

drwxr-xr-x 94 rsmalley user 31232 Sep 19 17:46 .

dr-xr-xr-x 3 root root 3 Sep 19 17:51 ..
' 2
1

O

rsmalley user 512 Oct 1 2004 .acrobat
rsmalley user 237 LAGeE

Variables are set to the final outPut of all
commanads within the back single cluotes.

In csh and bash.

509:> set options=‘-la’

513:> set ops = “echo Soptions”
514:> echo Sops

-la

515:>

-bash 662 dem # options='-la'
-bash 663 dem # echo Soptions
-la
-bash 664 dem # ops="echo S$Soptions"
-bash 665 dem # echo $ops
-la
h 6668 dem #

Thisis a very useful and Powemcul feature.

Standard Error

What does >&! mean?

WC haVC aeraCJH SECN tl"le > (it means redirect ou‘cput) aﬂd VoGt

means clobber any existing fles with the same name) .

So far we have discussed standard-in and
standar&~out.

But there 1S anotlf]er stanclarc] outl:)ut stream -~
introducing

standarcLerror.

ls nonexitantfile
ls: nonexitantfile: No such file or directory

The message above shows up on the screen, but
in this case it is actua”9 standard-error, not
standard-out.

ls nonexitantfile > filelist
ls: nonexitantfile: No such file or directory
ls -1 filelist
-rw-r--r—-- 1 smalley staff 0 Sep 21 16:01 filelist

Can see this }39 redirecting standard-out into a
Hle. The error message still shows up and the fle
with the redirected outEut IS emptg.

(it has O bgtes, our standard Unix output, reaclg r the next command in Pipe.)

>s is the csh/tcsh syntax for reclirecting
5tanclarcﬂ~error to 5tanclarcﬂ~out.

(else standard-error it goes to the screen)

APPend standard-error to standard-out

>>&

You car’t handle standard-error alone.
(With what we have seen so far, in csh/tcsh.)

The sh/bash syntax uses I to [ol:)tionangl identi{g
standard-out and 2 to identhcg standard-error.

To redirect standard-error in sh/ bash use
2>

To redirect standard-error to standard-out

>&

(! has usual meaning — clobber)
, S
To PIPC stanclarcLout and stanclarcLerror

>&|

Redirect standard-error to file

ls nonexitantfile > filelist 2> errreport
cat errreport
ls: nonexitantfile: No such file or directory

Reciirect stan&ard-error to stanciard-out into a
Hle. Cant do second redirect to a file. Use
subshell command Format, redirect output

subshell to file. combofile has both standard-out
and standard-error.

(ls a.out nonexistantfile >&)>combofile
more combofile
nonexistantfile: No such file or directory
a.out

Subshells

Combining stdout and stderr In tcsh
the best you can dois (Unix think)

(command > stdout file) >& stderr file

which runs "command” in a subshell.

stdout is redirected inside the subshell to
stdout file.
both stdout and stderr from the subshell are
redirected to stderr_file, but bg this point stdout
has alreadg been redirected to a ?ii:, SO onlg
stderr actua”g winds up in stderr file.

SUbSI’ICHS can be used to %roul:) outPuts togcther
into a singe Pipe.

sh/bash

when a program starts another Program [more exactly,
when a process starts another process], the new process runs as a
subProcess or child process. When a shell starts
another she”, the new shell is called a subshell

So in our earlier example using command
substitution we could have done

(my convert program input filel; cat input file2) |\
my processing program << END

Where we are using the \ to continue the
command on the second line.
The semi-colon «; 7, allows us to enter multiple
commands, to be executed in order, in the sub-

shell

(In tgPic:aI Unix fashion, the ;> works in the shell and shell scripts also. Try it).

Misc commands and

stutf

T ——

finger ~ tind out information about users

who -whois currentlg loggc—:cl in and

w -whois currentlg loggc—:cl in what are thcg cﬂoing
whoami — rel:)orts your username

id - tells you who you are (username, uid, group, gid)
uname — reports basic system information

whois — reports information about hosts
which/whereis - locates command S/Filcs

whatis ~ gives brief summary of a command
talk - chat with other users on the sgstem

(instant messaging of the 60’s! There is nothing
new under the sun.)

write/wall - send messages to all users

Ty ~es of commands

Built-in commands: commands that the shell itself
executes.

Shell functions: self-contained chunks of code,
written in the shell |anguage, that are invoked in
the same way as a command.

