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Azimuthal projections




Part I of shell script


Set stuff up

#!/bin/sh!
#call with “stn_az_map lon lat name”!
ROOT=/gaia/home/smalley  
WORLDCOAST=0/360/0/180  
RED=250/50/50  
BLUE=50/50/255  
GREEN=50/255/50!
MOREPS=-K!
ADDPS=-O!
CONTINUEPS=”-K –O”  
FILL=200  
SCALE=1.75  
XOFFSET=0.75  
YOFFSET=1.5  
GRIDCNTR=180/90/7/90  
OUTPUTFILE=$0_$3.ps  
rm $OUTPUTFILE!
 

Notice abundant (lack of) “comments” (use 
variable names that are self documenting)




#set up map to be centered on lat lon given in command line!
#draw crude coastlines, ocean blue, land green!
#do not draw lat long grid (no frame specs on –B, could put w/next)  
pscoast -R$WORLDCOAST -Je$1/$2/$SCALE/180 -B:."Station $3 Map": -
S200/200/255 -G200/250/200 -W1 -Dc -P $MOREPS -X$XOFFSET -Y$YOFFSET > 
$OUTPUTFILE  
!
#set up new map centered on north pole and draw only the lat long grid!
psbasemap -R$WORLDCOAST -Je$GRIDCNTR -B15g15 -O -K >> $OUTPUTFILE  
 
#RESET map to be centered on lat lon given in command line!
#to put on some earthquake data read from this file!
#data specified in lat long order, psxy assumes long lat (x,y) so!
#use the “-:” switch to let psxy know (another common gotcha)!
psxy -R$WORLDCOAST -Je$1/$2/$SCALE/180 -Sc0.1 -G250/250/50 -W1/0/0/0 
$CONTINUEPS -: <<END >> $OUTPUTFILE  
-9.09 158.44  
35.35 78.13  
END  
!
#add plate boundaries, notice don’t have to respecify details of region 
and projection but do need –R -Je!
psxy -R -Je -M$ -W1/$RED $CONTINUEPS $ROOT/ptect/ridges >> $OUTPUTFILE  
psxy -R -Je -M$ -W1/$GREEN $CONTINUEPS $ROOT/ptect/xforms >> $OUTPUTFILE  
psxy -R -Je -M$ -W1/$BLUE $ADDPS $ROOT/ptect/trenches >> $OUTPUTFILE!



Example map




Another version of an 
azimuthal, equiangular map 

centered on Memphis and it’s 
anti-pode.


Now it’s a lot easier to 
identify landmasses on the 
other side of the globe by 

their shapes.


Also shows that great circles 
(the radial lines) converge at 

the anti-pode.




Nazca-South America Euler pole


Data plotted in South America reference frame 
using oblique Mercator projection 

referenced to Euler pole

(points on South America plate have zero – or near zero – velocities.).


Plate motion follows lines of latitude

(horizontal lines).


Kendrick et al, 2003




Make a cross section





(2 parts, draw map, 
draw cross section)


Data and non working version of shell script from

http://www-geology.ucdavis.edu/~gps/GMT/LONG_VALLEY/hypocenter.html




# Set PARAMETERS FOR CROSS-SECTION PLOT  
center="-118.85/37.55"  
azimuth="160.0"  
#3.  DEFINE A BOX  
width="-5/5"  
length="-15/15"  
\rm LV_seismicity.tmp  
nawk '{print $1,$2, $3}' LV_seismicity.dat | project -C${center}\ -A$
{azimuth} -Q -W${width} -L${length} -V > LV_seismicity.tmp  
!
# PLOT CROSS-SECTION HYPOCENTERS ON MAP  
nawk '{print $6,$7}' LV_seismicity.tmp | psxy  -J${projection} \!
-R${range} -P -M -Sc0.03 -G0/0/255 -O -V -K >> ${psfile}  
# PLOT CROSS-SECTION BOX  
# SET PARAMETERS TO PLOT  
brange="-15/15/-15/0"  
bprojection="x0.2/0.2"  
btick="a5f5g0/a5f5g0"  
psxy box_dim -R${brange} -J${bprojection} -B${btick} -W1 -P -O \!
-K -X-1.25 -Y-4 -V >> ${psfile}  
# PLOT HYPOCENTERS ON CROSS-SECTION  
nawk '{print $4, $3*(-1.0)}' LV_seismicity.tmp | psxy -P -M \!
-J${bprojection} -R${brange} -Sc0.03 -G0/0/0 -O -V >> ${psfile}!



