Data Ana|95i5 N Geophgsics
ESCl 7205

Class 10

Bob Sma”eg

Basics of UNIX commands

Coml:)uters may save time but theg sure waste a
lot of paper. About 98 Percent of evergthing
Printe& out bg a computer 1S garbage that no one
ever reads.

Ancﬂg Rooncg

Review

awk Working Methodologg
_ awk reads the input Hles one line at a time.

- For each |ine, it matches with gjven pattern in the given
order, if matches Pemcorms the corresponding action.

- no Pattcm matche@ no action will be Pemcormecl.

- In the above sgntax, either search Pattem or action are
optional, But not both.

~ 1f the search pattern s not gjven, then awk Pemcorms
the given actions for each line of the inPut.

httl:): i/ www.thegeckstug.com /2010,/01/awk-introd uction—tutorial-7-aw‘<—|:>rint—examPlcs/

Review

awk Working Methodologg Continued

- 1f the action is not gven, Print all that lines that matches
with the given Pattems which is the default action.

- Empty braces with out any action does nothing. It won't
Pemcorm default printing operation.

- Each statement in Actions should be delimited bg
semicolon.

httl:): i/ www.thegeckstug.com /2010,/01/awk-introd uction—tutorial-7-aw‘<—|:>rint—examPlcs/

Sag we have this file and we want to Put it into
numerical order in an awk array.

more data.txt

S
4
1
3
2
a
7
B
$

Try this.

(greg box — look at raw and sorted file blue box — fill array with sorted elements and
numerical index, 9e”ow box Print out array indices and values.)

S more awkexl.nawk
#!/bin/bash

——— Input data file (look atit)
| Sort first (not part of awk —
SOrt —n &atd.txt |y | have a tool to do this — reuse

awk 'BEGIN {c=0} { ,
Lf (80 >0) { as per UNIX Phllosoplﬁy),
print c, $O ’
myarray[c]=$0; c++; PIPC to aWk
)
)
END {

for (¢ in myarray) printf ":: %s %s ",c,myarray[c]; printf
ll\n,,;

|-

Try this.

(greg box — look at raw and sorted file; blue box — fill array with sorted elements and
numerical index, 3e”ow box Print out array indices and values.)

S more awkexl.nawk
#!/bin/bash

Cot : Initialize count

sort -n data.txt

Put data (from

sort -n data.txt ,
awk 'BEGIN {o=07 non emptt lines)
{IT TS0 >0 7 { ‘

print ¢, $0 In array

myarray[c]=$0; c++;

}

} / Print array
END {

for (g in myarray) printf ":: %s %s ",qg,myarray[qg]; printf
Il\n,,;

.

New structure

for (g in myarray) ..

In programs that use arrays, you often need a
|ool:> that executes once for each element of an
array.

awk has a sl:)ecial kind of for statement for
5canning an array:

for (var in array) body

This IOOP executes body once for each index in
array that your program has Previouscl{xj used,
with the variable var set to that index.

New structure

for (g in myarray) ..

The q here is a dummy variable. It is made up and
initialized on~thc~ﬂg.

Its value chaneges on each tril:) (loop) through the
é”owing block of code.

Its value may or maﬁ not retain the Iast value amcter
the lool:) finishes (on Mac it seems to) .

S awkexl.nawk

/ Origninal fle

______ /Agter sort

Print index and value,
then store in array: array

/ index Plus value (less
"""" empty line)

When Print out (random
order)

650 $ cat Iplogs.txt

180607 093423(123.12.23.122|133
180607 121234 (125.25.45.221|153
190607 084849 (202.178.23.4 44
190607 084859 (164.78.22.64 12
200607 012312(202.188.3.2 13
210607 084849(202.178.23.4 34
210607 121435(202.178.23.4 32
210607 132423(202.188.3.2 167
651 $ cat awk arraysl.awk

nawk

{Ip[$3]++;}

END €§§§§§§§§§§§§§§§§§§§
{for (var in Ip)

print var, "access", Ip[var],"
times"}

' Iplogs.txt

652 $ awk arraysl.awk

202.178.23.4 access 3
125.25.45.221 access 1
202.188.3.2 access 2

123.12.23.122 access 1
164.78.22.64 access 1

times

times
times

times
times

Want to count how many
times each unique [P
address accessed.

Data format: [date] [time] [ip-
address|]

[number-of-websites-
accessed]

Do with awk array.

