
Data Analysis in Geophysics
ESCI 7205

Class 13

Bob Smalley

GMT loose ends, representation of

numbers.

Azimuthal projections

Part I of shell script

Set stuff up

#!/bin/sh!
#call with “stn_az_map lon lat name”!
ROOT=/gaia/home/smalley  
WORLDCOAST=0/360/0/180  
RED=250/50/50  
BLUE=50/50/255  
GREEN=50/255/50!
MOREPS=-K!
ADDPS=-O!
CONTINUEPS=”-K –O”  
FILL=200  
SCALE=1.75  
XOFFSET=0.75  
YOFFSET=1.5  
GRIDCNTR=180/90/7/90  
OUTPUTFILE=$0_$3.ps  
rm $OUTPUTFILE!

Notice abundant (lack of) “comments” (use
variable names that are self documenting)

#set up map to be centered on lat lon given in command line!
#draw crude coastlines, ocean blue, land green!
#do not draw lat long grid (no frame specs on –B, could put w/next)  
pscoast -R$WORLDCOAST -Je$1/$2/$SCALE/180 -B:."Station $3 Map": -
S200/200/255 -G200/250/200 -W1 -Dc -P $MOREPS -X$XOFFSET -Y$YOFFSET >
$OUTPUTFILE  
!
#set up new map centered on north pole and draw only the lat long grid!
psbasemap -R$WORLDCOAST -Je$GRIDCNTR -B15g15 -O -K >> $OUTPUTFILE  
 
#RESET map to be centered on lat lon given in command line!
#to put on some earthquake data read from this file!
#data specified in lat long order, psxy assumes long lat (x,y) so!
#use the “-:” switch to let psxy know (another common gotcha)!
psxy -R$WORLDCOAST -Je$1/$2/$SCALE/180 -Sc0.1 -G250/250/50 -W1/0/0/0
$CONTINUEPS -: <<END >> $OUTPUTFILE  
-9.09 158.44  
35.35 78.13  
END  
!
#add plate boundaries, notice don’t have to respecify details of region
and projection but do need –R -Je!
psxy -R -Je -M$ -W1/$RED $CONTINUEPS $ROOT/ptect/ridges >> $OUTPUTFILE  
psxy -R -Je -M$ -W1/$GREEN $CONTINUEPS $ROOT/ptect/xforms >> $OUTPUTFILE  
psxy -R -Je -M$ -W1/$BLUE $ADDPS $ROOT/ptect/trenches >> $OUTPUTFILE!

Example map

Another version of an
azimuthal, equiangular map

centered on Memphis and it’s
anti-pode.

Now it’s a lot easier to
identify landmasses on the
other side of the globe by

their shapes.

Also shows that great circles
(the radial lines) converge at

the anti-pode.

Nazca-South America Euler pole

Data plotted in South America reference frame
using oblique Mercator projection

referenced to Euler pole

(points on South America plate have zero – or near zero – velocities.).

Plate motion follows lines of latitude

(horizontal lines).

Kendrick et al, 2003

Make a cross section

(2 parts, draw map,
draw cross section)

Data and non working version of shell script from

http://www-geology.ucdavis.edu/~gps/GMT/LONG_VALLEY/hypocenter.html

Set PARAMETERS FOR CROSS-SECTION PLOT  
center="-118.85/37.55"  
azimuth="160.0"  
#3. DEFINE A BOX  
width="-5/5"  
length="-15/15"  
\rm LV_seismicity.tmp  
nawk '{print $1,$2, $3}' LV_seismicity.dat | project -C${center}\ -A$
{azimuth} -Q -W${width} -L${length} -V > LV_seismicity.tmp  
!
PLOT CROSS-SECTION HYPOCENTERS ON MAP  
nawk '{print $6,$7}' LV_seismicity.tmp | psxy -J${projection} \!
-R${range} -P -M -Sc0.03 -G0/0/255 -O -V -K >> ${psfile}  
PLOT CROSS-SECTION BOX  
SET PARAMETERS TO PLOT  
brange="-15/15/-15/0"  
bprojection="x0.2/0.2"  
btick="a5f5g0/a5f5g0"  
psxy box_dim -R${brange} -J${bprojection} -B${btick} -W1 -P -O \!
-K -X-1.25 -Y-4 -V >> ${psfile}  
PLOT HYPOCENTERS ON CROSS-SECTION  
nawk '{print $4, $3*(-1.0)}' LV_seismicity.tmp | psxy -P -M \!
-J${bprojection} -R${brange} -Sc0.03 -G0/0/0 -O -V >> ${psfile}!

