
Data Analysis in Geophysics
ESCI 7205

Class 3

Bob Smalley

Basics of Unix commands

UNIX is a four letter word

''Unix is user friendly –

It's just picky about who it's friends are...'’

-- Unknown, seen in .sigs around the world

Manipulating files

paste:

concatenate files with each file a new column;

when used on a single file, it dumps the entire file
contents to the screen.

(cat sticks the files together one after the other.
paste puts them together a line at a time. Each
line N of the output file from paste is made up of

the lines N of the input files.)

Looking at files

head –nX:

prints the first X number of lines to the screen;

default is 10 lines if -n is not specified.

tail –nX:

prints the last X number of lines to the screen;

default is 10 lines if -n is not specified.

Piping and Redirect

Input and output on the command line are
controlled by the |, >, <, and !Symbols.

| : pipe function; sends the output from
command on left side as input to the command

on the right side.

(We have seen these actions already.)

Piping and Redirect

Example pipe

% ls | head -n5!
29-sadvf1!
29-sadvf2!
2meas.sh.out.txt!
3132.dat!
31all32new.trk!
%!

Piping and Redirect

“>” redirects standard output (screen) to a

specific file*

% ls | head -n5 > directory.list!
% more directory.list!
29-sadvf1!
29-sadvf2!
2meas.sh.out.txt!
3132.dat!
31all32new.trk!

* In tcsh, this will not overwrite (clobber) a pre-

existing file with the same name. In the bash
shell, the > overwrites (clobbers) any pre-

existing file with no warning!

Piping and Redirect

>! : redirects standard output (screen output)
to a specific file and overwrite (clobber) the file

if it already exists *

% ls | head –n5 >! directory.list!
% more directory.list!
29-sadvf1!
29-sadvf2!
2meas.sh.out.txt!
3132.dat!
31all32new.trk!

*This syntax is specific to tcsh, your default
CERI shell; in bash this will put the output into
a file named “!”!

Piping and Redirect

>> : redirects and concatenates standard output
(screen output) to the end of a specific

(existing) file

% ls | head -n2 >! directory.list!
% ls | tail -n2 >> directory.list!
% more directory.list!
29-sadvf1!
29-sadvf2!
zonda.dat!
zz.tmp!
!

Piping and Redirect

< : redirects input from Standard input to the file
on right of the less-than sign to be used as

input to command on the left

% head –n1 < suma1.hrdpicks!
51995 31410273254 30870 958490!

Copying files & directories

cp:

copy files

cp –r:

copy directory and all files & subdirectories
within it (recursive copy)

Copying files & directories

% cp file1 ESCI7205/homework/HW1!

Makes a copy with a new name – “HW1” in the
directory “ESCI7205/homework”

% cp file1 ESCI7205/homework/.!

Makes a copy with the same name (file1), which

is specified by the dot “.” (period) to save
typing, in the new directory.

Some jargon

% cp file1 ESCI7205/homework/.!

Input file referred to as “source”

Output file referred to as “destination”

Moving files & directories

mv: move files or directories

% mv file1 file2 ESCI7205/HW/.!

Moves file1 and file2 to new directory (relative)
ESCI7205/HW with same names (indicated by

the “.”).

Move differs from copy in that it removes the
original file, you only have 1 copy of it when

done.

Moving files & directories

mv: move files or directories

% mv file1 ESCI7205/HW/HW1!
% mv file2 ESCI7205/HW/HW2!

If you want to change the names when you move

them, you have to specify each new file name
(do them one at a time)

Renaming files & directories

(you should have been able to figure this out after the last two slides)

Uses a side-effect of move!!!

% mv file1 HW1!
% mv file2 HW2!

There is NO RENAME command.

(We consistently see this kind of inconsistent

logic in Unix.)

Linking files & directories

ln –s:

creates a symbolic link between two files.

This makes the file show up somewhere(the
target, can be a new name in the same directory
or the same name in another directory), but the

file really only exists in the original place.

(equivalent to a file alias in OSX or shortcut in
Windows).