(Make and then) 
Plot contours


psvelo does not plot 
vertical vectors – 
fake it. Plot vertical 
as N, E=0.



What about the 
contours? If exist as 
digital line data plot 
with psxy. If from 
raster data with 
values on a grid have 
to convert first then 
draw with psxy.




echo make pgr contours  
PGRFILE=pgr5e18  
SPACING=4m  
xyz2grd $SAMDATA/$PGRFILE -G$SAMDATA/$PGRFILE.grd -ISPACING /!

-: -R$REGION  
grdinfo $SAMDATA/$PGRFILE.grd  
grdcontour $SAMDATA/$PGRFILE.grd -C1 -Jx1.0 -D$PGRFILE.con -M /!

-R$REGION > /dev/null  
!

#have to hand edit the contour file to do 2 things -- as made the 
first point in each contour  
#is stuck on the end of the new contour seperator line - have to 
add <cr>, also does VERY bizzare  
#stuff with > for segment seperator, change to $ and works fine.  
#exit  
 
psxy -R$REGION -$PROJ/$SCALE -M -W$LINETHICK/$ICECOLOR /!

$CONTINUE $PGRFILE.con $VBSE >> $OUTPUTFILE!

First grid data for gmt.



Then contour.






gmt2kml reads one or more GMT table file and converts them to a single output file 
using Google Earth’s KML format. Data may represent points, lines, or polygons, and 
you may specify additional attributes such as title, altitude mode, colors, pen widths, 
transparency, regions, and data descriptions. You may also extend the feature down 
to ground level (assuming it is above it) and use custom icons for point symbols. 


Contour SRTM DEM data w/ GMT and convert 
into KML (using a program I wrote) but there is a new GMT 
routine to do this, gmt2kml, for points and lines.




Representing numbers on the computer.




Computer memory/processors consist of items 
that exist in one of two possible states (binary 

states).




These states are usually labeled

0 and 1.




Each item in memory stores one “bit” of 

information. (whether it is a 0 or a 1).




How can we combine these “bits” into something 
useful?




We can let the two states represent the digits 0 

and 1 of a positional, base 2 system.




(similar to our base 10 system, but with only 2 
digits, 0 and 1, rather than 10 digits, 0, 1, 2, 3, 4, 5, 

6, 7, 8, 9).




This leads to a simple way to represent integers - 
- just use base 2.


Base 10

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
11!

Base 2

0!
1!
10!
11!
100!
101!
110!
111!
1000!
1001!
1010!
1101!

When you run out of 
symbols, combine 
using idea of 0 and 
positional value


anbnan-1bn-1…a2b2a1b1a0b0, “b”= base, “a” element of set of symbols 
for base {0, 1,…,b-1}




glitches




All the integers we can write down are finite (use 
some finite number digits), but size otherwise 

arbitrary

(8, 147, 987346036. etc).




Computer takes this one step further by stating 

up front the number of digits (bits) in a number in 
memory. All numbers will have this number of bits 

(or multiples of it).  




Introduce the “byte” – a group of 8 bits.




In general the computer does not work with 
individual bits – it works with bytes (8 bits at a 

time) or words (some number of bytes).




Bytes can be combined into “words”. Words were 
originally defined as 2 bytes (16 bits), but as 

computers got more powerful, words grew to 4 
bytes (32 bits), and now 8 bytes (64 bits) with 16 
bytes (128 bits on the horizon). (how things are combined will 

come back to bite us later)




Half a byte, 4 bits, is a “nibble”.




On the SUN, a word is 4 bytes

(“32 bit machine”).




On the newest MacPro’s (and PC’s, since they 

both use the same INTEL chips) a word is 8 bytes 
(“64 bit machine”).




So let’s say we are on a machine with 3 bit 
“words”.


(so we can write out the numbers)




We have seen that we can represent positive 

integers in base 2.




With 3 bits we can count to 7.

(with n bits we can count to 2n-1)


000!
001!
010!
011!
100!
101!
110!
111!

0!
1!
2!
3!
4!
5!
6!
7!



What about negative integers?




Now we have a problem.




We don’t have a minus sign.




All we have are 0 and 1.




One "simple" solution is to use the most 
significant (MSB) or highest order bit (the 

leftmost one) as a “sign” bit.


000!
001!
010!
011!
100!
101!
110!
111!

0!
1!
2!
3!
-0!
-1!
-2!
-3!



Why the simple solution is not so simple.




This solution has some problems.




We have two values for zero (positive and 
negative, and we only have 6 distinct numbers, not 

7).




