Data Analys:s 18 Geophgsms
ESCl 7205

Class 15

mad

) -

30b Sma”eg

More Matlab.

- _—

Matlab does all arithmetic in double Precision.

Matlab "knows" about other tgl:)es of entities
(singie Precision, integers of varying lengths,
unsignccl integers, logicals) but converts ’t%\cm to
]qutiﬂg Point to use them.

(Tiﬁis is somewhat of a disaster when Processing toPograPi'iic data bases for which one
square ciegree of data can be 13 Mega Points (3600x3600 Points) each 2 bytes iong
that turn into 13 Mega Points each 8 bgtes iong for a total of about 100 M gtes for
one square degree worth of data. Consiclering that there are about
0.3*%360*%180~20,000 (est70% earth surface is water) square ciegrees of land. so if
you want to process all the toPo data that's 2 Tcrrabgtes as double Precision, versus
about 500 Gibagbtes in raw rormat)

This combined with fact that Matlab is in general
interl:)retecl means that it is not a sPeed eamon.

Soitis imPortant to do whatever you can to make
it as fast as Possible when using it for heavilg
used number crunclqing.

(Chint = Vectorize)

sum(y)

sum(sum(y))

ans, =
11

Review Matlab “sum” command
with multiple dimension arrays.

Sums elements in vector (row or
column) = result is a scalar-.

For a matrix, sums elements b
COIUmn (the order stored in memorg) — 'esu t iS
a row vector omc the column sums.

To sum whole matrix, call twice
(once to sum columns, then
second time to sum resulting FOW
vector) — result is a scalar.

>> b=[1:16]
b =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
>> bdd=reshape(b,2,2,2,2)

bdd(:,:,1,1) = /
N Summing parts of the 4-
bdd(:,:,2,1) = | d matrix.
5 7
6 8
bdd(:,:,1,2) = ,
(9 1{ Same as summing on the
10 12 B :
bad(:,:,2,2) = 2-d matrices.
13 15
14 16
>> sum(b4d(:,:,1,1)
ans
3 7

>> sum(b4d(:,:,2,1))

>> b=[1:8]
b =
1 2 3
>> b3d=reshape(b,2,2,2)
b3d(:,:,1)
1
2
b3d(:,:,2)
5
6
>> sum(b3d(:,:,1))
ans =
3 7
>> sum(b3d(:,:,2))
ans =
11 15
>> sum(sum(b3d(:,:,1)))
ans =
10
>> sum(sum(b3d(:,:,2)))
ans =
26
>> sum(sum(sum(b3d)))

0o Il o w

Fasier to see with 3-D
matrix?

>> sum(sum(b3d(1,:,:)))
ans =

l6
>> sum(sum(b3d(2,:,:)))
ans =

20
>> sum(sum(b3d(:,1,:)))
ans =

14
>> sum(sum(b3d(:,2,:)))
ans =

22
>>

Can slice anyway you
want.

>> b4d (1, l,.)
ans(:,: /1) =

ans(g,1{42) =

3)| = Sum — adds them.

ans(p, 1

O =~ Ul = |—l~

ans(g,1,4) =

>> s
ans

I S

m(bad(1,1,:))

N

8

>>

Formatts ng screen ou’tl:)ut

format may be used to attect the s acing in the
c:lispi?ag of all variables as FolE)ws:

format compact SuPPresses extra line-feeds.

format loose Futs the extra line~1ceecls back

in (the defaulp).

pi
ans =
3.1416

format compact
pi
ans =
3.1416

Formatts ng screen ou’tl:)ut

format short fixed Point with 4 decimal
Places (the default)

format long fixed Poin’t with 14 decimal Places

format short e scientific notation with 4
decimal Places

format long e scientific notation with 15
decimal Places

Accessing and initializing array values
(will use to do more on vectorizin§

Previousiy | snuck this in
a3rl = a3(:,[2:s1ze(a3,2) 11,:)

and there was not much of a-do made of it but
we will now return to it in detail.

What does this do?