Try reading the man page –

LN(1) BSD General Commands Manual LN(1)!
!
NAME!
 link, ln -- make links!
!
SYNOPSIS!
 ln [-Ffhinsv] source_file [target_file]!
 ln [-Ffhinsv] source_file ... target_dir!
 link source_file target_file!
!
DESCRIPTION!
 The ln utility creates a new directory entry (linked file)
which has the same modes as the original file. It is useful for
maintaining multiple copies of a file in many places at once
without using up storage for the ``copies''; instead, a link
``points'' to the original copy. There are two types of links;
hard links and symbolic links. How a link ``points'' to a file
is one of the differences between a hard and symbolic link.!

Linking files & directories

Two kinds of link - symbolic and hard. Only root
can make hard links so don’t worry about them.

% ln –s in inlink

“real”/actual file

 linked file

Linking files & directories

Doing an ls command in the directory with the
alias produces the following

$ ls -l in*!
-rw-r--r--@ 1 smalley staff 69 Apr 26 2010 in!
lrwxr-xr-x 1 smalley staff 2 Sep 2 22:10 inlink -> in!

The leading “l” in the long ls output says the

file/filename in that line is a link.

It shows which file it is linked to.

Linking files & directories

This allows us to “have” the file in more than one
place.

We can therefore access it locally from the
directory where it is a symbolic link.

Introduction to wildcards.

Wildcards are essential when

dealing with almost anything

in terms of text processing.

(Looking for/Managing files from

the command line is text processing.)

They are a subset of regular expressions, an
essential (i.e. esoteric and difficult) Unix feature.

Wildcards

Wildcards allow you to match multiple instances of
characters/numbers in file or directory names

They can be used in combination with almost all

Unix commands

Wildcards are essential when dealing with large
amounts of geophysical data

Introduction to wildcards.

Example

Say I want to find all the files in the working
directory that begin with the letter “a”.

(lower case only since Unix is case sensitive.)

Start out with the ls command

How do we specify we want all combinations of all

characters following the “a”?

We use a wildcard.

% ls a*!

The asterisk “*” wildcard means match a string

with any number of any character (including
none, so will match a file “a”).

Try it ---!
> ls a*!
a.out antex.sh!
antarctic sun panorama 3x.ai atantest.f!
antarctic sun panorama.125.jpg awk!
antarctic sun panorama.25.jpg az_map!
antarctic sun panorama.ai az_map.ps!
antarctic sun panorama.jpg!
!
adelitst:!
aadeli.ini adelitst.sh jessai pessai!
ADELI.MESSAGES eessai kcnusc.pal PLOT1!
ADELI.MINMAX iessai oessai tempi!
!
arc2gmtstuff:!
arcgmt.README arcgmt.tar arcgmt_ai arcgmt_av!
> !

Probably not what you wanted though – it lists
files starting with “a” and then goes recursively

through all directories that start w/ “a”.

Try it ---!
> ls –d a*!
a.out antex.sh!
antarctic sun panorama 3x.ai atantest.f!
antarctic sun panorama.125.jpg awk!
antarctic sun panorama.25.jpg az_map!
antarctic sun panorama.ai az_map.ps!
antarctic sun panorama.jpg!
> !

Flag –d says do not go recursively through all

directories (that start w/ “a”).

Use man page to figure this out.

(As part of the regular expression feature of
Unix) wildcards can be used in combination with

almost all Unix commands.

Wildcards

“*” – asterisk - matches zero or more characters
or numbers.

Combining/multiple use of wildcards.

Find all files in local subdirectory SEIS that begin

with the letter “f” and also have the string
“.BHZ.” in their file name.

!

%ls SEIS/f*.BHZ.*!
SEIS/filt.HIA.BHZ.SAC !SEIS/filt.WMQ.BHZ.SAC!

“?” – question mark - matches a single character
or number.

Find all files in local subdirectory SEIS that have

the name “HIA.BH” plus some single letter
(the ?) plus a “.” and then plus anything (the *).

!
% ls SEIS/HIA.BH?.*!
SEIS/HIA.BHE.SAC ! !SEIS/HIA.BHN.SAC !
SEIS/HIA.BHZ.SAC!

Wildcards

“[]” – brackets - used to specify a set or range
of characters or numbers rather than all possible

characters or numbers.

