
Data Analysis in Geophysics
ESCI 7205

Class 4

Bob Smalley

Basics of UNIX commands

Modify last command in history list using caret or
circumflex accent, “^”, to fix typos or make small

changes.

Replaces text inside first two carets with that

between second and third.

(can sometimes skip closing caret as shown below in second example.)

$ ls trk1.kml!
trk1.kml!
$ ^1^2^!
ls trk2.kml!
trk2.kml!
$!!:p!
ls trk2.kml!
$ ^2^1!
ls trk1.kml!
trk1.kml!
$!

First it shows it to you and executes
the edited command. !

Basics of the UNIX/Linux
Environment

Environment (esoteric and essential)

The UNIX Environment

(general and CERI specific)

Mitch/Bob/Deshone have set up the basic CERI

environment on both the Macs (new this year)
and Suns so that everyone can access the

standard UNIX tools and geophysics packages
available on the UNIX systems at CERI.

The UNIX Environment

But what does this mean?

Many UNIX utilities, including the shell, need
information about you and what you're doing in

order to do a reasonable job.

What kinds of information?

Well, to start with, a lot of programs (particularly
editors) need to know what kind of terminal

you're using.

Your environment is composed of a number of

 environment variables

which provide this important information to the
operating system.

Rather than forcing you to type this (hard to
remember, where does one find it?) information

with every command

!

such as (% mail -editor vi -term aardvark48)!

UNIX uses environment variables to store

information that you'd rather not worry about.

For example, the TERM environment variable tells programs what
kind of terminal you're using. Any programs that care about your

terminal type know (or ought to know) that they can read this
variable, find your terminal type, and act accordingly.

UNIX commands receive information from three
potential sources.

-Arguments on the command line

-Data coming down their standard input channel.

-The environment. When a command is started, it

is sent a list of environment variables by the
shell.

Since you generally want the computer to behave
the same way everyday, these

environment variables

 are setup and stored in

configuration files

 that are accessed automatically at login.

What are your environment variables?

The commands env, or

setenv with no parameters,

print the current environment variables to the

Standard Out.

141:> env!
USER=rsmalley!
LOGNAME=rsmalley!
HOME=/gaia/home/rsmalley!
PATH=.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs:/gaia/home/rsmalley/gg:/gaia/home/
rsmalley/gg/com:/gaia/home/rsmalley/gg/gamit/bin:/gaia/home/
rsmalley/gg/kf/bin:/gaia/dunedain/d2/gps/bin:/gaia/smeagol/local/
passcal.2006/bin:/gaia/smeagol/local/gmt/GMT4.2.1/bin:/usr/sbin:/
usr/local/teTeX/bin/sparc-sun-solaris2.8:/gaia/home/rsmalley/
bin:/opt/local/sbin:/opt/sfw/bin:/usr/bin:/usr/ccs/bin:/usr/
local/bin:/opt/SUNWspro/SC5.0/bin:/opt/local/bin:/usr/bin:/usr/
dt/bin:/usr/openwin/bin:/bin:/usr/ucb:/gaia/smeagol/local/bin:/
net/gps4/d1/Noah/rbh/usr/PROGRAMS.330/bin:/gaia/home/rsmalley/X/
bin:/gaia/home/rsmalley/X/com:/gaia/home/rsmalley/record_reading/
bin:/gaia/home/rsmalley/record_reading/scripts!
MAIL=/var/mail//rsmalley!
SHELL=/usr/bin/tcsh!
TZ=US/Central!
LC_CTYPE=en_US.ISO8859-1!
LC_COLLATE=en_US.ISO8859-1!
!

LC_TIME=en_US.ISO8859-1!
LC_NUMERIC=en_US.ISO8859-1!
LC_MONETARY=en_US.ISO8859-1!
LC_MESSAGES=C!
SSH_CLIENT=75.66.47.230 50561 22!
SSH_CONNECTION=75.66.47.230 50561 141.225.157.63 22!
SSH_TTY=/dev/pts/12!
TERM=xterm!
HOSTTYPE=sun4!
VENDOR=sun!
OSTYPE=solaris!
MACHTYPE=sparc!
SHLVL=1!
PWD=/gaia/home/rsmalley!
GROUP=user!
HOST=alpaca.ceri.memphis.edu!
REMOTEHOST=c-75-66-47-230.hsd1.tn.comcast.net!
MANPATH=/gaia/smeagol/local/passcal.2006/man:/gaia/smeagol/local/
gmt/GMT4.2.1/man:/ceri/local/man:/usr/dt/man:/usr/man:/usr/
openwin/share/man:/usr/local/man:/opt/SUNWspro/man:/opt/sfw/man:/
usr/local/teTeX/man:/gaia/smeagol/local/man!
LD_LIBRARY_PATH=/gaia/smeagol/local/gmt/lib:/gaia/opt/SUNWspro/
lib:/gaia/opt/SUNWspro/SC5.0/lib:/usr/lib:/usr/openwin/lib!
!
!