We will start bg |oo‘<ing at ways to access array

elements.
>> a=10
a =
10
>> a
a =
10
>> whos
Name Size Bytes Class Attributes
a 1x1 8 double

>>

So a s a scalar

But everything in Matlab is rea”y a matrix so -

a(s:)
ans =
10

We can list al

(there is onlg

tl’)é elements 01C a

1)

a(l)
ans =
10
a(l,1)
ans =
10
a(l,1,1,1)
ans =
10

We can address a as a 1-d vector.
We can address a as a 2-d (or
l‘ligher d) vectoras (1, 1)in2-dis
same memory location as (1) in l~cl,
which is the memory location as the
single element.

>> el=1
el =
1
>> a(el) «——We can also use a variable for the index

ans =

10
>> a([1 ;. ,
ans i[— Or an arrag CCXPIICItlfj) Oorras a varlable
10
>> arry=[1]
arry =
1
>> a(arry)
ans =
10

>>

But evergthing in Matlab is rea”g a matrix so -

>> a(l,2)

Index exceeds matrix dimensions.
>> a(2)

Index exceeds matrix dimensions.
>>

I we trﬁ to address
begon one element

we get an error
message.

A These methods work in general
Columns 1 through 21
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21
Columns 22 through 27
22 23 24 25 26 27

>> a3d=reshape(a,3,3,3)

1 : . >> a3d(:,1:2,1)
2 5 8
3 6 9
>> a3d(:,:,1)
ans =
1 4 7
2 5 8
3 6 9

Secifg ranges with
erator, use arrays w/ and

| ook at reshape again

reshape does not change order of elements in
memorg,just gjves another way to index to
elements.

>> a=1:16
a =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
>> c=reshape(a,4,4)

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

More on Vcctorizing

Sag we want to ta|<c tlnc Cross Procluct omc eacln 01(
the columns of a matrix a with the column vector
b.

Another way b=[1:3]"
b =

Ras to make b 5

2
3

More on Vcctorizing

We could do a Ioop over the columns of a,
crossing each with the vector b, Putting the
answer in a new matrix.

(but we clon't know hOW to do loops 9e’c — sowe can't clo this.)

1 2
3 4
5 6
o7 Anotherwag to b=[1:3]"
b = b =
. make b !
2 2

3 3

Vectorizing

2

2 l:incl a way to clo Wﬂ?h out a |ooP.
]

b = Can make a matrix bb with a copy of
b in each column, such that we can

1
2
(3) NOW cJo a” the Cross Products With

o=ones(1l,2)

A . Jus’t one call to the cross Procluct.
bb=b*o
bb = 1 1 One way to make the matrix bb.
2 2
3 3 Fost multiplg column vector bg rOW
e ector of all ones (3x1*1x2=3x%2).

-1 0
2 0
-1 0

Then do cross Procluct of all Pairs
of columns with one call.

a=[1 2; 3 4 ;

a =
1 2
3 4
5 6
b=[1;2;3]
b =
1
2
3
bb=[b b]
bb =
1 1
2 2
3 3
cross(a,bb)
ans =
-1 0

2 0
-1 0

> 6l More on vectorizing

What we've done is correct/OK,
but it is slow due to the

multiplging.
Turns out it is much faster to

simplg copy the vector b multiplc
times, rather than cloiﬂg the
multiplg.

In addition the multpl solution
does not alwags WOr (hc can't
make the result }39 multiplication
of a vector/matrix and a matrix)

bb=repmat(b,1,2)

cross(a,bb)

More on vectorizing

The Problem now is that this is

not a VCFE convenient way (you
have to hard code it) to make
the matrix.

Enter the repmat command.

This lets you program up the
construction of the new matrix.

New routine repmat

repmat(b,n,m) repeats the "inl:)ut" matrix, b, n
times in row dimension and m times in column
dimension.

> o) So this will take the 3x1 vector b
T 1 and rePeat it twice columnwise to
e Produce a 3x2 matrix bb.

A
J

o"
o"

repmat (b, 3,2) would repeat
bthiswag [b b; b b; b b]

o
o

(0N
(0N

("
(N

That said — most Peoplc will not do it this way

/

either!