(Make and then)
Plot contours

psvelo does not plot
vertical vectors –
fake it. Plot vertical
as N, E=0.

What about the
contours? If exist as
digital line data plot
with psxy. If from
raster data with
values on a grid have
to convert first then
draw with psxy.

echo make pgr contours  
PGRFILE=pgr5e18  
SPACING=4m  
xyz2grd $SAMDATA/$PGRFILE -G$SAMDATA/$PGRFILE.grd -ISPACING /!

-: -R$REGION  
grdinfo $SAMDATA/$PGRFILE.grd  
grdcontour $SAMDATA/$PGRFILE.grd -C1 -Jx1.0 -D$PGRFILE.con -M /!

-R$REGION > /dev/null  
!

#have to hand edit the contour file to do 2 things -- as made the
first point in each contour  
#is stuck on the end of the new contour seperator line - have to
add <cr>, also does VERY bizzare  
#stuff with > for segment seperator, change to $ and works fine.  
#exit  
 
psxy -R$REGION -$PROJ/$SCALE -M -W$LINETHICK/$ICECOLOR /!

$CONTINUE $PGRFILE.con $VBSE >> $OUTPUTFILE!

First grid data for gmt.

Then contour.

gmt2kml reads one or more GMT table file and converts them to a single output file
using Google Earth’s KML format. Data may represent points, lines, or polygons, and
you may specify additional attributes such as title, altitude mode, colors, pen widths,
transparency, regions, and data descriptions. You may also extend the feature down
to ground level (assuming it is above it) and use custom icons for point symbols.

Contour SRTM DEM data w/ GMT and convert
into KML (using a program I wrote) but there is a new GMT
routine to do this, gmt2kml, for points and lines.

Representing numbers on the computer.

Computer memory/processors consist of items
that exist in one of two possible states (binary

states).

These states are usually labeled

0 and 1.

Each item in memory stores one “bit” of

information. (whether it is a 0 or a 1).

How can we combine these “bits” into something
useful?

We can let the two states represent the digits 0

and 1 of a positional, base 2 system.

(similar to our base 10 system, but with only 2
digits, 0 and 1, rather than 10 digits, 0, 1, 2, 3, 4, 5,

6, 7, 8, 9).

This leads to a simple way to represent integers -
- just use base 2.

Base 10

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
11!

Base 2

0!
1!
10!
11!
100!
101!
110!
111!
1000!
1001!
1010!
1101!

When you run out of
symbols, combine
using idea of 0 and
positional value

anbnan-1bn-1…a2b2a1b1a0b0, “b”= base, “a” element of set of symbols
for base {0, 1,…,b-1}

glitches

All the integers we can write down are finite (use
some finite number digits), but size otherwise

arbitrary

(8, 147, 987346036. etc).

Computer takes this one step further by stating

up front the number of digits (bits) in a number in
memory. All numbers will have this number of bits

(or multiples of it).

Introduce the “byte” – a group of 8 bits.

In general the computer does not work with
individual bits – it works with bytes (8 bits at a

time) or words (some number of bytes).

Bytes can be combined into “words”. Words were
originally defined as 2 bytes (16 bits), but as

computers got more powerful, words grew to 4
bytes (32 bits), and now 8 bytes (64 bits) with 16
bytes (128 bits on the horizon). (how things are combined will

come back to bite us later)

Half a byte, 4 bits, is a “nibble”.

On the SUN, a word is 4 bytes

(“32 bit machine”).

On the newest MacPro’s (and PC’s, since they

both use the same INTEL chips) a word is 8 bytes
(“64 bit machine”).

So let’s say we are on a machine with 3 bit
“words”.

(so we can write out the numbers)

We have seen that we can represent positive

integers in base 2.

With 3 bits we can count to 7.

(with n bits we can count to 2n-1)

000!
001!
010!
011!
100!
101!
110!
111!

0!
1!
2!
3!
4!
5!
6!
7!

What about negative integers?

Now we have a problem.

We don’t have a minus sign.

All we have are 0 and 1.

One "simple" solution is to use the most
significant (MSB) or highest order bit (the

leftmost one) as a “sign” bit.

000!
001!
010!
011!
100!
101!
110!
111!

0!
1!
2!
3!
-0!
-1!
-2!
-3!

Why the simple solution is not so simple.

This solution has some problems.