LM_LICENSE_FILE=/gaia/opt/licenses/licenses_combined!
EDITOR=vi!
AB2_DEFAULTSERVER=http://stilgar.ceri.memphis.edu:8888!
PRINTER=3892!

You get all the stuff shown so far automatically.

If you can figure it out, you can change it to suit
yourself.

(But when you break-it, don’t ask [or humbly ask] the system

managers for help. If you were smart enough to break it, you’re
smart enough to fix it.)

GMTHOME=/gaia/smeagol/local/gmt/GMT4.2.1!
NETCDFHOME=/gaia/smeagol/local/gmt!
GMT_GRIDDIR=/gaia/smeagol/local/gmt/GMT4.2.1/share/dbase!
GMT_IMGDIR=/gaia/smeagol/local/gmt/GMT4.2.1/DATA/img!
GMT_DATADIR=/gaia/smeagol/local/gmt/GMT4.2.1/DATA/misc!
CWD=/gaia/home/rsmalley!
HELP_DIR=/gaia/home/rsmalley/gg/help/!
INSTITUTE=uom!
RECORD_READING=/gaia/home/rsmalley/record_reading!
RECORD_READING_BIN=/gaia/home/rsmalley/record_reading/bin!
RECORD_READING_SCR=/gaia/home/rsmalley/record_reading/scripts!
RECORD_READING_SRC=/gaia/home/rsmalley/record_reading/src!
latestrtvel=rtvel4_9305_5bv19!
LATESTRTVEL=rtvel4_9305_5bv19!
ANONFTP=/gaia/midtown/mid4/smalley/public_ftp!
ANONFTP_IN=/gaia/midtown/mid4/smalley/public_ftpinbox!
SACDIR=/gaia/tesuji/d1/local/sac!
SACXWINDOWS=x11!
SACAUX=/gaia/tesuji/d1/local/sac/aux!
SACSUNWINDOWS=0!
GPSHOME=/gaia/dunedain/d2/gps!

Plus you can add our own stuff (above).

Unless you are running Linux (in which case you
are the system manager), you can forget about

setting up most of this as the system managers do
it for you.

There are a few environment variables, however,

that you need to know about and/or set up
yourself.

HOME*

This environment variable controls what UNIX
commands consider your (base) home directory.

This is how “cd“ and “~” know which directory to

refer to

% echo $HOME!
/gaia/home/rsmalley !

To refer to the value of an environment variable
put a $ in front of the name.

*these environment variables should not be changed by the user

The $ therefore has a special meaning to the
shell.

(As do the characters “ ~, !, /, *,?,^,\ “
all of which we have already seen.

By the time we are done we will have used up most
of the non alpha-numeric characters with special

meanings.)

SHELL*

This variable stores your default shell

% echo !
!
/usr/bin/tcsh!

Seems pretty simple!

$ echo $SHELL!
/bin/bash!
$ /bin/csh!
> echo $SHELL!
/bin/bash!

How to find your SHELL

Start csh

OOPS!

$ echo $SHELL!
/bin/bash!
$ /bin/csh!
> echo $SHELL!
/bin/bash!
> echo $0!
/bin/csh!
>!

0 is the shell variable
containing the name of

the program that is
running - the shell. The

shell is just another
program to UNIX. $0 is

value of shell variable 0).

SHELL

How to really find your shell

Start bash (inside csh, inside

bash)

$ echo $SHELL!
/bin/bash!
$ /bin/csh!
> echo $SHELL!
/bin/bash!
> echo $0!
/bin/csh!
> ps -p $$!
PID TTY TIME CMD!
91456 ttys003 0:00.02 -bin/csh!
> /bin/tcsh!
>> echo $SHELL!
/bin/bash!
> echo $0!
/bin/tcsh!
> ps -p $$!
PID TTY TIME CMD!
91467 ttys003 0:00.03 -bin/tcsh!
> exit!
exit!
> exit!
exit!
$ echo $0!
-bash!

SHELL

How to really find your shell

$ is the shell variable containing
the process id (pid), $$ is value of

of shell variable $ (very UNIX).

$ $SHELL!

What happens if we enter $SHELL all by itself?

$ /bin/bash!