The astute reader will notice that we can simplg
use the array addressing tools introduced earlier
to also Procluce the clesirecl result.

(the astute reader will also get this technique named after them after sending it to

Matlab's discussion roups — it is known as Tong‘s trick after Tong Booer of
Sch umberger. Wi” see lots more omc it later.)

bb=b(:,[1 17]) This will return the 1st column
Eb.. = ,
. . twice as two column vectors.
2 2

3 3

| ets look at this in a little more detail.

>> a=1:9
a =
1 2 3 4 5 6 7 8 9
>> a2d=reshape(a,3,3)
az2d =
1 4 7
2 5 8
3 6 9
>> a(:)’
ans =
1 2 3 4 5 6 7 8 9
>>

What is a2d (2, 3)7

>> a=1:9
a=

1 2 3 4 5 6 7 8 9
>> a2d=reshape(a,3,3)
a2d =
1 4 7
2 5 8
3 6 9
>> a(:)’
ans =
1 2 3 4 5 6 7 8 9

>>

What is a2d ([81)7
How about a2d([8 8]1)7
And a2d([8 8]1')7
And a2d([8;81)7

And a2d([8 11)7

a2d([8 11])
ans =
8 1

And a2d([1 8]')?
AndaZd([l;S])?

The thing to notice about using the array as an
index is that the result takes the shape of the
array used to index the values you are accessing.

Here we are accessing thc—: elements Iincarly ancl
getting an array out basecl on the array used For
the adﬂressing.

But a2d is a 2 d matrix.
So what does this do?

>> a2d(:,[3 2 1])
ans =
7 4 1
8 5 2
9 6 3

Get the UNIX/comPuter tlﬁinking cap out.

The : runs over all values of the first index
(rows).
The arra [3 2 1] saysuse these as the values
or the secondyinclex (columns)

So it Pu“s out columns 5,2 and 1 and makes a new
arra tlﬁat IS comPosecl O a” tI’IC rOWS (From the :
for the first inciex) with the columns in this order.

Com pare

a2d(:,[3 2 1])

az2d = ans =

1 4 7 7 4 1
8 5 2

9 9 6 3

So you should now be able to Figure out what this
does

a2d([3 2 1],:)

S0 now we can answer

>> a3rl = a3(:,[2:s1ze(a3,2) 1],:)

What does this do?

From Drea Thomas at the MathWorks (the
company that Prociuced Matlab)

Ask any crustg MATLAD programmer how to
SPCCCJ up your code and téeg‘” tell you

"Vectorize!".

"Vectorize!".
OK, you say. How?

This is a hard ques‘cion to answer genera”g
because:

- There are ditferent techniques for ditferent
roblems.
- There are ditferent techniques for the same
Problem.
- Ditferent techniques are better or worse
depending on the matrix size.

~ Thcre 1S NO encl to the clever ancl obscurc ways
to vectorize in MATLADB.

Vectorizing is not alogritlﬁmic, there is no "recipe"
that will result in (either well, or)) vectorized code.

You have to learn the alreaclg discovered tricks or
invent your own.

Matlab

Programming~ relational operators

Relational Operators

Returns 1 if true and 0 if false.
(oPPosite of shelD

A” relational oPcrators are I@C‘c to rig]ﬁt
associative.

Make element~bg~element comparisons.

Some usfncul relational oPerators For W]’]OIC
matrices include the Fo”owing commands:

isequal : tests for ec]ualitg
isempty: tests if an array Is empty
all :tests it all elements are nonzero

any: tests if any elements are nonzero; ignores
NaNs

These return 1 it true and 0 if false

Relational OPcrators (review)

< :testforless than
<= test for less than or equal to
> test for greater than
>=. test for greater than or equal to
== . test for equal to

~= : test For not equal

Relational OPerators with matrices.