Find all files in local subdirectory SEIS that have
the name “HIA.BH” plus one of E, N or Z (the

stuff in brackets) plus a “.” and then plus
anything (the *).

% ls SEIS/HIA.BH[E,N,Z].*!
SEIS/HIA.BHE.SAC ! !SEIS/HIA.BHZ.SAC !
SEIS/HIA.BHN.SAC!

Wildcards

Find all files in all local subdirectories (the first *)
that have the string “HIA” in the name plus

anything (the second *) plus the characters
“198” plus a single character in the range 0-9

then plus anything (the third and last *).

% ls */HIA*198[0-9]*!
795/HIA.BHZ.D.1988.041:07.18.30 !
799/HIA.BHZ.D.1988:14:35:27.00 !
812/HIA.BHZ.D.1988:03:43:49.00!
813/HIA.BHZ.D.1988.362:13.58.59 !
814/HIA.BHZ.D.1989.041:17.07.43!

Some random stuff

Control-characters(CTRL-characters)

ctrl-s freezes the screen and stops any display on

the screen from continuing (equivalent to a no-
scroll key) (sometimes takes a moment to work)

 ctrl-q un-freezes the screen and lets screen

display

continue ctrl-c interrupts a running program

ctrl-\ same as ctrl-c but stronger (used when
terminal doesn't respond)!

Some random stuff

Control-characters(CTRL-characters)

ctrl-z suspends a running program (use the fg

command to continue the program)

ctrl-h deletes last character typed

ctrl-w deletes last word typed

ctrl-u deletes last line typed!

Some random stuff

Control-characters(CTRL-characters)

ctrl-r redraws last line typed ctrl-d ends text

input for many UNIX programs, including mail and
write.

(http://web.cecs.pdx.edu/~rootd/catdoc/guide/TheGuide_38.html)

Some random stuff

A note on the book

As the book was not written for the CERI system,
some of the files it refers to are not located where

the book says they are.

cd!
pwd!
ls!

mkdir!
rmdir!
rm!

more!
less!
cat!

paste!
head!
tail!
cp!
mv!
Ln!

echo!
man!

What we have seen so far

Commands

See this link for a list and description of many
Unix commands

http://pcsplace.com/tech-list/ultimate-list-of-linux-and-unix-commands/

What we have seen so far

Redirection

Pipes

Switches

Some special characters (~ \ . ..)

Wildcards (* ?)

Basics of the Unix/Linux
Environment

Man Pages

Using man pages

Layout

All man pages follow a common layout that is
optimized for presentation on a simple ASCII text

display (teletype), without any form of
highlighting or font control.

Using man pages

Typical man page has following “headings”:

SECTION

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

(EXAMPLES)

ENVIRONMENT VARIABLES

EXIT STATUS

(FILES)

ATTRIBUTES

SEE ALSO

NOTES

(BUGS)

> man ls!
Reformatting page. Please Wait... done!
!
User Commands ls(1)
SECTION!
!
NAME! ! ! ! ! ! ! ! ! ! ! ! !NAME!
 ls - list contents of directory!
!
SYNOPSIS ! ! ! ! ! ! ! ! ! ! ! ! !SYNOPSIS!
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
DESCRIPTION ! ! ! ! ! ! ! ! ! ! ! !DESCRIPTION!
 For each file that is a directory, ls lists the contents of!
 the directory. For each file that is an ordinary file, ls!
 repeats its name and any other information requested. The!
 output is sorted alphabetically by default. When no argument!
 is given, the current directory is listed. When several!
 arguments are given, the arguments are first sorted!
 appropriately, but file arguments appear before directories!
 and their contents.!
!
 There are three major listing formats. The default format!
 for output directed to a terminal is multi-column with!
 entries sorted down the columns. The -1 option allows single!
 column output and -m enables stream output format. In order!
 to determine output formats for the -C, -x, and -m options,!
 ls uses an environment variable, COLUMNS, to determine the!
 number of character positions available on one output line.!
 If this variable is not set, the terminfo(4) database is!
 used to determine the number of columns, based on the!
 environment variable, TERM. If this information cannot be!
 obtained, 80 columns are assumed.!
!
 The mode printed under the -l option consists of ten charac-!
 ters. The first character may be one of the following:!