We have two values for zero (positive and
negative, and we only have 6 distinct numbers, not

7).

This representation will also make binary
arithmetic (add, subtract) on computers awkward

(i.e. if numbers are expressed in this fashion).

Actual solution:

Use MSB to indicate the sign of the number – but
in a slightly funky manner.

Use the idea of the

- Additive inverse - each positive number has an
additive inverse.

combined with the fact that the computer has

- Finite precision – uses a fixed number of bits to
represent a number.

How does this work? (using 4 digit numbers)

A=01012!

Want additive inverse of A, a number that when
added to A produces 0.

If we add 12 we get

A’=01012+00012=01102!

So we have made the least significant bit (LSB) a
zero.

If we add 112 we get

A’=01012+00112=10002!

Now the 3 LSBs are zero.

If we add 10112 we get

A’=01012+10112=100002!

Not a problem for us – we just write down the
answer's 5 bits ---- but – our numbers in the

computer are only 4 bits in size, the 1 is a carry
into a 5th bit – but we don’t have a 5th bit, so it

goes into the bit bucket (gets thrown out).

A’=01012+10112=100002!

So with a limit of 4 bits we cannot add the two 4
bit positive numbers 01012 and 10112 because

the answer needs 5 bits.

Keeping only the 4 bits we have.

A’=01012+10112=00002!

and we see that 10112 is the (4 bit) additive
inverse of 01012.

So we want 01012 to represent 510,

and 10112 to represent -510,

While maintaining positional notation.

01012 = 0*something+1*22+0*21+1*20=510!

and

10112 = 1*something+0*22+1*21+1*20=-510!

10112 = 1*something+310=-510!

So something = -810= -23!

So now we have,

abcd2 = a*(-23)+b*22+c*21+d*20!

abcd2 = a*(-810)+b*410+c*210+d*110!

which also maintains positional notation.

We can now count from -2n-1 to 2n-1-1!

(ex. for n=3, 23=8, so we can represent 8 values
{-4, -3, -2, -1, 0, 1, 2, 3})

This representation of numbers is called two’s
complement.

Numbers written this way are two’s complement

numbers.

Two’s complement numbers can be made using the
“theory” presented, or by noticing that you can
also form them by inverting all the bits and then

adding 1!

(510) = 01012 -> invert bits to obtain 10102!
then add 1!

10102 + 00012 = 10112 = (-510). (compare to before)

This method is trivial to do on a computer (which
can really only do logical operations [and, or,
exclusive-or, negate] on pairs of bits or

bits [negate].)

So – to add on a computer just add the two
binary numbers.

To subtract on a computer, just add the two’s

compliment of the number you are subtracting.

Sizes of numbers (integers)

8 bit (byte) :
-128 to +127!
(unsigned: 0 to +255)

16 bit (half word, word, short, int) :
-32,768 to

+32,767 (32K)

(unsigned: 0 to +65,535 or 64K)

32 bit (longword, word, int) :
−2,147,483,648

to +2,147,483,647!
(unsigned: 0 to +4,294,967,295)

64 bit (double word, long word, quadword,
int68) : −9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807!
(unsigned: 0 to

+18,446,744,073,709,551,615)

128 bit (octaword) :
−170,141,183,460,469,231,731,687,303,715,884,105,728 to
+170,141,183,460,469,231,731,687,303,715,884,105,727!

(unsigned: 0 to
+340,282,366,920,938,463,463,374,607,431,768,211,455)

{1038 – a pretty big number – but not big enough to count the atoms in the universe –

estimated to be 1080.}

So now we can add and subtract integers (also
known as fixed point numbers)

(and multiplying by repetitive addition, division by repetitive subtraction).

What about -

Non-integer numbers?

Numbers outside the range of integers?

Enter – floating point numbers.

Non-integer numbers on the computer are limited
to a subset of the rational numbers

(a/b where a and b are integers and a/b can be
represented exactly in the number of bits used by

the compter).

Akin to scientific notation

a.cde … * bn!

where b is the base.

Floating point numbers can represent a wider
range of numbers (bigger range of exponents)

than fixed point numbers.

As with scientific notation – floating point
numbers will have a number of digits in a decimal
number (with a decimal point, not base 10) plus

an exponent, which is used to multiply the decimal
number by the base raised to that power.

2.235 x 106!

But now our number and base will be binary.

To maximize the precision, we will normalize
floating point numbers such that there are no
leading zeros to the left of the decimal point.

This determines the exponent.

After normalization all floating point numbers will
have a 1 in their most significant bit (as a u always

follows a q).

