
Data Analysis in Geophysics
ESCI 7205

Class 15

Bob Smalley

More Matlab.

Matlab does all arithmetic in double precision.

Matlab "knows" about other types of entities
(single precision, integers of varying lengths,

unsigned integers, logicals) but converts them to
floating point to use them.

(This is somewhat of a disaster when processing topographic data bases for which one
square degree of data can be 13 Mega points (3600x3600 points) each 2 bytes long,
that turn into 13 Mega points each 8 bytes long for a total of about 100 Mbytes for

one square degree worth of data. Considering that there are about
0.3*360*180~20,000 (est 70% earth surface is water) square degrees of land. So if
you want to process all the topo data that's 2 Terrabytes as double precision, versus

about 500 Gibaybtes in raw format)

This combined with fact that Matlab is in general
interpreted means that it is not a speed deamon.

So it is important to do whatever you can to make

it as fast as possible when using it for heavily
used number crunching.

(hint – Vectorize)

>> x=1:3!
x =!
 1 2 3!
>> sum(x)!
ans =!
 6!
>> xt=x'!
xt =!
 1!
 2!
 3!
>> sum(x)!
ans =!
 6!
>> y=[1 2; 4 4]!
y =!
 1 2!
 4 4!
>> sum(y)!
ans =!
 5 6!
>> sum(sum(y))!
ans =!
 11!
>>!

Review Matlab “sum” command
with multiple dimension arrays.

Sums elements in vector (row or
column) – result is a scalar.

For a matrix, sums elements by
column (the order stored in memory) – result is
a row vector of the column sums.

To sum whole matrix, call twice
(once to sum columns, then

second time to sum resulting row
vector) – result is a scalar.

>> b=[1:16]!
b =!
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16!
>> b4d=reshape(b,2,2,2,2)!
b4d(:,:,1,1) =!
 1 3!
 2 4!
b4d(:,:,2,1) =!
 5 7!
 6 8!
b4d(:,:,1,2) =!
 9 11!
 10 12!
b4d(:,:,2,2) =!
 13 15!
 14 16!
>> sum(b4d(:,:,1,1))!
ans !
 3 7!
>> sum(b4d(:,:,2,1))!
ans =!
 11 15!
>> !

Summing parts of the 4-
d matrix.

Same as summing on the
2-d matrices.

>> b=[1:8]!
b =!
 1 2 3 4 5 6 7 8!
>> b3d=reshape(b,2,2,2)!
b3d(:,:,1) =!
 1 3!
 2 4!
b3d(:,:,2) =!
 5 7!
 6 8!
>> sum(b3d(:,:,1))!
ans =!
 3 7!
>> sum(b3d(:,:,2))!
ans =!
 11 15!
>> sum(sum(b3d(:,:,1)))!
ans =!
 10!
>> sum(sum(b3d(:,:,2)))!
ans =!
 26!
>> sum(sum(sum(b3d)))!
ans =!
 36!
>>!

Easier to see with 3-D
matrix?

>> sum(sum(b3d(1,:,:)))!
ans =!
 16!
>> sum(sum(b3d(2,:,:)))!
ans =!
 20!
>> sum(sum(b3d(:,1,:)))!
ans =!
 14!
>> sum(sum(b3d(:,2,:)))!
ans =!
 22!
>>!

Can slice anyway you
want.

>> b4d(1,1,:)!
ans(:,:,1) =!
 1!
ans(:,:,2) =!
 5!
ans(:,:,3) =!
 9!
ans(:,:,4) =!
 13!
>> sum(b4d(1,1,:))!
ans =!
 28!
>> !

Sum – adds them.

Formatting screen output

format may be used to affect the spacing in the
display of all variables as follows:

format compact Suppresses extra line-feeds.

format loose Puts the extra line-feeds back
in (the default).

>> pi!
!
ans =!
!
 3.1416!
!
>> format compact!
>> pi!
ans =!
 3.1416!
>> !

Formatting screen output

format short fixed point with 4 decimal
places (the default)

format long fixed point with 14 decimal places

format short e scientific notation with 4
decimal places

format long e scientific notation with 15
decimal places

Accessing and initializing array values

(will use to do more on vectorizing)

Previously I snuck this in

>> a3r1 = a3(:,[2:size(a3,2) 1],:)!

and there was not much of a-do made of it, but

we will now return to it in detail.

What does this do?

We will start by looking at ways to access array
elements.

>> a=10!
a =!
 10!
>> a!
a =!
 10!
>> whos!
 Name Size Bytes Class Attributes!
!
 a 1x1 8 double !
>> !
!

So a is a scalar!