What do you think thcg do?
a=[1 2 3] These return a
a = __ - matrix with the
1 2 results of element]39
b=[1 1 3] element testing,
b = ,
1 1 return 1 if true and 0
A=l it false.
ans = Can use the result
1 0 matrix as a mask for

further Processi ng.

Logic:al OPerators

Logical array operators return 1 1Cor true and 0
1Cor False

As you might expect, work element»-bg%:lement

& : logical AND: tests that both cxpressions are
true

| logical OR ; tests that one or both of the
expressions are true

—o— |ogica NOT; inverts logjcal value

Logical OPcrators w/ Shor’t—-circuiting
i the first tested exl:)ression will automatica”g
cause the Iogical operator to fail, the remainder
of the expression is not evaluated.

&& : short-circuit logical AND

|| - short-circuit logical OR

Logical OPerators w,/ Short~circuiting
(b ~= 0) && (a/b > 18.5)

if the first test (b ~= 0) evaluates to false then
MATLAD alreaclg knows the entire exPression will
be false and terminates its evaluation of the
exPression earlg.

This avoids the waming that would be generatecl
i MATLAB were to evaluate the oPeranA on the
riglﬁt (due to a divide bg zero).

Matlab

Programming — control structures

if/elseif/else/end

if exl:)rcssion is true, run this set of commands.
else if another expression s true, run this set
of commands (can repeat).
else if nothing true so far, run this set of

commancls.
end the if block.
if rem(n,2) ~= 0 2calculates remainder of n/2
M = odd magic(n)
elseif rem(n,4) ~= 0 % ~= 1s ‘not equal to’ test

M = single even magic(n)
else

M = double even magic(n)
end

Otten indented for reaclabilitg.

switch, case,and otherwise/end
switch executes the statements associated with
the first case where

switch expr == case expr

If ho case exl:)ression, you can have multiple
cases, matches the switch exPression, then
control passes to the otherwise case (if it

exists).
switch switch expr
case case_ expr
statement, ..., statement
otherwise
statement, ..., statement

end

Otten indented for reaclabilitg.

for/end

one omc the most common IooP structures is tlne
for |ooP, which iterates over an array of objects

for x values in array, do this

for M = 1:m
for N = 1:n
h(M,N) = 1/(m+n);
end
end

Oftten indented for reaclabilitg.

Trg to avoid using i and J as |ooP counters
(matlab uses them for sqrt (-1))

while/end

while: continues to looP as Iong as condition
exited success?u”g

n= 1;
while (1+n) > 1, n=n/2;,| end
n= n*2

Note the use of the ©) rather than a newline
(carriage return) TO seParate the Parts of this |oolz> when
written on one line

&hesenkxﬂon“;”B{br%ﬂeno§U~chﬁ}ﬁﬂﬁsoutn/Zeadﬁﬁmethmn%jygounee&

kay"tosepamﬁethesﬁﬁementn=n/2Fmﬁnﬂkzendshﬁcmenﬂ.

This can be clone with any tgpe oac IOOP structure.

break

break: a”ows you to brea < out cnc a for or
while |oo:>

exits onlg from the looP in which it occurs

while conditionl # Outer loop
while condition2 # Inner loop
break # Break out of inner loop only
end

Execution continues here after break
end

Otten indented for reaclabilitg.

continue

continue: pass control to next iteration of for
orwhile looP (skips remaining bocﬂy of IOOP)

passes to the next iteration of the |ooP in which it
OCCUrS

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
line = fgetl(fid);
if isempty(line) | strncmp(line,'%',1)
continue
end
count = count + 1;
end
disp(sprintf('%d lines',count));

Often indented for reaclabilitg.