Define array elements on
first reference, increment
on each reference (from
ZEro or emptg to 1, the St
on first re?erence, then
keeps counting) .

h’ctp: // www.thegeckstu#.com /2010/0%/ awk~arraqs~cxp|ainecl~with~5~practica|~e><amp|es/

650 $ cat Iplogs.txt

180607 093423 123.12.23.122 Data format: [date] [time] [ip-address] [number-of-

180607 121234 125.25.45.221 153 e

190607 084849 202.178.23.4 44

190607 084859 164.78.22.64 12))

200607 012312 202.188.3.2 13 $3) 1S an ;P

210607 084849 202.178.23.4 34 ,)

210607 121435 202.178.23.4 32 aclclress, TI"IIS 1S usecl as

210607 132423 202.188.3.2 167)

651 $ cat awk arraysl.awk an |nclex O*F an array

nawk '

{IP[$3]++;}< Ca”ecl Ip.

END

{for (var in Ip)

print var, "access", Ip[var],"))

times"} For each lmc, it

' Iplogs.txt)

652 $ awk_arraysl.awk increments the value of

202.178.23.4 access 3 times g .

125.25.45.221 access 1 times the COYT’CSPOHC‘IﬂgIP

202.188.3.2 access 2 times)

123.12.23.122 access 1 times]f](J(i)(’ _
78.22.64 access 1 times

650 $ cat Iplogs.txt

180607
180607
190607
190607
200607
210607
210607
210607

651 $§ cat awk

nawk '

093423
121234
084849
084859
012312
084849
121435
132423

{Ip[S3]++;}

123.12.23.122 133
125.25.45.221 153
202.178.23.4 44
164.78.22.64 12
202.188.3.2 13
202.178.23.4 34
202.178.23.4 32
202.188.3.2
arraysl.awk

END

{for (var in Ip)
print var,
times"}

"access", Ip[var],"

e

Iplogs.txt

652 $ awk arraysl.awk

202.178.23.4 access 3
125.25.45.221 access 1
202.188.3.2 access 2

123.12.23.122 access 1
164.78.22.64 access 1

times
times
times
times
times

Fina”y in the END
section, the indices
(not the Position in the
array as in Fortran, C,
C++, etc. arrays) are
the list of unique P
address and the
corrcsponding values
are the occurrence
counts.

http: // www.thegeckstug.com /2010/0%/ awk~arraqs~exp|ainec]~with~5~practica|~examp|es/

In awk arrays the index is both the element
identitier and can be data/information.

The value is also clata/ information associated
with the index.

The "regular" index concept does not applg) there
is no method to identify (index) or access the
values in a counting (address offset) manner and
a’tteml:)ts to do so Produce what looks like
random orclering.

awk index value
202.178.23.4 3
a2 b s i 2l:
202.188.3.2
123.12.23.122
164.78.22.64

= =N

The indices and values of each element of an
array clon't even have to]:)e omc the same tg e

(character or numeric — but numeric data is rea”g numeric in your mincl, it is a character
string to awk, although awk can trytouseitasa number if you refertoitina

mathematical context) OF Iength.

"Regular Index" awk index value
1 202.178.23.4 3
2 125.25.45.221 1
3 202.188.3.2 2
4 T RE NN g R WM 979 1
5 164.78.22.64 1

character index

Setting array indices

END({ ancl VBIUCS.
Ip["A"]="letterA"

B="B" , ,
LB="letterB" E’VCrﬂtlﬁl ngis a
Ip[B] ,
Ip[B]=LB character Striﬂg to
Ip["C"]=1.2 =
Tp[D]="letterD" awk, altlﬁougl’) it will

for (var in
Print var,\

"is index, \
element value", Ip[var]

take numbers without

the quotes. 1 j;ou trg

} F/
to use an un-derine
awk arraysl.awk Variable (D) as an
is index, element value letterD , , ,
A is 1in element value letterA lﬂClCX lt' SCtS tl’]é IHCJCX

202.178.23.4 is 1 element value 3
B is index, element valuée

to null (notice missing
C is index, element value 1.2 ,
s Character, 1s not

Putting out blank).

Setting array indices

END({ ancl VBIUCS.
Ip["A"]="letterA"

B="B"

LB="letterB" Now you have reset
Ip[B] L] , CJ
Ip[B]=LB the value associate
Ip["C"]=1.2 T

Ip[D]="1let w:th mclex nu” to
Ip[E] etterE"

e e something else.

Print var,\
"is index, \
element value", Ip[var]

}

$ awk arraysl.awk
is index, element value letterE
A is index, element value letterA
202.178.23.4 is index, element value 3
is index, element value letterB
~index, element value 1.2

1t you trg to assign

END{ something that is not a
Ip["A"]="1letterA" ,

p—"p" character string (no
LB="letterB" g ,
Ip[B] quotes) or an existing
Ip[B]=LB ,

Ip["C"]=1.2 variable to an

Ip[D]="letterD"
Ip[E]=1.2a

_ undefined index awk
Print var,\ seems to ignore it

"is index, \

element value", Ip[var] com Dletel?‘ ~ output IS
} ,
one line shorter than

‘awk_arrays1.awk what you think it

1s 1ndex, element value letterD /
A is index, element value letterA Sl"]oulcl S — 1S 'tWO ﬂU”
202.178.23.4 is index, element value 3
B is index, element value letterB elemeﬂts (We rea”g Clon't know

C is index, element value 1.2

S whatBhﬁmemoqp.