Modern floating point format is IEEE 754
standard (there were at least as many as
computer manufacturers for a long time).

Normalized (move decimal point so is after first

non-zero digit) non-integer numbers are
represented as

π = 1.5707964 * 21 =!
1.100100100001111110110110011111101010110010
(1+1*2-1+0*2-2+0*2-3+1*2-4+…+1*2-7+1*2-11)*21!

1.+ bitn
n=1

p!1

" 2!n
#

$
%

&

'
(2m

In IEEE format the decimal point will always be
after (a choice, it could be before as in DEC's

version) the most significant non-zero digit (which
can only be a 1 in base 2).

Implicit or hidden bit.

To milk another digit out of our floating point

representation use the fact that for all numbers
but zero, the first binary digit will be a 1, so we can

throw it out.

(i.e. - not store it in the number. We have to remember to stick the implicit or hidden bit
back in for calculations. This is done automatically by the hardware in the CPU.)

π = 1.5707964 * 21 =!
!

1.1001001000011111101101100111111010101100!
!

 (1+1*2-1+0*2-2+0*2-3+1*2-4+…+1*2-7+1*2-11)*21!

The decimal number is called the mantissa.

The exponent is called the exponent.

Typical size for floating point number is 32 bits –
called single precision (double precision is 64

bits, quad precision 128 bits).

The IEEE floating point number consists of a

- 24 bit mantissa (including hidden bit),

- an 8 bit exponent (with a bias or excess to
handle positive and negative values),

- and a sign bit (total 33 bits including hidden bit).

Rounding is done by adding 1 to the 24th bit if the
25th bit is a 1.

(we have 23 bits in the floating point number for

the mantissa after taking the sign bit into
account,

but one bit [the MSB] is implicit, so the last bit is

really the 24th in the number)

To handle negative exponents we will just add 127
(in the IEEE standard, some other floating point formats use 128) to the value of

the exponent (in base 2). The exponent is an
unsigned integer.

The base for the exponent is 2

(it was 16 on the IBM, which gave a much wider range of values for the exponent, but also

much bigger round off errors because every change in the exponent shifted 4 rather
than 1 bits).

So our floating point number is

 1.!

SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM!

example

Π’s first 32 bits =11.001001000011111101101010100012!

Round to 24 bits, normalize

1.100100100001111110110112 x 21!

sign bit =0!

!
exponent =1 (11.0… = 1.10…x21) 2,

excess or bias 12710 exponent = 12710+110=12810=100000002!

So our floating point number is

example

Assemble

 1.!
Π = 0 10000000 10010010000111111011011!

!

Run together

01000000010010010000111111011011

(in hex 40490fdb)

Range of floating point numbers.

Single precision

(32 bit number, 24 in mantissa)

About 7 decimal digits.

How to approximate number of base 10 digits
from number of base 2 digits

210 = 1024 ~ 103!

base 2 exponent/base 10 exponent =
10/3=3.3!

(24/3.3=7.2)!

Type Sign Exponent Mantissa Total bits Exponent bias Bits precision!
!
Single !1 ! 8 (±38) 23 ! 32 ! ! 127 ! 242 (710)!
!
Double !1 ! 11 (±308) ! 52 ! 64 ! ! 1023 ! 532 (1610)!
!
Quad !1 ! 15 (±4,965) 112 ! 128 ! ! 16383 ! 1132 (3410)!

Ranges for various sizes of floating point numbers

To add floating point numbers – have to line up
the mantissas (shift based on exponent).

Potential problem when adding two numbers of
very different magnitude.

eg. 1.0 + 0.0000001 = 1.0!

in single precision

(does not give expected 1.0000001)

because we do not have enough bits to represent
correct value (only 7 decimal digits).

(solution here is to go

to double precision.)

1.00000000!
+0.00000001!
1.00000001

1.00000000000000!
+0.00000001000000!
1.00000001000000

Another potential problem

Loss of significance when subtracting two
numbers that are almost the same.

1.234567-1.234566=0.000001!

Start out with 7 digit numbers, end up with single

significant digit in new - seemingly 7 significant
digit - number (1.000000 x 10-6).

This problem is not solved by

Increasing precision on computer.

1.2345670000000!
-1.2345660000000!
0.0000010000000!

To multiply floating point numbers – add
exponents, multiply mantissas.

On computer – result has same number

significant digits (7 for single precision) as the
two factors.