Using man pages

SECTION: The section of the manual. Includes
command whose man page you requested.

User Commands ls(1)!

!

The ls commnad is in the “User Commands”
section of the documentation/manual, which is
section #1.

NAME: The name of the command or function,
followed by a one-line description of what it

does.

NAME!
 ls - list contents of directory!
!

Using man pages

SYNOPSIS

In the case of a command, you get a formal
description of how to run it and what command

line options it takes. For program functions, a list
of the parameters the function takes and which

header file contains its definition. For
experienced users, this may be all the

documentation they need.

!

Using man pages

SYNOPSIS (not so obvious)

Shows where command lives - /usr/bin/ - (there
are 2 versions available, depends on your path – more on paths

later), plus …

SYNOPSIS!
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
!

!

Using man pages

SYNOPSIS (not so obvious)

…list of options

{ [-aAbcCdfFghilLmnopqrRstux1@] }

the brackets { [] } signify that the stuff inside the
brackets is optional, and …

SYNOPSIS!
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
!

!

Using man pages

SYNOPSIS (not so obvious)

… finally, optionally (the brackets) a file name
(file), that may be repeated an arbitrary number

of times – the ellipses { ... }.

SYNOPSIS!
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
!

!

Using man pages

Brackets – optional parameters.

File – filename.

Ellipses – repeat as necessary.!
!

Using man pages

DESCRIPTION

A textual description of the functioning of the
command or function.

Using man pages

DESCRIPTION

The DESCRIPTION can go on for a number of
pages.

DESCRIPTION!
 For each file that is a directory, ls lists the contents of!
 the directory. For each file that is an ordinary file, ls!
 repeats its name and any other information requested. The!
 output is sorted alphabetically by default. When no argument!
 is given, the current directory is listed. When several!
 arguments are given, the arguments are first sorted!
 appropriately, but file arguments appear before directories!
 and their contents.!
!
 There are three major listing formats. The default format

 This is where we find out what the first letters of
the long ls format mean

The mode printed under the -l option consists of ten charac-!

 ters. The first character may be one of the following:!
!
 d The entry is a directory.!
!
 D The entry is a door.!
!
 l The entry is a symbolic link.!
!
 b The entry is a block special file.!
!
 c The entry is a character special file.!
!
 p The entry is a FIFO (or "named pipe") special file.!
!
 s The entry is an AF_UNIX address family socket.!
!
 - The entry is an ordinary file.!

etc.

Using man pages

OPTIONS

Specification of the command’s options

OPTIONS!
 The following options are supported:!
!
 -a Lists all entries, including those that begin with a!
 dot (.), which are normally not listed.!
!
 -A Lists all entries, including those that begin with a!
 dot (.), with the exception of the working directory!
 (.) and the parent directory (..).!
!
 -b Forces printing of non-printable characters to be in!
 the octal \ddd notation.!
!

This can go on for pages also.

Using man pages

OPERAND

Describes the valid operands.

OPERANDS!
 The following operand is supported:!
!
 file A path name of a file to be written. If the file!
 specified is not found, a diagnostic message will be!
 output on standard error.!

!
Explains the operand is optional file name(s).

Using man pages

USAGE

Notes on usage (not examples).

USAGE!
 See largefile(5) for the description of the behavior of ls!
 when encountering files greater than or equal to 2 Gbyte (2!
 **31 bytes).!

Using man pages

EXAMPLES

Optionally (more like rarely) gives some examples.

EXAMPLES !
 Example 3: Providing file information!
 Another example of a command line is:!
!
 example% ls -aisn!
!
 This command provides information on all files, including!
 those that begin with a dot (a), the i-number-the memory!
 address of the i-node associated with the file-printed in!
 the left-hand column (i); the size (in blocks) of the files,!
 printed in the column to the right of the i-numbers (s);!
 finally, the report is displayed in the numeric version of!
 the long list, printing the UID (instead of user name) and!
 GID (instead of group name) numbers associated with the!
 files.!
 When the sizes of the files in a directory are listed, a!
 total count of blocks, including indirect blocks, is!
 printed.!