This representation will also make binary 
arithmetic (add, subtract) on computers awkward 

(i.e. if numbers are expressed in this fashion).




Actual solution:




Use MSB to indicate the sign of the number – but 
in a slightly funky manner.




Use the idea of the





- Additive inverse - each positive number has an 
additive inverse.


combined with the fact that the computer has




- Finite precision – uses a fixed number of bits to 
represent a number.




How does this work? (using 4 digit numbers)




A=01012!



Want additive inverse of A, a number that when 
added to A produces 0.





If we add 12 we get




A’=01012+00012=01102!



So we have made the least significant bit (LSB) a 
zero.




If we add 112 we get




A’=01012+00112=10002!



Now the 3 LSBs are zero.




If we add 10112 we get




A’=01012+10112=100002!



Not a problem for us – we just write down the 
answer's 5 bits ---- but – our numbers in the 

computer are only 4 bits in size, the 1 is a carry 
into a 5th bit – but we don’t have a 5th bit, so it 

goes into the bit bucket (gets thrown out).




A’=01012+10112=100002!



So with a limit of 4 bits we cannot add the two 4 
bit positive numbers 01012 and 10112 because 

the answer needs 5 bits.




Keeping only the 4 bits we have.




A’=01012+10112=00002!



and we see that 10112 is the (4 bit) additive 
inverse of 01012. 




So we want 01012 to represent 510,

and 10112 to represent -510,


While maintaining positional notation.




01012 = 0*something+1*22+0*21+1*20=510!



and




10112 = 1*something+0*22+1*21+1*20=-510!



10112 = 1*something+310=-510!



So something = -810= -23!



So now we have,




abcd2 = a*(-23)+b*22+c*21+d*20!


abcd2 = a*(-810)+b*410+c*210+d*110!





which also maintains positional notation.




We can now count from -2n-1 to 2n-1-1!



(ex. for n=3, 23=8, so we can represent 8 values 
{-4, -3, -2, -1, 0, 1, 2, 3})




This representation of numbers is called two’s 
complement.




Numbers written this way are two’s complement 

numbers.




Two’s complement numbers can be made using the 
“theory” presented, or by noticing that you can 
also form them by inverting all the bits and then 

adding  1!




(510) = 01012 -> invert bits to obtain 10102!
then add 1!




10102 + 00012 = 10112 = (-510). (compare to before)





This method is trivial to do on a computer (which 
can really only do logical operations [and, or, 
exclusive-or, negate] on pairs of bits or 

bits [negate].)




So – to add on a computer just add the two 
binary numbers.




To subtract on a computer, just add the two’s 

compliment of the number you are subtracting.




Sizes of numbers (integers)




8 bit (byte) : 
-128 to +127!
(unsigned: 0 to +255)




16 bit (half word, word, short, int) : 
-32,768 to 

+32,767 (32K)

(unsigned: 0 to +65,535 or 64K)


 
32 bit (longword, word, int) : 
−2,147,483,648 

to +2,147,483,647!
(unsigned: 0 to +4,294,967,295)




64 bit (double word, long word, quadword, 
int68) : −9,223,372,036,854,775,808 to 

+9,223,372,036,854,775,807!
(unsigned: 0 to 

+18,446,744,073,709,551,615)




128 bit (octaword) : 
−170,141,183,460,469,231,731,687,303,715,884,105,728 to 
+170,141,183,460,469,231,731,687,303,715,884,105,727!

(unsigned: 0 to
+340,282,366,920,938,463,463,374,607,431,768,211,455)




{1038 – a pretty big number – but not big enough to count the atoms in the universe – 

estimated to be 1080.}




So now we can add and subtract integers (also 
known as fixed point numbers)


(and multiplying by repetitive addition, division by repetitive subtraction).




What about -




Non-integer numbers?




Numbers outside the range of integers?




Enter – floating point numbers.




Non-integer numbers on the computer are limited 
to a subset of the rational numbers


(a/b where a and b are integers and a/b can be 
represented exactly in the number of bits used by 

the compter).




Akin to scientific notation




a.cde … * bn!



where b is the base.




Floating point numbers can represent a wider 
range of numbers (bigger range of exponents) 

than fixed point numbers.




As with scientific notation – floating point 
numbers will have a number of digits in a decimal 
number (with a decimal point, not base 10) plus 

an exponent, which is used to multiply the decimal 
number by the base raised to that power.




2.235 x 106!



But now our number and base will be binary.