The shell sees

Since a shell variable is just a character string, it
replaces the $SHELL with the character string.

So if the shell variable is a command or otherwise

interpretable by the shell it will try to do it.

Can also id the shell by the prompts

($, >, etc., once you know which is which).

These examples also show that the shell is just

another program – the only thing special about it
is that it is the program that is started
automatically for you when you login.

Finally, What is my shell?

This seems to be the best way to find out.

% echo $0!

Works for csh, tcsh, sh, and bash.

($0 does not refer to the shell in general, this is
one of the UNIX “standards” that $0 is the

program you are running!!

[which in this case is the shell – perfect UNIX
logic]).

"people who have trouble with typing commands
should not be using a computer.”

Response of the UNIX community to criticism that

UNIX ignored the needs of the unsophisticated
user.

Environment variables are managed by your
shell.

The difference between

environment variables

and regular

shell variables

is that

a shell variable is local to a particular instance of
the shell (such as your current shell or a shell

script), while environment variables are
"inherited" by any program you start, including

another shell.

That is, the new process gets its own copy of
these variables, which it can read, modify, and

pass on in turn to its own children.

In fact, every UNIX process (not just the shell)
passes its environment variables to its child

processes.

Example (very important) environment variable,
what it is used for, and how to maintain it (you will

probably need to do this at some point).

PATH

To see the value of the environment variable
PATH, echo it to the screen.

PATH

This environment variable tells the shell where to

find executable files

%echo $PATH!
.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs:/gaia/home/rsmalley/gg:/gaia/home/
rsmalley/gg/com:/gaia/home/rsmalley/gg/gamit/bin:/gaia/home/
rsmalley/gg/kf/bin:/gaia/dunedain/d2/gps/bin:/gaia/smeagol/local/
passcal.2006/bin:/gaia/smeagol/local/gmt/GMT4.2.1/bin:/usr/sbin:/
usr/local/teTeX/bin/sparc-sun-solaris2.8:/gaia/home/rsmalley/
bin:/opt/local/sbin:/opt/sfw/bin:/usr/bin:/usr/ccs/bin:/usr/
local/bin:/opt/SUNWspro/SC5.0/bin:/opt/local/bin:/usr/bin:/usr/
dt/bin:/usr/openwin/bin:/bin:/usr/ucb:/gaia/smeagol/local/bin:/
net/gps4/d1/Noah/rbh/usr/PROGRAMS.330/bin:/gaia/home/rsmalley/X/
bin:/gaia/home/rsmalley/X/com:/gaia/home/rsmalley/record_reading/
bin:/gaia/home/rsmalley/record_reading/scripts!
!

The “:” is used to separate each full path name in
sh, bash (space for csh, tcsh).

!

When you run a command (from the terminal or a
shell script), your shell looks through each

directory in your PATH variable , in order, until it
finds the first instance of an executable file with

the name of the command.

It then runs the command.

%echo $PATH!
.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs: etc.!

My path starts with dot (“.”).

This is convenient (or else you have to type the
relative path ./myprog to execute programs in
the working directory) but this is considered a

security weakness.

Next I have a number of my directories where I’ve
written Fortran or C programs and shell scripts.

In the “standard” UNIX organization that you will
see in most books, one is supposed to put all

your executable programs in your

“~/bin” directory

and all your shell scripts in your

“~/scripts” directory.

You will probably not find many people (or
systems) that do this anymore.

So how does this work?

If you are working a program to do least squares
analysis and decide to call it “ls” what will

happen when you enter the command “ls”?

It depends.

What happens depends on your path.

Remember that to UNIX, everything outside the
kernel (including the shell) is just a file.

Some of these files are executable (programs).

When the shell goes looking through your path
for an executable file (has to have executable set
in file permissions) named “ls”, it will run the first

one it finds.

If the directory containing your least squares
program (executable file), “ls”, is in your path

Before

the directory containing the UNIX list command,
“ls”, it will run your program and you will not be

able (at least simply) to get a listing of your
directory!

(How to solve this? Have to give full path to the
system ls, /bin/ls for example. You need to

know where the system ls lives.)

If the directory containing your least squares
program, “ls”, is in your path

after

the directory containing the UNIX list command,
“ls”, it will run the UNIX ls command and you will
not be able (at least simply) to run your program!

(How to solve this? Give full path to your program
ls, e.g. ~/myprogs/ls or relative path ./

ls, ../myprogs/ls etc.

Can’t solve this with the “\” we saw before since
this undoes an alias. It does not change the path.

which

Command that shows what the shell finds for the
command name.

!
$ which ls!
/bin/ls!