Using man pages

Followed by a bunch of other (mostly) esoteric
stuff.

ENVIRONMENT VARIABLES (these can get you)

EXIT STATUS

FILES

ATTRIBUTES

(the following may be useful) SEE ALSO

NOTES

BUGS.

Basics of the Unix/Linux
Environment

Shells

What is a shell?

As far as Unix is concerned, the shell is just
another program.

As far as the user in concerned, it is the
traditional command line user interface with the

Unix operating system…it interprets your typing.

What is a shell?

Just as there are many flavors of Unix and Unix-
like systems, there are many types of shells.

If you don’t like any of the shells in existence, this

is Unix – write your own!

Common shells

Bourne Shell sh

Bourne Again Shell bash

(current default on MAC OS X)

C Shell csh

TENEX C Shell
 tcsh

(This is the default shell at CERI)

Korn Shell ksh

(mix between two shell families above)

sh

bash

ksh
csh

tcsh

Bourne

Shell

Bourne
Again

Shell

TENEX

C shell

C Shell

Korn

Shell

Common shells

sh

Bourne shell

The original Unix shell.

Pro: Flexible and powerful scripting shell.

Con: Not interactive or particularly user friendly.

csh

C shell

designed for the BSD Unix system.

syntax closely follows C programming.

Pro: easy for C programmers to learn and comes

with many interactive features such as file
completion, aliases, history.

Con: not as flexible or powerful a scripting

language as sh or bash.

ksh

Korn shell

derived from the Bourne shell so has a shared
syntax.

job control taken from the C shell.

bash

Bourne-Again shell

Combines the “best” of sh, ksh, and csh.

Default shell (out of the box) on Linux and Mac

OSX operating systems.

Pro: Flexible and powerful scripting language with
all the interactive features of csh plus command

completion.

This shell is great for complicated GMT scripts.

tcsh

TENEX C shell

Default shell of the CERI unix environment.

Pro: User friendly on the command line.

Con: It is not as suitable for long and involved

scripts.

It is perfectly OK for most daily geophysics work
on the command line & most faculty here use it on

a daily basis so there are many experts around.

Basics of the Unix/Linux
Environment

Features bash and tcsh Shells

Useful features of tcsh & bash

-file completion-

key the tab key, or the escape key twice, to

“complete” the name of a long file.

Say I have a file named

largest-deadliest-eqs-last-100-years.ai!

I can type just enough so the system can continue

(i.e. there are no options for the next letter –
assume I also have a file lapilona.dat)

$ls lar<tab> will produce this!
$ls largest-deadliest-eqs-last-100-years.ai

Useful features of tcsh & bash

-file completion-

Say I have 2 files file named

ls largest-deadliest-eqs-last-50-years.ai!
ls largest-deadliest-eqs-last-100-years.ai!

Actually I can type just enough so it can continue
on its own for a while

$ls lar<tab> will produce this!
$ls largest-deadliest-eqs-last-!

At which point it gets stuck. I help it along

$ls largest-deadliest-eqs-last-1<tab>

$ls largest-deadliest-eqs-last-100-years.ai

Useful features of tcsh & bash

history command

list the previous commands entered during the
active session.

148:> history!
. . . !
 145 21:30 pwd!
 146 21:30 DEM!
 147 21:30 cd srtm!
 148 21:30 history!

!

Useful features of tcsh & bash

-history “feature”-

Shell keeps “history” of commands

up and down arrow keys: allow you to move up
and down through previous commands.

right and left arrow keys: allow you to edit
command lines (backspace to remove, type at
cursor to insert) without starting from scratch.

Useful features of tcsh & bash

bang (“!”) command/shortcut

Bang is used to search backward through your
Bash/tcsh history until it finds a command that

matches the string that follows the bang and
returns/executes it.

!

bang (“!”) command/shortcut

!!: reruns the last command in the history list.

% vi foo.c bar.c!
% !! !
Becomes: % vi foo.c bar.c!

!vi: reruns the last command in the history file
beginning with “vi”.