To maximize the precision, we will normalize 
floating point numbers such that there are no 
leading zeros to the left of the decimal point.




This determines the exponent.




After normalization all floating point numbers will 
have a 1 in their most significant bit (as a u always 

follows a q). 




Modern floating point format is IEEE 754 
standard (there were at least as many as 
computer manufacturers for a long time).




Normalized (move decimal point so is after first 

non-zero digit) non-integer numbers are 
represented as


π =  1.5707964  * 21 =!
1.100100100001111110110110011111101010110010 
(1+1*2-1+0*2-2+0*2-3+1*2-4+…+1*2-7+1*2-11)*21!

1.+ bitn
n=1

p!1

" 2!n
#

$
%

&

'
(  2m



In IEEE format the decimal point will always be 
after (a choice, it could be before as in DEC's 

version) the most significant non-zero digit (which 
can only be a 1 in base 2). 




Implicit or hidden bit.




To milk another digit out of our floating point 

representation use the fact that for all numbers 
but zero, the first binary digit will be a 1, so we can 

throw it out.




(i.e. - not store it in the number. We have to remember to stick the implicit or hidden bit 
back in for calculations. This is done automatically by the hardware in the CPU.)




π =  1.5707964  * 21 =!
!

1.1001001000011111101101100111111010101100!
!

 (1+1*2-1+0*2-2+0*2-3+1*2-4+…+1*2-7+1*2-11)*21!



The decimal number is called the mantissa.




The exponent is called the exponent.




Typical size for floating point number is 32 bits – 
called single precision (double precision is 64 

bits, quad precision 128 bits).




The IEEE floating point number consists of a




- 24 bit mantissa (including hidden bit),




- an 8 bit exponent (with a bias or excess to 
handle positive and negative values),




- and a sign bit (total 33 bits including hidden bit).




Rounding is done by adding 1 to the 24th bit if the 
25th bit is a 1.




(we have 23 bits in the floating point number for 

the mantissa after taking the sign bit into 
account,




but one bit [the MSB] is implicit, so the last bit is 

really the 24th in the number)




To handle negative exponents we will just add 127 
(in the IEEE standard, some other floating point formats use 128) to the value of 

the exponent (in base 2). The exponent is an 
unsigned integer.




The base for the exponent is 2




(it was 16 on the IBM, which gave a much wider range of values for the exponent, but also 

much bigger round off errors because every change in the exponent shifted 4 rather 
than 1 bits).




So our floating point number is

                      1.!

SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM!



example



Π’s first 32 bits =11.001001000011111101101010100012!



Round to 24 bits, normalize 




1.100100100001111110110112 x 21!



sign bit =0!

!
exponent =1    (11.0… = 1.10…x21) 2,




excess or bias 12710 exponent = 12710+110=12810=100000002!



So our floating point number is


example




Assemble






                                                    1.!
Π = 0 10000000    10010010000111111011011!

!

Run together




01000000010010010000111111011011




(in hex 40490fdb)




Range of floating point numbers.




Single precision

(32 bit number, 24 in mantissa)





About 7 decimal digits.




How to approximate number of base 10 digits 
from number of base 2 digits





210 = 1024 ~ 103!



base 2 exponent/base 10 exponent = 
10/3=3.3!



(24/3.3=7.2)!



Type   Sign    Exponent     Mantissa   Total bits   Exponent bias    Bits precision!
!
Single !1 !   8 (±38)       23 !         32 ! !   127 !          242   (710)!
!
Double !1 !  11 (±308) !    52 !         64 ! !  1023 !          532   (1610)!
!
Quad !1 !  15 (±4,965)   112 !        128 ! ! 16383 !         1132   (3410)!

Ranges for various sizes of floating point numbers




To add floating point numbers – have to line up 
the mantissas (shift based on exponent).





Potential problem when adding two numbers of 
very different magnitude.





eg.    1.0 + 0.0000001 = 1.0!



in single precision

(does not give expected 1.0000001)





because we do not have enough bits to represent 
correct value (only 7 decimal digits).


(solution here is to go 

to double precision.)


1.00000000!
+0.00000001!
1.00000001 

1.00000000000000!
+0.00000001000000!
1.00000001000000 



Another potential problem




Loss of significance when subtracting two 
numbers that are almost the same.




1.234567-1.234566=0.000001!



Start out with 7 digit numbers, end up with single 

significant digit in new - seemingly 7 significant 
digit - number (1.000000 x 10-6).




This problem is not solved by

Increasing precision on computer. 


1.2345670000000!
-1.2345660000000!
0.0000010000000!