Or if you have redefined ls and it is found in
your path first

!
$ which ls!
/user/smalleyb/in/ls!

To run a specific executable file – give its full
path.

$ /bin/ls!
! ! ! ! !Public!
Adobe SVG 3.0 Installer Log !Sites!
Desktop ! ! ! !bin . . .

More examples.

Can use all the tricks in specifying paths.

Run from one directory up.

$ pwd!
/Users/smalley/bin!
$../hello.sh!
Hello!
$!

If the file is in the working directory, and that
directory is not in your path, use the dot.

$./hello.sh!
Hello!
$!

This behavior is not a “bug”, it is considered to be
desirable and an example of the POWER of

UNIX.

(This is also where the security problem comes in when dot is in your path. If someone
compromises your system and puts a malicious file in your directory with the name “ls”
and you have dot in your path and don’t notice the file “ls” and enter “ls” to get a list,

you execute the bad file instead.)

How you make your path is up to you.

Will see how to do it next.

Modifying your environment

Modifying your environment

If you mess up modifying the environment in your
current window – you may “break” your current

window (shell).

This is generally not a problem on the sun, mac,
etc.

The environment is local to that window/shell.

Just close it and open another window.

How to change/set shell and environment
variables.

In csh/tcsh use commands

set for regular (local) shell variables and

setenv for environment (global) variables.

set term = xterm!
setenv TERM = xterm!

We already mentioned the difference between
regular shell and environment variables.

(you have to know that xterm is something that
the shell will understand.)

If you need to deal with this level of UNIX, go

find a wizard

(Bob Debula, Mitch Withers).

This syntax is also specific to csh/tcsh.

set term = xterm!
setenv TERM = xterm!

(note that since UNIX is case sensetive this is two
environment variables. A local one “term” and a

global one “TERM”)

To do the same thing in bash.

term=xterm!
TERM=xterm!

Note that there are NO SPACES on either side of
the equals sign here.

How do we tell the difference between a regular
shell variable and an environment variable in bash.

(there is really no difference within an instance of a shell).

(set with no parameters lists shell variables, env also lists

environment variables. In csh - setenv with no parameters lists
environment variables,)

In sh/bash, when we define a variable, it is a
regular shell variable.

To make it an environment variable (one that is
inherited) you export it.

term=xterm!
TERM=xterm!
EXPORT term!
EXPORT TERM!

setenv:

The csh/tcsh command to change environment
settings.

Can be run on the command line,

from within a local configuration file

(.cshrc or .login),

or in a shell script.

When run it without specifying an environment
variable, it will print all environment variables to

the screen

How to change/set your path in csh/tcsh.

% setenv PATH {$PATH}:/gaia/home/rsmalley/scripts!
!

This adds the (text string that is the) name of the
directory

!

‘/gaia/home/rsmalley/scripts’!
!

to the end of the current environment variable
PATH associated with the active shell.

When UNIX starts, you automatically get a path
environment variable (it may be, but probably is

not, empty) and this is the best candidate for the
one you will have to change.

The environment variable is just a text string.

The shell interprets it.

setenv:

% setenv PATH /gaia/home/rsmalley/scripts:{$PATH} !

!
Operationally it adds the the directory

/gaia/home/rsmalley/scripts!

to the path, this time at the beginning.

What are the braces “{“ “}” for?

They delimit the shell variable used with the $.

They are needed when characters that could be

in a variable name follow it without a space.

!
SANJUAN=/volumes/seismicdata/panda/sanjuan!
!

… ${SANJUAN}_disk1 or …{$SANJUAN}_disk1!
!

expands to /volumes/seismicdata/panda/sanjuan_disk1!
!

while

!
… $SANJUAN_disk1!
!

tries to expand a variable named SANJUAN_disk1!
!

Which probably does not exist.!

setenv:

% setenv PATH /gaia/home/rsmalley/scripts:{$PATH} !

!
Note PATH is used twice. On the right with the $ it

refers to the current value of the environment
variable.

On the left it refers to the name of the

environment variable that is being set to the string
on the right (including the old value).

setenv:

% setenv PATH /gaia/home/rsmalley/scripts:{$PATH} !

!

In this case it will append the current value of
PATH to the new information and put everything

in a new version of PATH.

(sort of like vari=vari+1 in Fortran, Matlab, c,
etc. This is not a mathematical algebraic

equation.)

If you don’t write any of your own programs (or
always use the path to the program/file) you will
not have to change your path from the default.

!
(The default path at CERI will give you the path

to the tcsh (and other) shell(s), and the paths to
the tools such as MATLAB, SAC GMT, and some

others.)