Eixtemal commands: commancls tl’mat tl’we slnc” runs

bg creating a separate process.

Special shell variables

$< . specia BSD Unix csh command that
essentia”g acts as read excePt it is not white
space delimited

set name = “S<”

instead of

read firstname lastname

SPecial shell variables
S# : JCI’IC number o1C arguments Passecl to the SI’!C”.
Useful when clﬁecking ca”ing areuments (clicl you
enter the correct number of them?), writing

if:then:else blocks and looPs.

We will cover this more later.

SPccial shell variables

vs@". (need quotes) represents all command line
arguments at once, maintaining seParation, same

as
”Sl" u$2" u$3"

ng Kk (slﬂoulcl have quotes) represents a”
command |ine arguments as one, same as

u$1 $2 $3 $4"
Without quotes, $* equals “S@r

S arglist.sh first second\ third

Listing args with "$@":

Arg #1 = first

Arg #2 = second

Arg #3 = third

Arg list seen as separate words.

Listing args with "$*":
Arg #1 = first second third
Entire arg list seen as single word.

Listing args with $* (unquoted):
Arg #1 = first

Arg #2 = second

Arg #3 = third

Arg list seen as separate words.

$

SPecial shell variables
S-—: Ol:)tions given to shell on invocation.
$? . Exitstatus of Previous command.
$$: Process ID of shell process.
$1 : Process ID of last backgrounci command.

Use this to save process ID numbers for
later use with the wait command.

SPecial shell variables

STIFS : Internal field seParator
the list of characters that act as word sel:)arators.
Norma”g set to space and newline (magbe tab) (is
a bash, not tcsh variable).

echo SIFS

echo S$IFS | od -x
0000000 0a00

0000001
echo SIFS | od -c
0000000 \n

0000001

SPecial files

/dev/null :null deviceis a sl:)ecial Hle that
discards all data written to it (but rePorts that the
write oPeration succeeded), and Provides no

data to any process that reads from it (gielcling
EOF immecliatelg} :

Also know as the bit bucke‘c, black hole, or a
WOM (write onlg memorg).

SPecial files
/dev/tty: redirects scril:)t’s stnd-in to the termina

SCFIPt
#!/bin/sh

printf "Hello. My name is hdmacpro. What is yours?\n"
read name < /dev/tty

printf "Nice to meet you %s.\n" S$name

printf "Hello. My name is hdmacpro. What is yours?\n?"
read name

printf "Nice to meet you %s.\n?" S$name

Run it

tsttty.sh
Hello. My name is hdmacpro. What is yours?
bob
Nice to meet you bob.
Hello. My name is hdmacpro. What is yours?
?Bob

Nice to meet you Bob.
?

AWK /NAWK

Quick intro for HW

awk :
[Aho, Weinberger, ﬁemiglﬁan]
new-awk = nawk

Power?ul Pattermdirectecl scarming ancJ
Processing Ianguage.

So Powemcul that we will devote a lot of time to it.

One of the most used Unix tools.

For now we will Present the bare basics that will
a”ow us to start Processing c:lata.

nawk reads a file and processes it a line at a time.

The inPut line is Parsecl into Helds scl:)aratecl bg
spaces or tabs.

The fields are addressed as $1 , $2, etc.

$0 IS the while line.

Here is the basic sgntax for Peﬁcormin simple
nawk Drocessing from the command line.

nawk ‘[/regex/...] {print $n, Sm, ..}’ file

Where / regex/ IS an oPtional (the [15) reéular

exl:)ression contained within forward slashes «/”s.
(There can be more than one fthe ...}, combined logica”9 &&, 1.

Sn, Sm, ctc.are the columns of the file to Print
out

Hle sl:)echcies the inl:)ut Hle

A basic) and usc—ncul) nawk example.
Print out a number of columns of a file (583 the lat
and long contained in columns 6 and 7) for

Plotting bg GMT).