To multiply floating point numbers – add 
exponents, multiply mantissas.




On computer – result has same number 

significant digits (7 for single precision) as the 
two factors.




Special values:




- Zero (no 1 bit anywhere to normalize on – all 
zeros)




+/- infinity




-  NaN (result of operations such as divide by 

zero, sqrt -1 [except in matlab])




- Others




Machine precision






Characterizes precision of machine 
representation.





epsilon or Emach!





Value depends on number bits in mantissa and 

how rounding is done.




With rounding to zero,

 

Emach = B^(1-P)!
 

With rounding to nearest,

 

Emach = (1/2)*B^(1-P)!





Where B^(M)=BM.




Emach!



Quantifies bounds on the relative error in 
representing any non-zero real number x within 
the normalized range of a floating point system:


 
| (f(x) − x) / x | ≤ Emach!



Math vs what the computer does.




Due to finite precision and rounding the 
computer will (generally) not give what you might 

expect mathematically.




Mathematically    sin2θ+cos2θ=1.




But on the computer (finite precision, rational 
values only, …) the test





sin2θ+cos2θ==1!



will return FALSE!




One solution to this problem is to test against a 
small number – the machine precision, rather than 

zero.




So test




abs(sin2θ+cos2θ-1) < epsilon!



if this is true consider, then we can consider 
sin2θ+cos2θ=1.




(same with test a==b,


use abs(a-b) < epsilon).




One last detail




Combining bytes into words.




Many ways to do it, and all were used (of course).




Two of the most popular are both still around.




Can cause value of numbers to be interpreted 
incorrectly.





Can cause major headaches




(some operating systems/programs can figure it out and fix it for you, others can’t and 

you have to do it).




Endianness




In byte (unsigned integer)




27, 26, 25, 24, 23, 22, 21 ,20!



MSB on left, LSB on right.




What happens when I combine 2 bytes into a 16 bit 
number? 




If I was starting with 16 bit numbers I'd do




215, 214, 213, 212, 211, 210, 29 ,28, 27, 26, 25, 24, 23, 22, 21 ,20




Two possible ways to combine.

(and also several possible ways to visualize 

memory).




MSByte    LSByte

Address              0            
 1!



LSByte    MSByte


Address              0            
 1!



A number made up of just one byte would have 
that byte placed at address 0.


!
addr  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F!
0000 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00!
!

How do we expand this number to two bytes? We 
have 2 options. We could allow it to grow towards 

the right – the little endian form).

!
addr  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F!
0000 21 43 00 00 00 00 00 00 00 00 00 00 00 00 00 00!
!

This puts the numbers "backwards", but allows us 
to extend the size of number to the limits of 

memory without having to move the least 
significant parts.




Alternately, we could slide the first byte to the 
right, changing it’s address, and then extend the 

number toward the left, the big endian form.

 
addr  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F!
0000 43 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00!
 

This keeps the digits in the “correct” order, but 
forces a definite size into the number (one has to 

move the bytes with lower significance as add 
more bytes).


(the arrow indicates the base address when 
referring to the number).




Nothing really forces us to number bytes left to 
right. If we wanted, we could number right to left. 
If we were to do so, the above exercise takes on a 

whole new look:

 
addr  F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21!
 

grows to become either (Little Endian):

 
addr  F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 43 21!
 

or (Big Endian)

 
addr  F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 43!
 



addr  F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21!
 

grows to become either (Little Endian):

 
addr  F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 43 21!
 

or (Big Endian)

 
addr  F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0!
0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 43!
 

Suddenly, little endian not only looks correct, but 
also behaves correctly, grows left without 

affecting existing bytes.

And, just as suddenly, big endian turns onto a 

bizarre rogue whose byte ordering doesn’t follow 
the "rules".




Big-endian




(Looking at memory as column going down.)




Big-endian - with 8-bit atomic element size and 1-
byte (octet) address increment:




increasing addresses  →


... 
0x0A 
0x0B 
0x0C 
0x0D 
...




The most significant byte (MSB) value, which is 
0x0A in our example, is stored at the memory 

location with the lowest address, the next byte 
value in significance, 0x0B, is stored at the 

following memory location and so on. This is akin 
to Left-to-Right reading in hexadecimal order.




Little-endian




(Looking at memory as column going down.)


(As with left2right or right2left ordering of row form, reasonableness of behaviors would 
“switch” if looked at memory as column going up.)