Modifying your default environment.

We already saw that you can always change things
in your current environment [and that of any new

child process] using the setenv command.

But it will get old changing everything to the way
you want it each time you log in/open a new

window/start a new shell.

And this being UNIX, there is a (easy) way to set
up your own personal environment.

Modifying your default environment.

The setup of your personal environment
(personal changes/preferences for how you

want the shell to work for you) in csh and tcsh is
stored in the file named

.cshrc

(there is also a file .login, but it is not likely you
will have to change it (it get’s used when you log

in, not each time you start a shell) – so I’ll mention
it for completeness, but let’s ignore it.)

When to make your own environment variables.

Anytime you want a global definition of
something.

417:> grep rtvel .cshrc!
setenv latestrtvel rtvel4_9305_5bv19!
setenv LATESTRTVEL $latestrtvel!

Modifying your default environment variable
PATH using the .cshrc (.bashrc) file.

We are now doing brain surgery on ourselves.

In a mirror.

This is dangerous.

So--

Make a back up of the current, working .cshrc
(.bashrc) file before you change it.

Have a second terminal window open in case you
mess your file up so completely and break your

active window.

This way you have another window open to delete
the offending file and restore things from the
backup file. (Unless you run the command to change it in a window, the

environment is static once a window is open.)

You want this window open BEFORE you make
the change, as any window opened after the file is
saved will use the modified, bad, .cshrc (.bashrc)

file.

For your path, you will see something like this in
your .cshrc file.

!
set path = (. ~ ~/bin ~/shells ~/dem ~/defm ~/defm/src $path)!

Which uses the set command (local) rather than

the setenv command (global).

The man page for set says

var = value set assigns value to var, where value is

one of:

word - A single word (or quoted string).

(wordlist) - A space-separated list of words
enclosed in parentheses.

Ex. using the command set with the environment
variable path also sets the environment variable

PATH (tcsh).

265:> set path = ($path ~/ESCI7205)!

Now look at the environment variable PATH (using a
script I wrote to put out each entry on a separate line)

266:> ExaminePath.sh!
.!
/gaia/home/rsmalley!
/gaia/home/rsmalley/bin!
. . .!
!
/gaia/home/rsmalley/record_reading/scripts!
/gaia/home/rsmalley/ESCI7205!
267:>

The ESCI7205 entry was not there before.

When you set path, it also changes PATH.

When you setenv PATH, is also changes path.

They seem to track.

I’ve not been able to find documentation on how
this works. (I think one is for sh/bash and one for csh/tcsh)

But this is what you will see in both the

universal .cshrc (/etc/.cshrc), and if you make
changes, in your own .cshrc file.

It has been copied down through the ages.

After changing your path in the current shell.

First see what your path is.

266:> ExaminePath.sh!
.!
/gaia/home/rsmalley!
/gaia/home/rsmalley/bin!
. . .!
!
/gaia/home/rsmalley/record_reading/scripts!
267:> !

.cshrc (csh resource script)

configuration file (aka dot file)

setenv PATH .:/gaia/home/rsmalley/bin:$PATH!
setenv PATH ${PATH}:/gaia/home/rsmalley/record_reading/bin!
setenv PATH {$PATH}:/gaia/home/rsmalley/record_reading/scripts!
setenv PRINTER 3892!
alias cd 'cd \!*;echo $cwd’!
alias home "cd ~"!
alias del 'rm -i’!
set history=500!
set ignoreeof!
set savehist=500!
set filec!

.bashrc (bash resource script)

configuration file (aka dot file)

Slightly different

PATH=.:/Users/robertsmalley:/Users/robertsmalley/bin:$PATH!

Or (usually – so children inherit it)

export PATH=.:/Users/robertsmalley:/Users/robertsmalley/bin:$PATH!
!
export PATH=$PATH:/Users/robertsmalley/gamit_globk_10.4/com:/Users/robertsmalley/gamit_globk_10.4/gamit/bin:/Users/robertsmalley/gamit_globk_10.4/kf/bin!

Once you have made changes to your .cshrc
(.bashrc) (and saved them), which is just a file, how do

you have them activated in your current window/
shell?

(at this point they will be activated in any new shell/window/login)

You could log out and then log back in (not very
efficient as you loose your history, but it works),

or open a new window (ditto) and work there.

Use the source command with the .cshrc
(.bashrc) file as input. (don’t need the input

redirect “<“)

151:> source .cshrc!
152:> !

source: executes configuration files

If you change your configuration file, you will
need to execute source in all open terminal

windows for the changes to take effect. The
changes automatically will take effect when new

terminal windows/shells are opened.