Special values:

- Zero (no 1 bit anywhere to normalize on – all
zeros)

+/- infinity

-  NaN (result of operations such as divide by

zero, sqrt -1 [except in matlab])

- Others

Machine precision

Characterizes precision of machine
representation.

epsilon or Emach!

Value depends on number bits in mantissa and

how rounding is done.

With rounding to zero,

Emach = B^(1-P)!

With rounding to nearest,

Emach = (1/2)*B^(1-P)!

Where B^(M)=BM.

Emach!

Quantifies bounds on the relative error in
representing any non-zero real number x within
the normalized range of a floating point system:

| (f(x) − x) / x | ≤ Emach!

Math vs what the computer does.

Due to finite precision and rounding the
computer will (generally) not give what you might

expect mathematically.

Mathematically sin2θ+cos2θ=1.

But on the computer (finite precision, rational
values only, …) the test

sin2θ+cos2θ==1!

will return FALSE!

One solution to this problem is to test against a
small number – the machine precision, rather than

zero.

So test

abs(sin2θ+cos2θ-1) < epsilon!

if this is true consider, then we can consider
sin2θ+cos2θ=1.

(same with test a==b,

use abs(a-b) < epsilon).

One last detail

Combining bytes into words.

Many ways to do it, and all were used (of course).

Two of the most popular are both still around.

Can cause value of numbers to be interpreted
incorrectly.

Can cause major headaches

(some operating systems/programs can figure it out and fix it for you, others can’t and

you have to do it).

Endianness

In byte (unsigned integer)

27, 26, 25, 24, 23, 22, 21 ,20!

MSB on left, LSB on right.

What happens when I combine 2 bytes into a 16 bit
number?

If I was starting with 16 bit numbers I'd do

215, 214, 213, 212, 211, 210, 29 ,28, 27, 26, 25, 24, 23, 22, 21 ,20

Two possible ways to combine.

(and also several possible ways to visualize

memory).

MSByte LSByte

Address 0
 1!

LSByte MSByte

Address 0
 1!

A number made up of just one byte would have
that byte placed at address 0.

!
addr 0 1 2 3 4 5 6 7 8 9 A B C D E F!
0000 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00!
!

How do we expand this number to two bytes? We
have 2 options. We could allow it to grow towards

the right – the little endian form).

!
addr 0 1 2 3 4 5 6 7 8 9 A B C D E F!
0000 21 43 00 00 00 00 00 00 00 00 00 00 00 00 00 00!
!

This puts the numbers "backwards", but allows us
to extend the size of number to the limits of

memory without having to move the least
significant parts.

Alternately, we could slide the first byte to the
right, changing it’s address, and then extend the

number toward the left, the big endian form.

addr 0 1 2 3 4 5 6 7 8 9 A B C D E F!
0000 43 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00!

This keeps the digits in the “correct” order, but
forces a definite size into the number (one has to

move the bytes with lower significance as add
more bytes).

(the arrow indicates the base address when
referring to the number).

Nothing really forces us to number bytes left to
right. If we wanted, we could number right to left.
If we were to do so, the above exercise takes on a

whole new look:

addr F E D C B A 9 8 7 6 5 4 3 2 1 0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21!

grows to become either (Little Endian):

addr F E D C B A 9 8 7 6 5 4 3 2 1 0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 43 21!

or (Big Endian)

addr F E D C B A 9 8 7 6 5 4 3 2 1 0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 43!

addr F E D C B A 9 8 7 6 5 4 3 2 1 0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21!

grows to become either (Little Endian):

addr F E D C B A 9 8 7 6 5 4 3 2 1 0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 43 21!

or (Big Endian)

addr F E D C B A 9 8 7 6 5 4 3 2 1 0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 43!

Suddenly, little endian not only looks correct, but
also behaves correctly, grows left without

affecting existing bytes.

And, just as suddenly, big endian turns onto a

bizarre rogue whose byte ordering doesn’t follow
the "rules".

Big-endian

(Looking at memory as column going down.)

Big-endian - with 8-bit atomic element size and 1-
byte (octet) address increment:

increasing addresses →

...
0x0A
0x0B
0x0C
0x0D
...

The most significant byte (MSB) value, which is
0x0A in our example, is stored at the memory

location with the lowest address, the next byte
value in significance, 0x0B, is stored at the

following memory location and so on. This is akin
to Left-to-Right reading in hexadecimal order.

Little-endian

(Looking at memory as column going down.)

(As with left2right or right2left ordering of row form, reasonableness of behaviors would
“switch” if looked at memory as column going up.)