Little-endian - with 8-bit atomic element size and 
1-byte (octet) address increment:




increasing addresses  →


... 
0x0D 
0x0C 
0x0B 
0x0A 
...




The least significant byte (LSB) value, 0x0D, is 
at the lowest address. The other bytes follow in 

increasing order of significance.






Which way makes “more sense” depends on how 
you picture memory and which way they are 

numbered.




As rows, or columns.




Whether the rows go from left2right or right2left, 
or the columns go up or down.




Machines that use little-endian format include x86 
(Intel), 6502, Z80, VAX, and, largely, PDP-11




Machines that use big-endian format include 

Motorola (pre Intel Macs),  IBM, SUN (SPARC)




(machines/companies that started out with 8 bits typically used little-endian when they 
combined bytes. Machines/companies that started out with 16 bits typically used big-

endian to break words into bytes since bit and byte counting go same way.)




What you need to know.




For binary data (not ascii [basically letters] which 
is stored in a single byte) you have to know how it 

is stored. If it is stored the wrong way for your 
machine, you have to do a “byte swap” to fix it.





There are programs to do this.






(plus some programs, like the latest version of SAC, can 
figure it out – so you don’t have to worry about it. 

Sometimes a problem with GMT and other geophysical 
binary data sets – especially since universities were in the 

SUN world).




When you byte swap, you also have to swap each 
grouping of 2n (e.g. for 32 bit numbers you have 

to swap words also).


Etc. for 64 bit, 128 bit, values.




When converting floating point (assuming base 2 
exponent) have to worry about




- the exponent’s excess value (IEEE uses 127, 

some other formats use 128 – a factor of 2)




- and position of assumed decimal point (before 
or after most significant bit with value of 1 

(another factor of 2).




Only have to worry about this stuff when moving 
(usually old) binary stuff between machines/

architectures.




Matlab

Introduction




MATLAB = MATrix LABoratory




Interactive system. 




Basic data element is an array that does not 
require dimensioning. 




“Efficient” computation of matrix and vector 

formulations (in terms of writing code – it is interpreted so looses efficiency 

there) relative to scalar non-interactive language 
such as C or Fortran.




The 5 parts

-




1 - Desktop Tools and Development




2 - Mathematical Functions




3 - The Language




4 - Graphics




5 - External Interfaces




Desktop Tools & Development




Graphical user interfaces:




- MATLAB desktop and Command Window




- Command history window




- Editor and debugger




- A code analyzer and other reports




- Browsers for viewing help, the workspace, files, 
and the search path.




Sample Matlab 
Windows




Editor – offers 
context sensitive 
editing (color 
coding – in red if 
can’t understand), 
automatic 
indenting, etc.




Mathematical Functions




Large collection of computational algorithms 
including but not limited to:





Elementary functions, like sum, sine, cosine




Complex arithmetic 




Matrix math – inverse, eigenvalues/vectors, etc.




Fast Fourier transforms




Bessel functions




etc.




Interactive help and documentation.




Biggest resource




GOOGLE/WEB




There are trillions of matlab tutorials, program 
exchanges, discussions, “toolboxes”, etc., on the 

web.




The Language

High-level matrix/array language 




Includes control flow statements, functions, data 

structures, input/output, and object-oriented 
programming features 




It allows both “programming in the small” to 
rapidly create quick and dirty throw-away 

programs, and “programming in the large” to 
create large and complex application programs.




Graphics:




Two-dimensional and three-dimensional data 
visualization.




Image processing.




Animation.




Presentation graphics. 




Graphics:




It also includes low-level functions that allow you 
to fully customize the appearance of graphics as 

well as to build complete GUIs for your own 
applications.




External Interfaces




Library that allows you to write C and Fortran 
programs that interact with MATLAB. 




It includes facilities for calling routines from 

MATLAB (dynamic linking), for calling MATLAB 
as a computational engine, and for reading and 

writing MAT-files.




Toolboxes

Add-on application-specific solutions 







Comprehensive collections of MATLAB functions 
(M-files) to solve particular classes of problems. 





Examples include:




- Signal processing

- Image processing


- Partial differential equations

- Mapping

- Statistics






Starting MATLAB




Runs on SUNS, MACS, PC’s – same interface.




From CERI unix machines, just type




%matlab!



On a PC/Mac, double-click the Matlab icon.




Starting MATLAB




In an X11 window (assuming it is in your path), type




%matlab!



Useful trick from remote machines




%matlab –nojvm!

or

%matlab -nodesktop -nosplash!




turns off the graphical interface – which is SLOW 
and buggy over net (actually does not work).