But everything in Matlab is really a matrix so -

!
!
>> a(:)!
ans =!
 10!
>> a(1)!
ans =!
 10!
>> a(1,1)!
ans =!
 10!
>> a(1,1,1,1)!
ans =!
 10!
>> !

We can list all the elements of a
(there is only 1)

We can address a as a 1-d vector.

We can address a as a 2-d (or
higher d) vector as (1, 1) in 2-d is
same memory location as (1) in 1-d,
which is the memory location as the
single element.

!
 !
>> el=1!
el =!
 1!
>> a(el)!
ans =!
 10!
>> a([1])!
ans =!
 10!
>> arry=[1]!
arry =!
 1!
>> a(arry)!
ans =!
 10!
>>!

We can also use a variable for the index

Or an array (explicitly) or as a variable

But everything in Matlab is really a matrix so -

!
!
!
>> a(1,2)!
Index exceeds matrix dimensions.!
>> a(2)!
Index exceeds matrix dimensions.!
>> !

If we try to address
beyond one element
we get an error
message.

>> a=1:27!
a =!
 Columns 1 through 21!
 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21!
 Columns 22 through 27!
 22 23 24 25 26 27!
>> a3d=reshape(a,3,3,3)!
a3d(:,:,1) =!
 1 4 7!
 2 5 8!
 3 6 9!
…!
>> a3d(:,:,1)!
ans =!
 1 4 7!
 2 5 8!
 3 6 9!

These methods work in general

>> a3d(:,1:2,1)!
ans =!
 1 4!
 2 5!
 3 6!
>> a3d(:,[1 3],1)!
ans =!
 1 7!
 2 8!
 3 9!
>> a3d(:,[1 3:-1:2],1)!
ans =!
 1 7 4!
 2 8 5!
 3 9 6!
>> !

Specify ranges with :
operator, use arrays w/ and
w/o colon operator.

Look at reshape again

reshape does not change order of elements in
memory, just gives another way to index to

elements.

>> a=1:16!
a =!
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16!
>> c=reshape(a,4,4)!
c =!
 1 5 9 13!
 2 6 10 14!
 3 7 11 15!
 4 8 12 16!
>> c(:)'!
ans =!
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16!
>>!

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!

>> b=[1:3]'!
b =!
 1!
 2!
 3!

More on vectorizing

Say we want to take the cross product of each of
the columns of a matrix a with the column vector

b.

Another way
to make b!

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!

>> b=[1:3]'!
b =!
 1!
 2!
 3!

More on vectorizing

We could do a loop over the columns of a,
crossing each with the vector b, putting the

answer in a new matrix.

 (but we don't know how to do loops yet – so we can't do this.)

Another way to
make b!

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!
>> o=ones(1,2)!
o =!
 1 1!
>> bb=b*o!
bb =!
 1 1!
 2 2!
 3 3!
>> cross(a,bb)!
ans =!
 -1 0!
 2 0!
 -1 0!
>> !

Vectorizing

Find a way to do with out a loop.

Can make a matrix bb with a copy of
b in each column, such that we can
now do all the cross products with
just one call to the cross product.

One way to make the matrix bb.

Post multiply column vector by row
vector of all ones (3x1*1x2=3x2).

Then do cross product of all pairs
of columns with one call.

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!
>> bb=[b b]!
bb =!
 1 1!
 2 2!
 3 3!
>> cross(a,bb)!
ans =!
 -1 0!
 2 0!
 -1 0!
>> !

More on vectorizing

What we've done is correct/OK,
but it is slow due to the

multiplying.

Turns out it is much faster to
simply copy the vector b multiple

times, rather than doing the
multiply.

In addition the multply solution
does not always work (if can't

make the result by multiplication
of a vector/matrix and a matrix)

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!
>> bb=repmat(b,1,2)!
bb =!
 1 1!
 2 2!
 3 3!
>> cross(a,bb)!
ans =!
 -1 0!
 2 0!
 -1 0!
>> !

More on vectorizing

The problem now is that this is
not a very convenient way (you
have to hard code it) to make

the matrix.

Enter the repmat command.

This lets you program up the
construction of the new matrix.

>> bb=repmat(b,1,2)!
bb =!
 1 1!
 2 2!
 3 3!

New routine repmat!

repmat(b,n,m) repeats the "input" matrix, b, n
times in row dimension and m times in column

dimension.

So this will take the 3x1 vector b
and repeat it twice columnwise to

produce a 3x2 matrix bb.

repmat(b,3,2) would repeat
b this way [b b; b b; b b]!

b b
b b
b b

>> bb=b(:,[1 1])!
bb =!
 1 1!
 2 2!
 3 3!
>> !

That said – most people will not do it this way
either!