Data format: [date] [time] [ip-address]
[number-of-websites-accessed]

650 $ cat Iplogs.txt

180607
180607
190607
190607
200607
210607
210607
210607

{ IP[$3]++;
count[$3]+=$SNF; }<

I)on%reamjneedthesenmx)ons

093423
121234
084849
084859
012312
084849
121435
132423

123.12.23.122 133

125.25.45.221 153 Count hOW many times

SRS each unique P address
64.78.22.64 2

202.188. 3. accessed (From
202.178 4 34

202.175. 1 before), and calculate
2 188.3.2 167

how many sites each
accessed.

Two arrays, the index

used in both arrays is

same — which is tﬁe P

address (third field).

e | [0 910./0% /awk - arrans-explained -with~5-oractical -examoles /

650 $ cat Iplogs.txt

180607 093423
180607 121234
190607 084849
190607 084859
200607 012312
210607 084849
210607 121435
210607 132423

{ date[S1]++;
END
{

123.
.25.45.221 153
.178.23.4 44

125
202

164.
202.
202.
202.
202.

}

12.23.122 133

78.22.64 12
188.3.2 13
178.23.4 34
178.23.4 32
188.3.2

for (count in date)
{ if (max < date[count]
{ max = date[count];
maxdate = count;

}

Data format: [date] [time] [iP~aclclress] [number-of-websites-
accessed]

lclenthcg clag with
maximum number
accesses.

array named “date” has
date as its index and
occurrence count as
the value of the arrau.
This one line does a?
the "work" of
calculati ng accesses.

} print "Maximum access is on" maxdate;

}

I)on%reamjneed
all the semicolons

http: // www.thegeckstug.com /2010/0%/ awk~arraqs~exp|ainecl~with~5~practica|~c><amp|es/

650 $ cat Iplogs.txt

Data format: [date] [time] [iP~address] [number-of-websites-
accessed]

180607 093423 123.12.23.122 133
180607 121234 125.25.45.221 153)))
190607 084849 202.178.23.4 44 max Is5 a Varlable Wthl’l
190607 084859 164.78.22.64 12 h h l
200607 012312 202.188.3.2 as the count value
210607 084849 202.178.23.4 Cl . Cl 1(: Cl
210607 121435 202.178.23. 32 and Is used to 11N
210607 132423 202.188.3 167

{ date[S1]++;

END
{

for (count
{ if (max < date[count]

{ max = date[count];

maxdate

}

} print "Maximum access ",

}

Yn date)

count;

array element in date

with max count (evidently

starts out undefined, 0, or minimum).
maxd s variable with
date index for which
the count is maximum.

date[count], is on" maxdate;

o o awk -f ex3.awk Iplogs.txt
Maximum access 3 is on 210607
http: // www.thegeckstug.com /2010/0%/ awk~arraqs~exp|ainechith~5~practica|~cxamples/

650 $ cat Iplogs.txt
123.12.23.122 133
125.25.45.221 153

180607
180607
190607
190607
200607
210607
210607
210607

093423
121234
084849
084859
012312
084849
121435
132423

{ date[S1]++;

END
{

202.178.23.4
164.78.22.64
202.188.3.2
202.178.23.4
202.178.23.4
202.188.3.2

for (count in date)
{ if (max < date[count]

{ max =

maxdate

}

date[count];

= count;

44
12
13
34
32
167

Data format: [date] [time] [iP~adc|ress] [number-of-websites-
accessed]

Origina
did not

number O‘F adCCesses.

example outl:)ut
>ut out maximum

} print "Maximum access is on" maxdate;

}

x3.awk Iplogs.txt

650 $ cat Iplogs.txt

180607
180607
190607
190607
200607
210607
210607
210607

093423
121234
084849
084859
012312
084849
121435
132423

123.
125.
202.
164.
202.
202
202.
202.