Little-endian - with 8-bit atomic element size and
1-byte (octet) address increment:

increasing addresses →

...
0x0D
0x0C
0x0B
0x0A
...

The least significant byte (LSB) value, 0x0D, is
at the lowest address. The other bytes follow in

increasing order of significance.

Which way makes “more sense” depends on how
you picture memory and which way they are

numbered.

As rows, or columns.

Whether the rows go from left2right or right2left,
or the columns go up or down.

Machines that use little-endian format include x86
(Intel), 6502, Z80, VAX, and, largely, PDP-11

Machines that use big-endian format include

Motorola (pre Intel Macs), IBM, SUN (SPARC)

(machines/companies that started out with 8 bits typically used little-endian when they
combined bytes. Machines/companies that started out with 16 bits typically used big-

endian to break words into bytes since bit and byte counting go same way.)

What you need to know.

For binary data (not ascii [basically letters] which
is stored in a single byte) you have to know how it

is stored. If it is stored the wrong way for your
machine, you have to do a “byte swap” to fix it.

There are programs to do this.

(plus some programs, like the latest version of SAC, can
figure it out – so you don’t have to worry about it.

Sometimes a problem with GMT and other geophysical
binary data sets – especially since universities were in the

SUN world).

When you byte swap, you also have to swap each
grouping of 2n (e.g. for 32 bit numbers you have

to swap words also).

Etc. for 64 bit, 128 bit, values.

When converting floating point (assuming base 2
exponent) have to worry about

- the exponent’s excess value (IEEE uses 127,

some other formats use 128 – a factor of 2)

- and position of assumed decimal point (before
or after most significant bit with value of 1

(another factor of 2).

Only have to worry about this stuff when moving
(usually old) binary stuff between machines/

architectures.

Matlab

Introduction

MATLAB = MATrix LABoratory

Interactive system.

Basic data element is an array that does not
require dimensioning.

“Efficient” computation of matrix and vector

formulations (in terms of writing code – it is interpreted so looses efficiency

there) relative to scalar non-interactive language
such as C or Fortran.

The 5 parts

-

1 - Desktop Tools and Development

2 - Mathematical Functions

3 - The Language

4 - Graphics

5 - External Interfaces

Desktop Tools & Development

Graphical user interfaces:

- MATLAB desktop and Command Window

- Command history window

- Editor and debugger

- A code analyzer and other reports

- Browsers for viewing help, the workspace, files,
and the search path.

Sample Matlab
Windows

Editor – offers
context sensitive
editing (color
coding – in red if
can’t understand),
automatic
indenting, etc.

Mathematical Functions

Large collection of computational algorithms
including but not limited to:

Elementary functions, like sum, sine, cosine

Complex arithmetic

Matrix math – inverse, eigenvalues/vectors, etc.

Fast Fourier transforms

Bessel functions

etc.

Interactive help and documentation.

Biggest resource

GOOGLE/WEB

There are trillions of matlab tutorials, program
exchanges, discussions, “toolboxes”, etc., on the

web.

The Language

High-level matrix/array language

Includes control flow statements, functions, data

structures, input/output, and object-oriented
programming features

It allows both “programming in the small” to
rapidly create quick and dirty throw-away

programs, and “programming in the large” to
create large and complex application programs.

Graphics:

Two-dimensional and three-dimensional data
visualization.

Image processing.

Animation.

Presentation graphics.

Graphics:

It also includes low-level functions that allow you
to fully customize the appearance of graphics as

well as to build complete GUIs for your own
applications.

External Interfaces

Library that allows you to write C and Fortran
programs that interact with MATLAB.

It includes facilities for calling routines from

MATLAB (dynamic linking), for calling MATLAB
as a computational engine, and for reading and

writing MAT-files.

Toolboxes

Add-on application-specific solutions

Comprehensive collections of MATLAB functions
(M-files) to solve particular classes of problems.

Examples include:

- Signal processing

- Image processing

- Partial differential equations

- Mapping

- Statistics

Starting MATLAB

Runs on SUNS, MACS, PC’s – same interface.

From CERI unix machines, just type

%matlab!

On a PC/Mac, double-click the Matlab icon.

Starting MATLAB

In an X11 window (assuming it is in your path), type

%matlab!

Useful trick from remote machines

%matlab –nojvm!

or

%matlab -nodesktop -nosplash!

turns off the graphical interface – which is SLOW
and buggy over net (actually does not work).