The astute reader will notice that we can simply
use the array addressing tools introduced earlier

to also produce the desired result.

 (the astute reader will also get this technique named after them after sending it to

Matlab's discussion groups – it is known as Tony's trick after Tony Booer of
Schlumberger. Will see lots more of it later.)

This will return the 1st column
twice as two column vectors.

Lets look at this in a little more detail.

>> a=1:9!
a =!
 1 2 3 4 5 6 7 8 9!
>> a2d=reshape(a,3,3)!
a2d =!
 1 4 7!
 2 5 8!
 3 6 9!
>> a(:)'!
ans =!
 1 2 3 4 5 6 7 8 9!
>>!

 What is a2d(2,3)?

What is a2d(8)?

>> a=1:9!
a =!
 1 2 3 4 5 6 7 8 9!
>> a2d=reshape(a,3,3)!
a2d =!
 1 4 7!
 2 5 8!
 3 6 9!
>> a(:)'!
ans =!
 1 2 3 4 5 6 7 8 9!
>>!

What is a2d([8])?

How about a2d([8 8])?

And a2d([8 8]')?

And a2d([8;8])?

>> a2d([8 8])!
ans =!
 8 8!

And a2d([8 1])?

>> a2d([8 1])!
ans =!
 8 1!
>> !

And a2d([1 8]')?

And a2d([1;8])?

The thing to notice about using the array as an
index is that the result takes the shape of the

array used to index the values you are accessing.

Here we are accessing the elements linearly and
getting an array out based on the array used for

the addressing.

But a2d is a 2 d matrix.

So what does this do?

>> a2d(:,[3 2 1])!
ans =!
 7 4 1!
 8 5 2!
 9 6 3!

Get the UNIX/computer thinking cap out.

The : runs over all values of the first index
(rows).

The array [3 2 1] says use these as the values
for the second index (columns)

So it pulls out columns 3, 2 and 1 and makes a new
array that is composed of all the rows (from the :
for the first index) with the columns in this order.

Compare

So you should now be able to figure out what this
does

>> a2d!
a2d =!
 1 4 7!
 2 5 8!
 3 6 9!

>> a2d(:,[3 2 1])!
ans =!
 7 4 1!
 8 5 2!
 9 6 3!

>> a2d([3 2 1],:)!

So now we can answer

>> a3r1 = a3(:,[2:size(a3,2) 1],:)!

What does this do?

From Drea Thomas at the MathWorks (the
company that produced Matlab)

Ask any crusty MATLAB programmer how to

speed up your code and they'll tell you
"Vectorize!".

"Vectorize!".

OK, you say. How?

This is a hard question to answer generally
because:

- There are different techniques for different
problems.

- There are different techniques for the same
problem.

- Different techniques are better or worse
depending on the matrix size.

- There is no end to the clever and obscure ways
to vectorize in MATLAB.

Vectorizing is not alogrithmic, there is no "recipe"
that will result in (either well, or,) vectorized code.

You have to learn the already discovered tricks or

invent your own.

Matlab

Programming – relational operators

Relational Operators

Returns 1 if true and 0 if false.

(opposite of shell)

All relational operators are left to right

associative.

Make element-by-element comparisons.

Some useful relational operators for whole
matrices include the following commands:

isequal : tests for equality

isempty: tests if an array is empty

all : tests if all elements are nonzero

any: tests if any elements are nonzero; ignores
NaNs

These return 1 if true and 0 if false

Relational Operators (review)

< : test for less than

<= : test for less than or equal to

>: test for greater than

>= : test for greater than or equal to

== : test for equal to

~= : test for not equal

Relational Operators with matrices.

What do you think they do?

>> a=[1 2 3]!
a =!
 1 2 3!
>> b=[1 1 3]!
b =!
 1 1 3!
>> a==b!
ans =!
 1 0 1!
>>!

These return a
matrix with the

results of element by
element testing,

return 1 if true and 0
if false.

Can use the result
matrix as a mask for
further processing.

Logical Operators

Logical array operators return 1 for true and 0
for false

As you might expect, work element-by-element

& : logical AND; tests that both expressions are
true

| : logical OR ; tests that one or both of the
expressions are true

~ : logical NOT; inverts logical value

Logical Operators w/ Short-circuiting

If the first tested expression will automatically
cause the logical operator to fail, the remainder

of the expression is not evaluated.

&& : short-circuit logical AND

|| : short-circuit logical OR

Logical Operators w/ Short-circuiting

(b ~= 0) && (a/b > 18.5)!

if the first test (b ~= 0) evaluates to false then
MATLAB already knows the entire expression will

be false and terminates its evaluation of the
expression early.

This avoids the warning that would be generated
if MATLAB were to evaluate the operand on the

right (due to a divide by zero).