Matlab

Multi-dimensional arrays

Multidimensional Arraf
Arrags with more than two su scripts

>>p = perms(1l:4);
>>A = magic(4);
>>M = zeros(4,4,24);

>>for k = 1:24
M(:,:,K) = A(:,p(k,2));

Create multidimensional arrays using reshape or
repmat command (we have alreacly seen these)

Use to Change the shal:)e of matrices
(cloes not clﬁange order of elements in memory,
onlg how we refer to them).

x=[1 2 3 45 6 7 8]
x =
1 2 3 4 5 6 7 8
x3d=reshape(x,2,2,2)
x3d(:,:,1)
1
2
x3d(:,:,2)
5
6
x3d(:)
x =
1 2 3 4 5 6 7 8

oo J |l & w |

reshape command

>> x=[1 2;3 4;5 6; 7 8]
x=

o BN

QO 3 Ul WK
00}

>> x3
x3d(:

=reshape(x,2,2,2)
:,1)

4
1
3
x3d(:,:,2)
2

4 8
>> x=reshape(x,2,4)

oIl 9 vl

reshape can Figure out (one) dimension (of any

of them).
x=[1 2;3 4;5 6; 7 8]
x =
1 2
3 4
5 6
7 8
x3d=reshape(x, 2, [],2)
x3d(:,:,1) =
1 5
3 7
x3d(:,:,2) =
2 6
4 8

The dimensions sPechCiccl have to be compatible
with the number of elements in the matrix.

Euilcling matrices bg rePeating Parts

repmat command
(we have alreaclg seen this commancb

>> x=[1 2;3 4]
x =
1 2
3 4
>> xr=repmat(x,2,1)
Xr =

MW
NN
AN J

3 4

>> xXr=repmat(x,1,2)

Create constant matrix
This is something that shows up a lot.

>> val=pi

val =

3.1416
>> siz=[2 2 2]
siz =

2 2 2
>> x=repmat(val,siz)
X(s,:,1) =

3.1416 3.1416

3.1416 3.1416
B, 2 ,2) =

3.1416 3.1416
3.1416 3.1416

AnOthCr wda H (seems more roundabout, showing for completeness)

>> xx(prod(siz))=val

XX =
0 0 0 0 0 0
0 3.1416
>> xx(:)=xx(end)
XX =

3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
3.1416 3.1416
>> xx=reshape(xx,siz)
XxX(s,:,1) =
3.1416 3.1416
3.1416 3.1416
XxX(2,2:,2) =
3.1416 3.1416
3.1416 3.1416

-

Another way (m, n and o have to be scalar
Variables, again for completeness)

>> x(1l:m,1:n,l:0)=val
X(2,:,1) =
3.1416 3.1416
3.1416 3.1416
B, ,2) =
3.1416 3.1416
3.1416 3.1416
X(l:m*n*o)=val

—
o

Another way (actua”g the most Popular, this is
Tong's trick again!) (val has to be a scalar variable,
this syntax Populates the array with val)

>> x=val(ones(siz))

X(:,:,1) =
3.1416
3.1416

X(2,2,2) =
3.1416

3.1416
>>

3.
3.

3.
3.

1416
1416

1416
1416

Again - avoid using

X = val * ones(siz);

since it does unnecessar multiplications (versus just
storing, above) NG onlg works for classes for which the

multiplication operator is defined.

Tong's trick does not work for NaN's (since NaN is
not a variable or array, itis the same as a number,
SO Tong's trick does not work clircctlg with it)

BCIOW CIOCS not WOV‘((NaN not scalar variable, same with Inf)

X = NaN(ones(siz));

But the Fo”owing do work (back to repmat)

(also works for scalar variable or function)

X = repmat(NaN, siz)
X(:2,2:,1) =

NaN NaN

NaN NaN
R, 2 ,2) =

NaN NaN

NaN NaN

val=NaN
1 val =
Tony's .,
tﬁCl(x=val(ones(2,2))
X —
VErsion - NaN NaN
NaN NaN

For lots more of this — see Peter Acklam’s tutorial
(on class web site)

Flipping vectors or matrices (not the same as the

transpose) .

>> a=[1 2;3 4] >> rot90(a)
a = ans =

1 2 3 6

3 4 ;:> 2 5
>> fliplr(a) 1 4
ans = >> g

2 1 ans =

4 3 1 4
>> flipud(a) 2 5
ans = 3 6

3 4 >> flipdim(a,l)

1 2 ans =
>> a=[1:3;4:6] 4 5 6

How to rel:)resent “no‘ching”

Emptg array or string
Arrag =[]
Stringz ‘1

Usetul for clcncininga name to be used on LHS.

| | Size and Iength are zero. I

Beyond simple array variables
Y P Y

Structures are variables that contain other
variables, called fields. Theg are a very Powemcul
way to organize data in your program.