Say you have edited the .cshrc file.

%nedit ~/.cshrc!
%source ~/.cshrc!

The default .cshrc file that everyone at CERI gets
when they login, open a window, or start a shell is

stored (on the SUN) in the file

/etc/.cshrc

And on the Mac in the file

/etc/csh.cshrc

After that the shell looks in your home directory
for a .cshrc, which is used to expand upon and/or

override the CERI values.

MANPATH*

Tells the shell where to find the manual pages
read using the man command

%echo $MANPATH!
/gaia/smeagol/local/passcal.2006/man:/gaia:smeagol/local/gmt/
GMT4.2.1/man:/opt/local/man:/ceri/local/man:/usr/dt/man:/usr/
man:/usr/openwin/share/man:/usr/local/man:/opt/SUNWspro/man:/opt/
sfw/man:/usr/local/teTeX/man:/gaia/smeagol/local/man:/opt/csw/man!

If you do a man on a command and the shell can’t

find a manual page (and you are sure the man
page exists), this environment variable may not be

set correctly.

HOST*: environment variable with the name of the
machine you are currently logged into.

REMOTEHOST*: environment variable with the
name of the machine you are sitting in front of, if
different (e.g. you are in the class on a PC and
have used the program ssh to log into a sun at

CERI.).

!
161:> echo $HOST $REMOTEHOST!
alpaca.ceri.memphis.edu!
162:> !

SSH_CLIENT: the IP (internet protocol) address
and port of the HOST machine.

SSH_CONNECTION: the IP addresses and ports
of the HOST machine and the REMOTEHOST

machine.

!
162:> echo $SSH_CLIENT $SSH_CONNECTION!
75.66.47.230 51704 22 75.66.47.230 51704 141.225.157.63 22!
163:>!

If you want to get as much info as you can about
the IP addresses. (Can also put in the name and

get the address.)

169:> nslookup 141.225.157.63!
Server: dns1.memphis.edu!
Address: 141.225.253.21!
!
Name: alpaca.ceri.memphis.edu!
Address: 141.225.157.63!
!
170:> nslookup 75.66.47.230 !
Server: dns1.memphis.edu!
Address: 141.225.253.21!
!
Name: c-75-66-47-230.hsd1.tn.comcast.net!
Address: 75.66.47.230!
!
171:>!

Aside ---

How to destroy your input data file and how to

prevent it (i.e. accidently doing it).

First – look at file.

262:> more flong.dat!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
6!
7!
8!
9!
10!
263:>!

Sort it, using the sort command.

263:> sort flong.dat!
1!
10!
10!
2!
3!
4!
5!
6!
6!
7!
7!
8!
8!
9!
9!
264:>!

So far OK.

Say we want to save the sorted output to a file.
Use redirection.

!
264:> sort flong.dat > flong.dat!
265:> more flong.dat!
266:>!

We just erased our file!

UNIX says we will need an output file, and (unless
your sys admin has done the non-UNIX

philosophy action of setting “no-clobber”) it has
permission to clobber a pre-existing output file –
so it does. It then goes looking for the input file ,

which it cannot find because it just erased it!!

(Notice that this is not consistent with the PATH=$PATH:/mybin or x=x+1 model!)

(consistency is the hob-goblin of little minds)

It sorts nothing (the now empty input file) and
puts it into the output file.

It sees no reason to complain, warn you, etc.

You are an adult, this behavior is “obvious” from
the operating principles of UNIX.

Say we want to save the sorted output to a file.
Use redirection.

!
264:> sort flong.dat > flong.dat!
flong.dat: File exists.!

UNIX says we will need an output file but your sys
admin has done the non-UNIX philosophy action

of defining “no-clobber” to protect you from
yourself so UNIX cannot make the output file

(since it cannot erase the pesky file with the same
name).!

Having no-clobber set prevents you from
inadvertently erasing existing files

It protects you from yourself.

Very non-UNIX philosophy.!

Say we want to save the sorted output to a file.
Use redirection.

!
264:> sort flong.dat > flong.dat!
flong.dat: File exists.!
265:> sort flong.dat >! flong.dat!
266:> more flong.dat!
267:>!

But if you insist, you can still erase your input file!

The >! says to redirect the output to the file
flong.dat and clobber a file with that name if
you need to (i.e. a file with that name exists).!

Tricky distinctions in sh and bash

set is a shell command to set the value of a shell
attribute variable; these are internal variables

used by the shell program.

env is a program that runs another program with
modified environment variables.