Matlab

Programming – control structures

if/elseif/else/end!
!

if expression is true, run this set of commands.

else if another expression is true, run this set

of commands (can repeat).

else if nothing true so far, run this set of

commands.

end the if block.

if rem(n,2) ~= 0! !%calculates remainder of n/2 !!

!M = odd_magic(n)!
elseif rem(n,4) ~= 0 ! % ~= is ‘not equal to’ test!

!M = single_even_magic(n)!
else!

!M = double_even_magic(n)!
end!
!

Often indented for readability.

switch, case, and otherwise/end!
switch executes the statements associated with

the first case where

switch_expr == case_expr !

If no case expression, you can have multiple
cases, matches the switch expression, then
control passes to the otherwise case (if it

exists).

switch switch_expr!
case case_expr!

!statement, ..., statement!
otherwise!

!statement, ..., statement!
end!

Often indented for readability.

for/end!

one of the most common loop structures is the
for loop, which iterates over an array of objects

for x values in array, do this

for M = 1:m!
!for N = 1:n!
! !h(M,N) = 1/(m+n);!
!end!

end!
!

Often indented for readability.

Try to avoid using i and j as loop counters

(matlab uses them for sqrt(-1))

while/end!

while: continues to loop as long as condition
exited successfully

n= 1;!
while (1+n) > 1, n=n/2;, end!
n= n*2!

Note the use of the “,” rather than a newline

(carriage return) to separate the parts of this loop when
written on one line

(the semicolon “;” is for “silence” – else it prints out n/2 each time through, you need

the "," to separate the statement n=n/2 from the end statement).

This can be done with any type of loop structure.

break!

break: allows you to break out of a for or
while loop

exits only from the loop in which it occurs

while condition1 # Outer loop!

!while condition2 # Inner loop!
! !break ! ! ! !# Break out of inner loop only!
!end!
!… ! ! ! ! ! !# Execution continues here after break!

end!
!

Often indented for readability.

continue!

continue: pass control to next iteration of for
or while loop (skips remaining body of loop)

passes to the next iteration of the loop in which it
occurs

fid = fopen('magic.m','r');!
count = 0;!
while ~feof(fid)!

!line = fgetl(fid);!
!if isempty(line) | strncmp(line,'%',1)!
! !continue!
!end!
!count = count + 1;!

end!
disp(sprintf('%d lines',count));!
!

Often indented for readability.

Matlab

Multi-dimensional arrays

Multidimensional Arrays

Arrays with more than two subscripts

>>p = perms(1:4);!
>>A = magic(4);!
>>M = zeros(4,4,24);!
>>for k = 1:24!
M(:,:,k) = A(:,p(k,:));!

Create multidimensional arrays using reshape or
repmat command (we have already seen these)

Use to change the shape of matrices

(does not change order of elements in memory,

only how we refer to them).

>> x=[1 2 3 4 5 6 7 8]!
x =!
 1 2 3 4 5 6 7 8!
>> x3d=reshape(x,2,2,2)!
x3d(:,:,1) =!
 1 3!
 2 4!
x3d(:,:,2) =!
 5 7!
 6 8!
>> x3d(:)!
x =!
 1 2 3 4 5 6 7 8!

reshape command

>> x=[1 2;3 4;5 6; 7 8]!
x =!
 1 2!
 3 4!
 5 6!
 7 8!
>> x3d=reshape(x,2,2,2)!
x3d(:,:,1) =!
 1 5!
 3 7!
x3d(:,:,2) =!
 2 6!
 4 8!
>> x=reshape(x,2,4)!
x =!
 1 5 2 6!
 3 7 4 8!
>> x(:)!
x =!
 1 3 5 7 2 4 6 8!
!

reshape can figure out (one) dimension (of any
of them).

>> x=[1 2;3 4;5 6; 7 8]!
x =!
 1 2!
 3 4!
 5 6!
 7 8!
>> x3d=reshape(x, 2, [],2)!
x3d(:,:,1) =!
 1 5!
 3 7!
x3d(:,:,2) =!
 2 6!
 4 8!
!

The dimensions specified have to be compatible
with the number of elements in the matrix.

Building matrices by repeating parts

repmat command

(we have already seen this command)

!
>> x=[1 2;3 4]!
x =!
 1 2!
 3 4!
>> xr=repmat(x,2,1)!
xr =!
 1 2!
 3 4!
 1 2!
 3 4!
>> xr=repmat(x,1,2)!
xr =!
 1 2 1 2!
 3 4 3 4!
>> !

Create constant matrix

This is something that shows up a lot.