% vi foo.c bar.c!
% ls!
% !vi !
Becomes: % vi foo.c bar.c!

bang (“!”) command/shortcut

!XXX<CR> returns the command numbered XXX
in the history list. It runs it after you enter the

<CR>.)

148:> history!
. . . !
 145 21:30 pwd!
 146 21:30 DEM!
 147 21:30 cd srtm!
 148 21:30 history!
149:> !146!
DEM!
/gaia/home/rsmalley/dem!
150:>!

bang (“!”) command

!-X: returns the command X back in the history
list and runs it at the <CR>.

151:> history!
. . . !
 147 21:30 cd srtm!
 148 21:30 cd ~!
 149 21:30 history!
 150 21:46 DEM!
 151 21:55 history!
152:> !-4!
cd ~!
/gaia/home/rsmalley!
153:> !

bang (“!”) command/shortcut is actually
more general – use it to return commands
from history and do something with them.

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Getting stuff from the last command:

!

Get the last argument (“$”)from command :

% svn ci !$!

Becomes:

% svn ci bar.c!

Various shells have options that can affect this.

Be careful with shells that let you share history
among “instances” (if you have 5 terminals open you have a shell running

in each one. Each running copy is an “instance”). You can also have
shells running in the “background” (almost never needed with

modern gui’s, was essential with single terminal).

Some shells also allow bang commands to be
expanded with tabs or expanded and reloaded

on the command line for further editing when you
press return.

bang (“!”) command/shortcut.

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Getting stuff from the last command:

!
All arguments (“*”, special definition):

% svn ci !*!

Becomes:

% svn ci foo.c bar.c!

bang (“!”) command/shortcut.

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Getting arguments from the last command:

!
First argument (“:N”):

!
% svn ci !!:1!

Becomes:

!
% svn ci foo.c!

bang (“!”) command/shortcut

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Accessing command lines by pattern: (saw this
already, but now with ./, need to go to first
letter)

Full line:

% !./f!

Becomes:

% ./foo -f foo.conf!
!

bang (“!”) command/shortcut

!
% ls -d a*.f!
atantest.f!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Accessing command lines by pattern and
command substitution:

This:

% vi `!ls` !

Becomes:

% vi `ls -d a*.f`!

Which becomes:

% vi atantest.f!
!

bang (“!”) command/shortcut

!
For the purposes of these tips, every tip will assume these are the last three commands
you ran:

!
% which firefox!
% make!
% ./foo -f foo.conf!
% vi foo.c bar.c!
!

Accessing command lines by pattern:

All args : % ./bar !./f:*!
Becomes: % ./bar -f foo.conf!
!

We are looking for the command that begins with
“./f”, and then we want (the colon, “:”) all of its
arguments (the splat, “*”)

bang (“!”) command/shortcut

Notice how this makes perfect sense under the
Unix philosophy.

Make a tool and (mis/ab)use it.

(the basic commands are really very simple, but in
tricky combination they become very powerful -

and confusing.)

Most normal people are not going to use all these
shortcuts, they are just too complicated.

I showed them, however, to present additional

application of the Unix philosophy.

When you Google for help with Unix the answers/
examples are usually maximally Unixified, so you

will have to figure it out.

bang (“!”) command/shortcut

you can also view the command that bang finds
without immediately executing it.

!cat:p<CR>!

Now, instead of executing the command it finds,
bang prints the command to Standard OUT for

you to look at.

bang (“!”) command/shortcut

!cat:p<CR>!

That's not all though, it also copies the command
to the end of your history (even though it was not

executed).

This is useful because if you do want to execute
that command, you can now use the bang bang

shortcut to run it (bang bang runs the last thing in
history).

How typically Unix.

bang (“!”) command/shortcut

$!cat:p<CR>!
cat tst.sh!
$!! | grep "hello”<CR>!

Here, the most recent command containing cat is
printed, and copied to the end of your history.

Then, that command is executed with its results
being piped into the grep command, which has

been specified to print those lines containing the
string "hello”.

(We are following Unix philosophy)

bang (“!”) command/shortcut

To find a lot of this “neat” stuff, I GOOGLEd

“unix bang command”

you will not find it in the man pages

147:> man !!
No manual entry for !.!
148:>!