Tricky distinctions

The major difference is that the env command will
never modify the shell's own environment (only

that of the child process), while set will.

set can also change settings like brace expansion
within the shell.

You might also want to look at export, which

changes the environment variables for all future
commands.

Tricky distinctions

Enter the commands set and env and look at the
differences (it will help if you sort the output of

env)

(e.g. - noclobber is a shell attribute variable, not
an environment variable – it is “set” and “unset”

using set)

How to set/clear noclobber

!
-bash 532 ~ # set -o | grep noclobber!
noclobber !off!
-bash 533 ~ # set -o noclobber!
-bash 534 ~ # set -o | grep noclobber!
noclobber !on!
-bash 535 ~ # set +o noclobber!
-bash 536 ~ # set -o | grep noclobber!
noclobber !off!
-bash 537 ~ # !

Basics of the UNIX/Linux
Environment

Aliases

Alias

The alias and unalias commands allow you to
rename, or define/undefine

“shortcuts” (including mental), for commands.

Their use parallels their name – you are using
another name, that is easier to type/remember,

for something.

You can set an alias in your shell interactively (you
will only have it locally and in child processes)

or set in your configuration files (.cshrc/.bashrc)
so it is available every time you login, start a
shell or open a new terminal window (which

starts a shell for that terminal window).

Typical UNIX think.

When to make/use aliases.

Anytime you find yourself typing the same
command over and over, you could make an alias.

Anytime you prefer to type a command “your

way”.

Typical UNIX think.

When to make/use aliases.

Anytime you find yourself mis-typing the same
thing over and over, you could make an alias

(“mroe” is usually aliased to the more command

for example {why learn to type?}.

The original, interactive spelling corrector!).

Example aliases taken from .cshrc on CERI SUN
system (so you get these automatically).

alias settitlebar !'echo -n "^[]2;$CWD^G"’!
alias cd 'chdir \!* && cwdcmd && settitlebar’!
alias howmuch !'du -sk .’!
alias a !alias!
alias h !'history'!
alias u !unalias!
alias m !more!
alias mroe more!
alias l 'ls -F'!
alias c !clear!
alias src !source!

Example aliases taken from my SUN .cshrc file.

alias mjday '/gaia/dunedain/d2/gps/oldbin/mjday’!
alias home "cd ~”!
alias x 'chmod +x’!
alias dir 'ls -lt | more'!
alias hp "lpr -Php_3890 "!
alias tek "lpr -P3904_tek"!
alias nb "lpr -P3892_grad "!
alias nbcolor "lpr -P3892_hpcolor ”!
alias DEM !"cd $home/dem”!
alias ssh_yang 'ssh -l gps yang.soest.hawaii.edu’!
alias ftp_jpl 'ftp bodhi.jpl.nasa.gov'!
alias matlab_term 'matlab -nodesktop –nosplash’!

You can find all the aliases that are defined by
using the command alias without any arguments.

Basics of the UNIX/Linux
Environment

Dealing with file names with special
characters

Say I have a file named “!”. (this is probably
because I used >! at some time while in bash, but

this syntax is for tcsh not bash, so I redirected my
output to a file called !)

!
$ rm !!
remove !? Y!

That was easy.

What about a file named “-”

!

Make a file named “-” with touch command

(use man to see what the touch command does)

> touch -!
> ls!
- f2.dat HW hw1a.txt SCRIPTS!
f1.dat f_1_2_3.dat hw1.txt NOTES SRC!
!

Try to remove it.

!
> rm - !
usage: rm [-fiRr] file ...!

What is the problem? (you tell me.)

We have to let the shell know that the “-” is NOT a
switch.

Use the “-” switch all by itself.

!
> rm - -!
rm: remove - (yes/no)? Y!
> !

Remember that filenames can have any character
but the “/” (used to define the path), so sooner
or later you are going to get a file name that will

be hard or dangerous to reference.

You will have to be especially careful/creative if
you get a file named “*” as

%rm *!

can be disastrous

(and the more privileges you have and the higher up you are in the directory structure,

the more disastrous it is.)

Basics of the UNIX/Linux
Environment

File Permissions

Every user on a UNIX system has a unique
username, and is a member of at least one group

(the primary group for that user).

A user can also be a member of one or more other
groups.

Only the administrator can create new groups or

add/delete group members (one of the
shortcomings of the system).

Every file (directories are files) on the system has
an owner, and also an associated group.

Every file also has a set of permission flags which

specify separate read, write and execute
permissions for the

'user' (owner),

'group',

and 'other’

(everyone else with an account on the computer)

Permissions

Read

ability to read the file (r).