!
>> val=pi!
val =!
 3.1416!
>> siz=[2 2 2]!
siz =!
 2 2 2!
>> x=repmat(val,siz)!
x(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
x(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!
>> !

Another way (seems more roundabout, showing for completeness)

>> xx(prod(siz))=val!
xx =!
 0 0 0 0 0 0
0 3.1416!
>> xx(:)=xx(end)!
xx =!
 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
3.1416 3.1416!
>> xx=reshape(xx,siz)!
xx(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
xx(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!

Another way (m, n and o have to be scalar
variables, again for completeness)

!
>> m=2!
m =!
 2!
>> n=2!
n =!
 2!
>> o=2!
o =!
 2!
>> x(1:m,1:n,1:o)=val!
x(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
x(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!
>> x(1:m*n*o)=val!
!

Also works using single dimension addressing!

Another way (actually the most popular, this is
Tony's trick again!)(val has to be a scalar variable,

this syntax populates the array with val)!
!
>> x=val(ones(siz))!
x(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
x(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!
>>

Again - avoid using

!

X = val * ones(siz);!
!

since it does unnecessary multiplications (versus just

storing, above) and only works for classes for which the
multiplication operator is defined.

Tony's trick does not work for NaN's (since NaN is
not a variable or array, it is the same as a number,

so Tony's trick does not work directly with it)

!

Below does not work (NaN not scalar variable, same with Inf)

!
x = NaN(ones(siz));!
!

But the following do work (back to repmat)

(also works for scalar variable or function)

!
>> X = repmat(NaN, siz)!
X(:,:,1) =!
 NaN NaN!
 NaN NaN!
X(:,:,2) =!
 NaN NaN!
 NaN NaN!

>> val=NaN!
val =!
 NaN!
>> x=val(ones(2,2))!
x =!
 NaN NaN!
 NaN NaN!
>> !

Tony's
trick
version

For lots more of this – see Peter Acklam’s tutorial
(on class web site)

Flipping vectors or matrices (not the same as the
transpose).

>> a=[1 2;3 4]!
a =!
 1 2!
 3 4!
>> fliplr(a)!
ans =!
 2 1!
 4 3!
>> flipud(a)!
ans =!
 3 4!
 1 2!
>> a=[1:3;4:6]!
a =!
 1 2 3!
 4 5 6!

>> rot90(a)!
ans =!
 3 6!
 2 5!
 1 4!
>> a’!
ans =!
 1 4!
 2 5!
 3 6!
>> flipdim(a,1)!
ans =!
 4 5 6!
 1 2 3!

How to represent “nothing”

Empty array or string

Array = []!
String = ‘’!

Useful for defining a name to be used on LHS.

Size and length are zero.

Beyond simple array variables

Structures are variables that contain other
variables, called fields. They are a very powerful

way to organize data in your program.

The different fields of a structure can contain
variables of different types, so if one gives the

fields a meaningful name this becomes a great way
to keep track of the data.

In MATLAB one can define a structure (as any
other variable) as one goes, it adds memory as it

needs it.

Structures

Like nawk, Matlab allows you create structures
so that you may refer to elements of an array

using textual field designators

The format is structure_name.field_name!
!

S.name = 'Ed Plum';!
S.score = 83;!
S.grade = 'B+'!
!

creates a scalar structure with three fields:

!
S =!
name: 'Ed Plum'!
score: 83!
grade: 'B+'!

Fields can be added one at a time

(producing a vector of the structure elements, note where the array indexing – the

parens with the index - is right after the structure name and before the ".")

S(2).name = 'Toni Miller';!
S(2).score = 91;!
S(2).grade = 'A-';!
!

Or an entire element added in single statement

!
>> S(3) = struct('name','Jerry Garcia','score',70,'grade','C')!
S =!
1x3 struct array with fields:!
name!
score!
grade!
>> scores = [S.score]!
scores =!
83 91 70!
>> avg_score = sum(scores)/length(scores)!
avg_score =!
81.3333!
!

Unfortunately structure arrays don’t behave as
one might expect (hope?)

The following does not work (produces an error message).

!
>> avg_score = sum(S.score)/length(S.score)!
!

You have to pull the vector you want to process
out of the structure to use it (and make it a vector with the []).

!
>> scores = [S.score]!
scores =!
83 91 70!
>> avg_score = sum(scores)/length(scores)!
avg_score =!
81.3333!
>> avg_score = mean([S.score])!
avg_score =!
81.3333!

Example of structure and its use.

image.data=[1 2 3; 4 5 6; 7 8 9];!
image.date=’13-Jan-2008’;!
image.blank=NaN;!
image.ra=13.3212;!
image.dec=43.3455;!

Address element of structure using structure
name, decimal point, and element name.

image.date!