The different fields of a structure can contain
variables of different types, so it one gives the
tields a meaningful name this becomes a great way
to %eep track of the data.

In MATLADB one can define a structure (as any
other variable) as one goes, it adds memory as it
needs it.

Structures

Like nawk, Matlab allows you create structures
SO tlﬁat you may reFer to elements cnc an array
usl ng textual freld designators

The formatis structure name.field name

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+’

creates a 5ca|ar structure with t]ﬁree Fielcls:

S:

name: 'Ed Plum'
score: 83
grade: 'B+t'

Fields can be added one at a time

(producing a vector of the structure elements) note where the array indexing — the
P ga , ik f =
Parens thh the mdex - 1S rlght a{:ter tl’)e structure name ancl be ore the "M

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-";

Or an entire element added in single statement

S(3) = struct('name', 'Jerry Garcia', 'score',70, 'grade’','C")
S =
1x3 struct array with fields:
name
score
grade
scores = [S.score]
scores =
8891 70
avg score = sum(scores)/length(scores)
avg score =
81.3333

Un?ortunatelg structure arra(i,s clon’t bcha\/e as
one might expect (oPe?)

Tlﬁle ‘FO”OWIﬂg CIOCS not WOrl< (Procluces an error message) .

avg score = sum(S.score)/length(S.score)

You have to Pu” the vector you want to Proc:ess
out O‘F th@ structure to use lt (and make it a vector with the [1).

scores = [S.score]
scores =
83 91 70
avg score = sum(scores)/length(scores)
avg score =
81.3333
avg score = mean([S.score])

avg_score =
81.3333

image.
image.
image.
image.
image.

E‘xample O]C structure ancl its use.

data=[1 2 3; 4 5 6; 7 8 9];
date='13-Jan-2008";
blank=NaN;

ra=13.3212;

dec=43.3455;

Address element of structure using structure

image.

name, decimal Point, and element name.

date

Operate on the fields as you would with any
variable of that Particular type. Ex., to invert the

Clata matrix (reference works with out [] since is scalar structure, Problem is

when a vector)

inv(image.data).

>>
>>
>>
>>
>>
>>

>>
ans

ans

>>
ans

>

E‘;xample omc structure ancl its use.

image(l).data=rand(3)

image.date='13-Jan-2008";

image.blank=NaN;
image.ra=13.3212;
image.dec=43.3455;

image(2).data=2*image.data
image =
1x2 struct array with fields:

data

blank

dec

date
image.data

0.3922 0.7060
0.6555 0.0318
0.1712 0.2769
0.7845 1.4121
1.3110 0.0637
0.3424 0.5538

image(l).data

0.3922 0.7060
0.6555 0.0318
0.1712 0.2769

image(2).data

0.0462
0.0971
0.8235

0.0923
0.1943
1.6469

0.0462
0.0971
0.8235

0.0923
0.1943

>> whos
Name Size
image 1x2

>> inv(image(l).data)
ans =

0.0019 1.5730
1.4471 -0.8716
-0.4871 -0.0339

>> inv(image(2).data)
ans =

-0.4740 3.7530
-1.3356 0.8875
2.0968 -4.4272

>> sum(image(l).data)
ans =

1.2189 1.0148
>> sum(image(2).data)
ans =

2.4378 2.0296
>> sum(image.data)
Error using sum

Bytes Class Attributes

1022 struct

-0.1856
0.0217
1.2457

-3.3939
0.3148
3.9447

0.9668

1.9335

Dimension argument must be a positive integer scalar within

indexing range.