Write

ability to write or overwrite the file (w).

Execute

ability to execute or run the file and allow others

to view directories (x).

(if a directory is not executable, non-owner’s cannot cd into it or

see what is in it at all.)

How to view the ownership & permissions of
files/direcories (review)

ls -l: lists long format

> ls -l!
total 2201712!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*!
-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt!
-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out!
Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst!
Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

Permissions!

How to view the ownership & permissions of
files/direcories (review)

ls -l: lists long format

> ls -l!
total 2201712!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*!
-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt!
-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out!
Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst!
Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

 Owner!

How to view the ownership & permissions of
files/direcories (review)

ls -l: lists long format

> ls -l!
total 2201712!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*!
-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt!
-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out!
Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst!
Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

 Group!

Changing owners and groups.

If you create a file, you are the owner/user.

Mitch and Bob have the SUN and Mac systems
set up to automatically set the group to ‘user’, or

all users of the CERI UNIX system.

Default permissions on the SUN are

rw-r--r--

(numerically 644)

And on the Mac are (seem to be)

rwx------

(numerically 700)

chmod

Command to change file or directory permissions
(change mode in the normal UNIX philosophy of

naming commands).

%chmod ugo+x hello.sh!
%ls -lF hello.sh!
-rwxr-xr-x 1 rsmalley user 21 Sep 16 08:36 hello.sh*!
!
go-x Removes execute privilages from group and other!
o+r Adds read privilages to other!

Flags (or numerical values) allows you to set the
permissions. Using wildcards you can set

permissions globally within a directory, and with
the –r flag all subdirectories.

Changing Permissions

you can also use octal values (numbers) to
change ownership

644 represents u=rw; go=r

755 represents u=rwx; go=rx

(using this puts you is a special eunuch class)

Basics of the UNIX/Linux
Environment

Connecting remotely

On a Mac running OS-X, from a terminal window
enter

ssh –X alpaca.ceri.memphis.edu –l rsmalley!

The –X flag gives us X-windows graphics

capability.

Next is the name of the machine we want to

connect to.

The –l flag passes the username.

(Without this flag, it will pass whatever your username is on the mac.)

Try running nedit.

On the mac – we get X graphics automatically

On the PC it is a few more clicks, but first we
need (to install) two programs

SSH Secure Shell Client and Exceed (part
of the Hummingbird package).

Double click on exceed (it will start up and
put an icon in the tray, it does not have a

window).

Double click on SSH Secure Shell Client

You will get this window (left). Now we have to
connect to a machine. Click on File and then

connect.

This brings up the connect dialog. Put in the host
name you want to connect to and your username.
Leave the other stuff alone (default). Click connect.

It will now ask for your password.

And we are finally connected.

Start nedit in the background (the trailing &).
This permits the terminal to continue accepting

commands.

Unfortunately, you cannot ssh into the Student
Lab Mac system from off-campus.

You will have to ssh into the sun system (use

enigma) and from there ssh into the Student Mac
Lab system.

This means that you will probably not be able to
do graphics remotely from the Student Mac Lab.

You can only do the terminal interface.

Using Screen Sharing/VNC

Select this

(will be highlighted –

does not come
through on screen

capture)

Using Screen Sharing/VNC

Select address from list, enter it, or browse

(will be highlighted – does not come through on screen capture)

Then click connect

Using Screen Sharing/VNC

Now you get a login screen

It will have automatically put in the username on

the LOCAL machine.

Using Screen Sharing/VNC

You may have to change the username to a
different one on the REMOTE machine.

Plus put in your password.

Not a good idea to have the computer remember
your password.

Using Screen Sharing/VNC

Now you will have to log into the REMOTE
machine.

The login process is 2 levels – one to connect to
the machine (as an authorized user) and one to

login (possibly as another authorized user).

Using Screen Sharing/VNC

In this example someone is logged in and the
screen is locked and you need to enter the

password

Using Screen Sharing/VNC

Sharing disks

Select this

(will be highlighted –

does not come
through on screen

capture)

Sharing disks

Now select
this instead

(will be highlighted –

does not come
through on screen
capture. When you
double click it goes
up top. Or type it in

up top.)

“afp” is apple file protocol – it is
how the Mac shares disks with

other Macs.

Sharing disks

You have to
log in.

Sharing disks

Select the
disks you

want to
mount. (it

will be blue)

Sharing disks

They show up on
the desktop and
can be accessed

under /Volumes in
the UNIX file

structure.

Sharing disks
Sharing disks

You can also “mount” disks from the UNIX and PC
systems using “samba”

smb://TCP/IP address or name