Operate on the fields as you would with any
variable of that particular type. Ex., to invert the
data matrix (reference works with out [] since is scalar structure, problem is

when a vector)

inv(image.data).

Example of structure and its use.

>> image(1).data=rand(3)!
>> image.date=’13-Jan-2008’;!
>> image.blank=NaN;!
>> image.ra=13.3212;!
>> image.dec=43.3455;!
>> image(2).data=2*image.data!
image = !
1x2 struct array with fields:!
 data!
 blank!
 dec!
 date!
>> image.data!
ans =!
 0.3922 0.7060 0.0462!
 0.6555 0.0318 0.0971!
 0.1712 0.2769 0.8235!
ans =!
 0.7845 1.4121 0.0923!
 1.3110 0.0637 0.1943!
 0.3424 0.5538 1.6469!
>> image(1).data!
ans =!
 0.3922 0.7060 0.0462!
 0.6555 0.0318 0.0971!
 0.1712 0.2769 0.8235!
>> image(2).data!
ans =!
 0.7845 1.4121 0.0923!
 1.3110 0.0637 0.1943!
 0.3424 0.5538 1.6469!

>> whos!
 Name Size Bytes Class Attributes!
!
 image 1x2 1022 struct !
>> inv(image(1).data)!
ans =!
 0.0019 1.5730 -0.1856!
 1.4471 -0.8716 0.0217!
 -0.4871 -0.0339 1.2457!
>> inv(image(2).data)!
ans =!
 -0.4740 3.7530 -3.3939!
 -1.3356 0.8875 0.3148!
 2.0968 -4.4272 3.9447!
>> sum(image(1).data)!
ans =!
 1.2189 1.0148 0.9668!
>> sum(image(2).data)!
ans =!
 2.4378 2.0296 1.9335!
>> sum(image.data)!
Error using sum!
Dimension argument must be a positive integer scalar within
indexing range.!
>> sum([image.data])!
ans =!
 1.2189 1.0148 0.9668 2.4378 2.0296 1.9335!
>> !

Example for earthquake data

stn.name=‘mem’;!
stn.lat=34.5’!
stn.lon=-89.5!
stn.elev=70;!
stn.inst=‘guralp cmg3’!
stn.p=15.673!

Pass structure by name of structure. Sends it all
along as a package.

some_fun(stn)!

etc.

array of structures (and structure elements can
be arrays – lots of parentheses).

Can be multidimensional.

stn(1).name=‘mem’;!
stn(1).lat=34.5’!
stn(1).lon=-89.5!
stn(1).elev=70;!
stn(1).inst=‘guralp cmg3’!
stn(1).arrival(1)=15.673!
stn(1).arrival(2)=17.274
stn(2).name=‘ceri’;!
stn(2).lat=34.53’!
stn(2).lon=-89.57!
stn(2).elev=79;!
stn(2).inst=‘guralp cmg3’!
stn(2).arrival(1)=16.189!
stn(2).arrival(2)=19.923!
. . .

>> siz=[2 2 2];!
>> s.x=1!
s = !
 x: 1!
>> s.n='ceri’!
s = !
 x: 1!
 n: 'ceri’!
>> x=s(ones(siz))!
x = !
2x2x2 struct array with fields:!
 x!
 n!
>> x!
x = !
2x2x2 struct array with fields:!
 x!
 n!

>> x.x!
ans =!
 1!
1!
. . . 7 more times . . .!
>> x.n!
ans =!
ceri!
. . . 7 more times . . .!
>> x(2,2,2)!
ans = !
 x: 1!
 n: 'ceri’!
!
!
!
!

Example - Create constant matrix with non-
numeric data.

Tony's trick

Cell Arrays

multidimensional arrays whose elements are
copies of other arrays.

cell arrays are created by enclosing a

miscellaneous collection of things in curly

braces, {}.

The curly braces are also used with subscripts to
access the contents of various cell elements.

!
>>C = {A sum(A) prod(prod(A)) }!
[4x4 double] [1x4 double] [20922789888000]!

to retrieve a cell from a cell array

C{1} -> A, the magic square!
C{2} -> row vector of the sum of the columns of A !
C{3} -> prod(prod(A))!

Important distinction with respect to other
programming languages –

cell arrays contain copies of other arrays, not

pointers to those arrays.

Cell Arrays vs Multidimensional Arrays

You can use three-dimensional arrays to store a
sequence of matrices of the same size.

Cell arrays can be used to store a sequence of

matrices of different sizes.

Characters and Text

Matlab treats text like a character vector

Enter text into MATLAB using single quotes.

>> s = 'Hello'!

essentially, s is now a 1 x 5 array with each
element equal to a character: H,e,l,l,o!