Here is the file mydatamcile.clat

CAT YEAR MO DA ORIG TIME LAT LONG DEP MAGNITUDE
PDE 1973 01 05 123556.50 46.47 -112.73

PDE 1973 01 07 225606.10 37.44 -87.30 15 3.2

PDE 1973 01 08 091136.80 33.78 =90.62 7 3.5

What do we do about the first line (a “lﬁeacler”,
useful to humans, confuses Programming.)

fa regular cxPression IS sPcchCiecl, nawk will onl
>rint out the lines which contain a match to it. A
the other lines in the example start with PDE — so
use that to find data)

nawk ‘/PDE/ {print $7, $6}' mydatafile.dat
-112.73 46.47
-87.30 37.44
-90.62 33.78

Prints out the seventh and sixth column wyorder, the

guys who wrote GMT came from mathematical Plotting where x is usua”g first, not

geographical Processingwhere lat is usua”g first) FOF a” liﬂes iﬂ t’l"]e FIIC
mgclataﬁle.dat containing the character string
“good ata”.

It we did not have the search for lines with /ppE/

it would Print out the seventh and sixth column for
all lines in the file mgclata]cile.clat.

nawk ‘ {print $7, $6}’ mydatafile.dat
LONG LAT

-112.73 46.47
-87.30 37.44
-90.62 33.78

Wthh WOUICl ma|<e GMT verg unhappg.

The inl:)ut to nawk can also be Pil:)ecl or redirected
from stdin.

cat mydatafile.dat | nawk ‘ {print $7, $6}’

or

nawk ‘' {print $7, $6}’' << END
“cat mydatafile.dat"
END

(Although one would never do either of the
above in Practicell Whg?)

This is enouglﬂ awk /nawk knowleclge to do the
homework.

T ——

Basic scriptin

Shell Scripting

What is a shell scriPt?

It1s a program that is written using shell
commands

(the same commands you tHPC to do things in the
shell)

I‘ —

When to use a shell scril:)t?

Shell scripts are used most often for combining
existing programs to accomplish some small,
spechcicjob, tgpica“ one you want to run often/
mu tiplc times.

Once you've Figurecl out how to get thejob done,
you put the commands into a Filc, or scri!:)t, which
you can then run clirectlg.

Wh9 use shell scripts?

~ Rel:)eatabilitg —~

whg bother retgl:)ing a series o common
commands’:’

Wlﬁg use shell scril:)ts?
~ Porta]:)ilitg -

Once you have a useful tool, you can move you
shel scril:)t from one machine/ Havor Unix to
another.

POSIX standard — formal standard clcscribing a
Portable oPerating environment.

IEEE Std 100%.2 current POSIX standard.

Why use shell scril:)ts?

Simplicit9

Simplest shell scriPt
You have to do the same N commands every clag.

Put them in a shell 5criPt ancljust type the File/
shell scriPt name (to run itg).

. _—

Next simples‘c shell 5cri|:>t

You have to CIO th@ same N Commancls CVC!’H clag

but on a different inPut file each clag.

Same as belcore, but now you have to pass the
name 01C the ile When %,ou run it anol ha\/e to remcer
to that file somewhere in the shell scril:)t.

Next simples‘t shell scril:)t

You have to do the same N commands every c:lay
but on ditferent inl:)ut files each day.
You may also have to vary what needs to gc done
based on some Prol:)erties of the files, etc.

Same as b@corq but now you also have to be able
to test conditions and make decisions about what
to do next based on the results of those
decisions (if-then-else).

Next simples‘t shell scril:)t

You have to do the same N commands every c:lay
but on ditferent inl:)ut files each day.
You may also have to vary what needs to gc done
based on some Prol:)erties of the files, etc.

You wi” also neecl some way to repeat tl’]e process

for many fles (loops).

Some Programming features that do not exist in shell scriPts.

Subroutines and Functions.

You]ﬁa\/e some tas|<s tlﬁat neecl to be repea‘cecl N
many omc your Programs.

You can write a general rogram to process these
tasks and then use, or call them, them within other
Programs.

Subroutines and Functions are like little
standalone programs that take inPut arguments
and Procluce a result.

The main difference between them is how theg

givc you the result.

Don’ t Mess With It!

Look The Other Way

NO PROBLEM!

Flowchart for comPuting N!
M=1
" Has
g .
—— - tests/decisions
~ loop

) 0
M= M+1
: PRINT F /

lnterpreteci VS. Compileci Languages

End members of methods for changing what you
write in a “high-level langua e” (variables,
ma’thematica%operation@ 5u%routines, etc.
FORTRAN, C, C++, PEARL, etc.) into the

individual machine instructions the coml:)utcr’s

CPU executes (Put numbers into CPU register,

multiply them, store result in memorg).