>> sum([image.data])

ans =
EN2NeRe 1.01438

>>

0.9668 2.4378

E‘xample for ear’thquake data

stn.name='mem’ ;
stn.lat=34.5"
stn.lon=-89.5
stn.elev=70;
stn.inst=‘guralp cmg3’
stn.p=15.673

Fass structure bﬂ name omc structure. Sends it a”
along as a Packagc—:.

some fun(stn)

etc.

array omc structures (ancl structure elements can
be arrays — lots omc Parentheses).

Can be multidimensional.

stn(IT.name=‘mem’;
stn|(1l).lat=34.5"
stn|(1l).lon=-89.5
stn|(1l).elev=70;
stn|(1l)l.inst=‘guralp cmg3’

stn(l).arrivaﬂ(l)t15.673
stn|(l)l.arrival(2)=17.274

stn|(2).name=‘'ceri’;
stn|(2).1lat=34.53"'
stn|(2)|.lon=-89.57
stn|(2)l.elev=79;
stn(2)/.inst=‘guralp cmg3’

stn(2).arrival(1)F16.189
stn(2).arrival (2)=19.923

E‘xample -~ Create constant matrix with non-
numeric data.

>> siz=[2 2 2]; >> X.X
>> s.x=1 ans =
s = 1
x: 1 1
>> s.n='ceri’ « « « 1 more times . . .
g = >> X.n
x: 1 ans =

n: 'ceri’ Tony's trick ceri

>> x=s(ones(siz) < . . 7 more times . . .
X = >> x(2,2,2)

2x2x2 struct array with fields: ans =

X x: 1

n n: 'ceri’
. 3
x =

2 struct array with fields:

Cell Arrags

multidimensional arrays whose elements are
copies of other arrays.

cell arrays are created b{(-j enclosinga
miscellaneous collection o things In curlg
]:)racesj {}.

The curlg braces are also used with subscripts to
access tl’lé contents o1C various ce” elemeﬂts.

>>C = {A sum(A) prod(prod(A)) }
[4x4 double] [1x4 double] [20922789888000]

to retrieve a ce” From a ce” array

C{1l} -> A, the magic square
C{2} -> row vector of the sum of the columns of A
C{3} -> prod(prod(A))
lmPortant distinction with respect to other

Programming languages —

cell arrays contain COPiCS of other arrays, not
Pointers to those arrays.

Cell Arrags vs Multidimensional Arrags

You can use three-dimensional arrays to store a
sequence of matrices of the same size.

Ce” arrays can be used to store a sequence omc
matrices of different sizes.

Characters and Text

Matlab treats text like a character vector

Enter text into MATLAD using single quotes.
s = 'Hello'
cssc—:ntia”g) sisnowal x 5 array with each

element ec]ual to a character: H ,e,1,1,0

Characters are stored as numbers using ASCI

codi ng with the tglae char

a = double(s)
a:
72 101 108 108 111

Because characters are stored as numbers, you
can convert numeric vectors to their ASCI]
clﬁaracters, if the character exists

s=char(a)

Printable ASCII characters 20 from %2 to 127

Char

Char

W o U1 WNPEFE O

NN NOMNNNMNNNRERERERRRRRRB 2
NSO U WNEHRE OWVWOWNOO U WN KR OV

28
29
30
31

A Se o0 OO0 JOYULIBWNRFO N

v V I

> M N KX IS CoH®n@WOoOwWOoOzReEEX"NgygHOD QR EBOQDP ®

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
(del) 127

Il v~ — A~ NKNK XS doc dn OO OB BHFWREDAQHOD QALAQ OO

]

To manipulate a bodg ot text with lines of

different lengths, you have two choices
- a padded character array

~acell array of strings.
When Crcating a character array, each row of the
array must be the same leng‘th.
The char function pads with spaces to create
equal rOWS

S = char('A','rolling', 'stone', 'gathers', 'momentum.’)

Procluces a §~bg~9 character array:

S —

A
rolling
stone
gathers
momentum.