Characters are stored as numbers using ASCII

coding with the type char

a = double(s)!
a =!
72! 101 !108 !108! 111!

Because characters are stored as numbers, you
can convert numeric vectors to their ASCII

characters, if the character exists

s=char(a)!

Printable ASCII characters go from 32 to 127

Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex!
---!
(nul) 0 0000 0x00 | (sp) 32 0040 0x20 | @ 64 0100 0x40 | ` 96 0140 0x60!
(soh) 1 0001 0x01 | ! 33 0041 0x21 | A 65 0101 0x41 | a 97 0141 0x61!
(stx) 2 0002 0x02 | " 34 0042 0x22 | B 66 0102 0x42 | b 98 0142 0x62!
(etx) 3 0003 0x03 | # 35 0043 0x23 | C 67 0103 0x43 | c 99 0143 0x63!
(eot) 4 0004 0x04 | $ 36 0044 0x24 | D 68 0104 0x44 | d 100 0144 0x64!
(enq) 5 0005 0x05 | % 37 0045 0x25 | E 69 0105 0x45 | e 101 0145 0x65!
(ack) 6 0006 0x06 | & 38 0046 0x26 | F 70 0106 0x46 | f 102 0146 0x66!
(bel) 7 0007 0x07 | ' 39 0047 0x27 | G 71 0107 0x47 | g 103 0147 0x67!
(bs) 8 0010 0x08 | (40 0050 0x28 | H 72 0110 0x48 | h 104 0150 0x68!
(ht) 9 0011 0x09 |) 41 0051 0x29 | I 73 0111 0x49 | i 105 0151 0x69!
(nl) 10 0012 0x0a | * 42 0052 0x2a | J 74 0112 0x4a | j 106 0152 0x6a!
(vt) 11 0013 0x0b | + 43 0053 0x2b | K 75 0113 0x4b | k 107 0153 0x6b!
(np) 12 0014 0x0c | , 44 0054 0x2c | L 76 0114 0x4c | l 108 0154 0x6c!
(cr) 13 0015 0x0d | - 45 0055 0x2d | M 77 0115 0x4d | m 109 0155 0x6d!
(so) 14 0016 0x0e | . 46 0056 0x2e | N 78 0116 0x4e | n 110 0156 0x6e!
(si) 15 0017 0x0f | / 47 0057 0x2f | O 79 0117 0x4f | o 111 0157 0x6f!
(dle) 16 0020 0x10 | 0 48 0060 0x30 | P 80 0120 0x50 | p 112 0160 0x70!
(dc1) 17 0021 0x11 | 1 49 0061 0x31 | Q 81 0121 0x51 | q 113 0161 0x71!
(dc2) 18 0022 0x12 | 2 50 0062 0x32 | R 82 0122 0x52 | r 114 0162 0x72!
(dc3) 19 0023 0x13 | 3 51 0063 0x33 | S 83 0123 0x53 | s 115 0163 0x73!
(dc4) 20 0024 0x14 | 4 52 0064 0x34 | T 84 0124 0x54 | t 116 0164 0x74!
(nak) 21 0025 0x15 | 5 53 0065 0x35 | U 85 0125 0x55 | u 117 0165 0x75!
(syn) 22 0026 0x16 | 6 54 0066 0x36 | V 86 0126 0x56 | v 118 0166 0x76!
(etb) 23 0027 0x17 | 7 55 0067 0x37 | W 87 0127 0x57 | w 119 0167 0x77!
(can) 24 0030 0x18 | 8 56 0070 0x38 | X 88 0130 0x58 | x 120 0170 0x78!
(em) 25 0031 0x19 | 9 57 0071 0x39 | Y 89 0131 0x59 | y 121 0171 0x79!
(sub) 26 0032 0x1a | : 58 0072 0x3a | Z 90 0132 0x5a | z 122 0172 0x7a!
(esc) 27 0033 0x1b | ; 59 0073 0x3b | [91 0133 0x5b | { 123 0173 0x7b!
(fs) 28 0034 0x1c | < 60 0074 0x3c | \ 92 0134 0x5c | | 124 0174 0x7c!
(gs) 29 0035 0x1d | = 61 0075 0x3d |] 93 0135 0x5d | } 125 0175 0x7d!
(rs) 30 0036 0x1e | > 62 0076 0x3e | ^ 94 0136 0x5e | ~ 126 0176 0x7e!
(us) 31 0037 0x1f | ? 63 0077 0x3f | _ 95 0137 0x5f | (del) 127 0177 0x7f!

To manipulate a body of text with lines of
different lengths, you have two choices

- a padded character array

- a cell array of strings.