Coml:)iler

The name "compiler" IS Primariig used for
programs that translate source code written in a
high—-—level Prolqgramming language to a lower level
language such as assemblg language or machine

CO(:IC (CVCFﬂtl"liﬂg has to CﬂCl UP as machine COCIC CVCﬂtU8”9> -

Tgpica”g Procluces most etticient (in terms of run
time) implementation of a program.

Source to executable with ComPilecJ |anguage.
Several stel:)s.
~Edit the source code.
~Com|:>ile the source code into machine code.

~Link the machine code with libraries, etc.
(mctentimes done in one command together with
coml:)ile, but not necessarilg and you can control
itand do it separate%) .

- Run the Program (which is itself another, executable, file) .

During cievelopment you will Pro]:)ablg be cloing
this kind of cgcle.

Edit the Fortran source code.

Coml:)ile it link it (here done automatica”g ~
combine it libraries such as the |ibrar9 of VAX/
VMS extensions to Fortran, and files with extra

code) but you have to tell it what to use) and

make an executable file.

Then run it.

vi chinn2gmt fm.f

£f77 -W132 -1U77 chinn2gmt fm.f ../opens.f -o chinn2gmt fm
chinn2gmt fm

Examples of some Ianguages that are tgpica”g
coml:)ilecl.

FORTRAN
C
C++
ALGOL
PASCAL
BASIC /Visual BASIC

_

Inte rp reter

The name ”interl:)reter" IS Primarilg used for
programs that translate source code written in a
l’wigln—-level Programming |anguage to machine
code a line at a time at the time of execution.

Tgl:)icallg Procluces less efticient (in terms of run
time) implementation of a program (For example,
N a |ooP it has to interl:)rct the instructions each

time througlﬂ the |ooP>.

Source to executable with interpreted Ianguage.
Two steps.
~Edit the source code.
~Run the program
(It does the “compilirhg” and “|in|<ing”, or

translating to machine code, stefs automatica”g,

but rePeatecug.

It does not Produce an “executable” file. To run it
again it has to be interl:)retecl again. (So there is
actua”y some interPreter program running and
your program IS rea”y inPut to it.)

E‘_xamples of some languages that are tgl:)icang
interpreted

Shell scril:)ts (always)
awk /nawk / gaw
BASIC
MATLAD
HITML
LISP (which stands for LISt Processor or (Lots of
((rritating, Spurious) (Parentheses)))). Favorite
language for Al

~ Compiled languages arc ComPiICCl.

~ Modem interllsretecl |an uages are tgPicaHFg
lﬁgbrids (they will comPile the code in a looP or
instance, instead of interpreting it each Pass}.

MATLAD is an example of the modern hgbricl. It
has interpreteci parts, comPilecl as needed parts,
and you can coml:)ile your code.

When you run a com led program (again and

again) you skil:) the coml:)i e/link stel:)s.

(this is fast)

(the compile/ link process Produces an executable file, which is the file that is run/

executecl — not the source me.)

When you run an in’cerpretecl program (aéain and
again) the computer has to redo the
interl:)retation each time.

(this is slow)

(So while modern interpreters may internally take shortcuts such as compiling a loop, it is
P Y Y take ping P
local to each running of the Pro%ram. Fach time you run/execute the mterl:)retec]
program it returns to the source file and starts from scratch.}

Shell scriPts are strictlg interl:)reted
The Philosophg of shell scril:)ting 1s to
- Aevelop a tool with the shell and

- then write the final, efficient, implementation of
the tool in C (or other high level |anguage).

The second steP IS tgpica”g (universa“g?)
skiPPecﬂ.

lnterlz)reting VS. Compiling.

Compilin :goocl for medium, |arge~sca|e,
Complicate Problems) number crunching, when
you need the egiciencg.

lnterpreting: goocl for smaller scale, simpler
Problems) when not number crunching, when your
egiciencg IS more iml:)ortant than the CPU’s.

(It is not worth sl:)ending an hour of your time to save a microsecond of execution time on
a program that will run once — unless savinithat microsecond is the Point of a homework
pro lem.)

~Olden clags —

Coml:)uter was exPcnsivej limitec:l) resource.
Programmer — relativelg less expensi\/e.
|_ots o’rg etort went into writ] ng sma”) etticient
programs.

~Tocla5 —

Abundance of inexl:)eﬂsive comPuter resources.
Programmer — very expensive.

(BU9 a faster computer with another gigabgte of

memort)

- Take home lesson -

Use the aPProPriate tool.