You dor’t have to WOrTy about this with a cell
array

C = {'A'";'rolling'; 'stone'; 'gathers'; 'momentum. '}

You can convert a Padde& character array to a
cell array of 5triﬂgs with

C = cellstr(S)

and reverse the process with

S = char(C)

To create a character array From one o1C the text
fields in a structure (name, for example)) call the
char function on the comma—-separated list

Produced bﬂ S.name:

>>names = char(S.name)
names =

Ed Plum

Toni Miller

Jerry Garcia

Checking for special elements (NaN, Inf)

isnan(a) Returns 1 for every NaN In array a.

isinf(a) Returns 1 for every Inf In array a.

isfinite(a) returns 1 for every finite number
(nota (Nan or Inf)) in array a.

isreal(a) Returns 1 for every non»-coml:)lcx
number array a.

Using 5Pecia| elements to your aclvantage.

Since NaNs pro agate througlﬁ calculations
(answer is NaN if there is a NaN somewhere in the
calculation), it is sometimes useful to throw NaNs

out of oPerations like taking the mean.
(A handg trick to ignore stuggou don’t want while you continue calcula’cing.)

E‘xample of NaNs Propagating through calculation
(answer is NaN if there is a NaN somewhere in the
calculation)

>> a=1:4
a =
1 2 3 4
>> b=10:-1:7
b =

10 9 8 7
>> a(2)=NaN
a =
1 NaN 3 4
>> a+b
ans =
11 NaN 11 il

It 1s sometimes usemcul to be able to throw NaNs
out of oPerations like taking the mean.

(A hanclg trick to ignore stuff you don’t want while you continue calculating.)

So the function that identifies NaNs can be very
USC]CUI:

1 NaN 3 4

ixFfind(~isnan(a)
ix =
1

m=mean(a(ix))

m —
2.6667

finds a1l values of a that are not NaNs and
avera gCS them (denominator is number of elements averagecl, not total

number of elements) .

help
Built into matlab

help “command”

To get hCIP on the command “command”

Problem when you don’t know the name of the

>> help
HELP topics:

Documents/MATLAB
matlab/general
matlab/ops
matlab/lang
matlab/elmat

matlab/randfun

Lists tol:)ics of hell:) available

Commancl

Just tHPC “help”

(No table of contents file)

General purpose commands.

Operators and special characters.

Programming language constructs.

Elementary matrices and matrix
manipulation.

Random matrices and random streams.

Then to get contents O1C toPics tﬂPC
help “toPic”

>> help elmat
Elementary matrices and matrix manipulation.

Elementary matrices.

zeros - Zeros array.

ones — Ones array.

eye - Identity matrix.

repmat - Replicate and tile array.

linspace - Linearly spaced vector.

logspace - Logarithmically spaced vector.

fregspace - Frequency spacing for frequency response.
meshgrid - X and Y arrays for 3-D plots.

accumarray - Construct an array with accumulation.

: - Regularly spaced vector and index into matrix.

asic array information.
- Size of array.

HelP on individual command

>> help zeros
ZEROS Zeros array.
ZEROS(N) is an N-by-N matrix of zeros.
ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of =zeros.
ZEROS(M,N,P,...) or ZEROS([M N P ...]) is an M-by-N-by-P-
by-... array of

zeros.
ZEROS(SIZE(A)) is the same size as A and all zeros.

ZEROS with no arguments is the scalar 0.

ZEROS (M,N, ...,CLASSNAME) or ZEROS([M,N,...],CLASSNAME) is an

M-by-N-by-... array of zeros of class CLASSNAME.

Note: The size inputs M, N, and P... should be nonnegative
integers.

Negative integers are treated as 0.

Example:

X = zeros(2,3,'int8');

See also eye, ones.

eference page in Help browser

Matlab file exchange

http: / /www.mathworks.com/matlabcentral /£ Ieexchange/

Or
Google on what you want/ need.

Some unix commands (pwd, 1ls, 222) “work”in
matlab (tlﬁey are actua”g matlab commancls)

a=pwd;
b=1s;

Some Matlab commands have the same names as
UINEX commancls, but are not the same

“cat” is a matlab command that concatenates
matrices (not files)

Matlab does not pass things it does not
understand to the OS to see if theg are OS
commands.