When creating a character array, each row of the
array must be the same length.

The char function pads with spaces to create
equal rows

!
S = char('A','rolling','stone','gathers','momentum.’)!

produces a 5-by-9 character array:

S =!
A_______!
rolling__!
stone____!
gathers__!
momentum.!

You don’t have to worry about this with a cell
array

!
C = {'A';'rolling';'stone';'gathers';'momentum.’}!

You can convert a padded character array to a

cell array of strings with

!

C = cellstr(S)!

and reverse the process with

!
S = char(C)!

To create a character array from one of the text
fields in a structure (name, for example), call the
char function on the comma-separated list

produced by S.name:

>>names = char(S.name)!
names =!
Ed Plum!
Toni Miller!
Jerry Garcia!

Checking for special elements (NaN, Inf)

isnan(a) Returns 1 for every NaN in array a.

isinf(a) Returns 1 for every Inf in array a.

isfinite(a) Returns 1 for every finite number
(not a (Nan or Inf)) in array a.

isreal(a) Returns 1 for every non-complex
number array a.

Using special elements to your advantage.

Since NaNs propagate through calculations
(answer is NaN if there is a NaN somewhere in the
calculation), it is sometimes useful to throw NaNs

out of operations like taking the mean.

(A handy trick to ignore stuff you don’t want while you continue calculating.)

Example of NaNs propagating through calculation
(answer is NaN if there is a NaN somewhere in the

calculation)

>> a=1:4!
a =!
 1 2 3 4!
>> b=10:-1:7!
b =!
 10 9 8 7!
>> a(2)=NaN!
a =!
 1 NaN 3 4!
>> a+b!
ans =!
 11 NaN 11 11!
>> !

It is sometimes useful to be able to throw NaNs
out of operations like taking the mean.

(A handy trick to ignore stuff you don’t want while you continue calculating.)

So the function that identifies NaNs can be very

useful:!
>> a!
a =!
 1 NaN 3 4!
>> ix=find(~isnan(a))!
ix =!
 1 3 4!
>> m=mean(a(ix))!
m =!
 2.6667!
>>!

finds all values of a that are not NaNs and
averages them (denominator is number of elements averaged, not total

number of elements).

help!

Built into matlab

help “command”!

To get help on the command “command”

Problem when you don’t know the name of the
command

Just type “help”

>> help!
HELP topics:!
!
Documents/MATLAB - (No table of contents file)!
matlab/general - General purpose commands.!
matlab/ops - Operators and special characters.!
matlab/lang - Programming language constructs.!
matlab/elmat - Elementary matrices and matrix

! ! ! ! ! ! ! ! ! ! ! ! ! !manipulation.!
matlab/randfun - Random matrices and random streams.!
!

Lists topics of help available

Then to get contents of topics type

help “topic”

>> help elmat!
 Elementary matrices and matrix manipulation.!
 !
 Elementary matrices.!
 zeros - Zeros array.!
 ones - Ones array.!
 eye - Identity matrix.!
 repmat - Replicate and tile array.!
 linspace - Linearly spaced vector.!
 logspace - Logarithmically spaced vector.!
 freqspace - Frequency spacing for frequency response.!
 meshgrid - X and Y arrays for 3-D plots.!
 accumarray - Construct an array with accumulation.!
 : - Regularly spaced vector and index into matrix.!
 !
 Basic array information.!
 size - Size of array.!

Help on individual command

!
>> help zeros!
 ZEROS Zeros array.!
 ZEROS(N) is an N-by-N matrix of zeros.!
 ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.!
 ZEROS(M,N,P,...) or ZEROS([M N P ...]) is an M-by-N-by-P-
by-... array of!
 zeros.!
 ZEROS(SIZE(A)) is the same size as A and all zeros.!
 ZEROS with no arguments is the scalar 0.!
 ZEROS(M,N,...,CLASSNAME) or ZEROS([M,N,...],CLASSNAME) is an!
 M-by-N-by-... array of zeros of class CLASSNAME.!
 Note: The size inputs M, N, and P... should be nonnegative
integers. !
 Negative integers are treated as 0.!
 Example:!
 x = zeros(2,3,'int8');!
 See also eye, ones.!
 Reference page in Help browser!
 doc zeros !

Matlab file exchange!

!
http://www.mathworks.com/matlabcentral/fileexchange/

Or

Google on what you want/need.

Some unix commands (pwd, ls, ???) “work” in
matlab (they are actually matlab commands)

a=pwd;!
b=ls;!

Some Matlab commands have the same names as
UNIX commands, but are not the same

“cat” is a matlab command that concatenates
matrices (not files)

Matlab does not pass things it does not
understand to the OS to see if they are OS

commands.