12.23.122 133
25.45.221 153

178.23.4 44
78.22.64 12
188.3.2 13
.178.23.4 34
178.23.4 32
188.3.2 167

Data format: [date] [time] [iP~address] [number-of-websites-
accessed]

And whenever you Put
something on the web and
allow comments,
someboclg comes along
with an "improvement" (to

the code, not the English) .

| think solve example A more eftfective is

awk ‘max < S1 { max =

max }'

Iplogs.txt

Maximum access 1s on 210607

$1 } END { print "Maximum access is on"

http: // www.thegeckstu#.com /2010/0%/ awk~arraqs~cxp|ainechith~5~practica|~examples/

650 $ cat Iplogs.txt

180607
180607
190607
190607
200607
210607
210607
210607

awk

{ a[i++] =S50 }

END

093423 123.12.23.122 133
121234 125.25.45.221 153
084849 202.178.23.4 44
084859 164.78.22.64 12
012312 202.188.3.2 13
084849 202.178.23.4 34
121435 202.178.23.4 32
132423 202.188.3.2 167
J>=0;)

{ for (j=i-1;

print a[j--]

}' Iplogs.txt

651 $ awk -f ex3.awk Iplogs.txt

Maximum access 3 is on 210607

Data format: [date] [time] [iP~aclclress] [number-of-websites-
accessed]

Reverse the order of
lines in a file

Starts bg recorcling all
lines in the array ‘a’.
Index i also serves to
count number lines
Fead 1N ol st oot

h’ctp: // www.thegeckstu#.com /2010/0%/ awk~arraqs~cxp|ainecl~with~5~practica|~examp|cs/

650 $ cat Iplogs.txt

180607 093423 123.12.23.122 133

180607 121234 125.25.45.221 153

190607 084849 202.178.23.4 44

190607 084859 164.78.22.64 12 Data format: [date] [time] [ipadcg]ess] [number-of-websites-
200607 012312 202.188.3.2 13 .

210607 084849 202.178.23.4 34 ,

210607 121435 202.178.23.4 32 Remove ClUI:)llcatC ancl

210607 132423 202.188.3.2 167 “
nonconsecutive clates

?W];rr;x;ﬁn TR (First field $,1, for lines
' Iplogs.txt use whole line SO0, but

651 $ ex5.awk whole line, notgust

T date, has to be
T cluplicate) using awk.

http: // www.thegeckstu#.com /2010/0%/ awk~arraqs~cxp|ainechith~5~practica|~examples/

650 $ cat Iplogs.txt
12.23.122 133

25.45.221 153

180607
180607
190607
190607
200607
210607
210607
210607

awk

093423
121234
084849
084859
012312
084849
121435
132423

123.
125.
202.
164.
202.
202
202.
202.

178

.23.4

78.22.64

188

.178

178
188

"1($1 in array)

{ array[S$S1l]; print S$1
' Iplogs.txt

651 S exb5.awk

180607
190607
200607
210607

3.2
.23.4
.23.4
3.2

44
12
13
34

32
167

Data format: [date] [time] [ip-address] [number-
of-websites-accessed]

Reads every line from file
Iplogs.txt, uses “in”
oPerator to check it
current test Pattem
(CTP=$1) exists in the
array “‘a”.

If the CTP does not exist
in“a” (the), it stores
the CTP as that array
index (the date) and

Prints the current line.

http: // www.thegeckstug.com /2010/0%/ awk~arraqs~exp|ainechith~5~practica|~cxamples/

you can also set arrays using the split command

split(“string”,destination array,separator)

split also returns the number of indices

numelements=split("Jan,Feb,Mar,Apr,May" ,mymonths,","”)

Splits the string into array elements using the « i
to break the string into elements, and returns
numelements=5 ancJ mymonths[1l]="Jan”

A multi-dimensional awk array IS an array in which
an element is identified 1:39 a sequence of inclices,
instead of a single index.

For exam |e, a two-dimensional array requires
P yreq
two indices.

The usual way to FC]CCF to an element o1C a two-
dimensional array named grid s with grid[x,v].

httl:):/ v/ People.cs.uu.nl/ Piet/ docs/nawk/nawk_87.html

Multi-dimensional arrays are suPPor’tecl IN awk
tlﬁrouglﬁ concatenation of indices into one string.

What haPPens s that awk converts the indices
into strings and concatenates them together, with

a scl:)arator betwccn tlncm.

This creates a single string that describes the
values of the 5e|:)arate indices.

httl:):/ v/ People.cs.uu.nl/ Piet/ docs/nawk/nawk_87.html

The combined string is used as a sinrgle index into
an orclinarg, one-dimensiona array.

The 5eparator used is the value of the built-in
variable suBsEp.

Once the element's value is storecl, awk has no
record of whether it was stored with a single index
or a sequence of indices.

The two expressions foo[5,12] and foo[5
SUBSEP 12] alwags have the same value.

httl:):/ v/ People.cs.uu.nl/ Piet/ docs/nawk/nawk_87.html

The default value of suBsep is the string "\N034",
which contains a nonPrinting character that is
un‘ikelg to appear IN an awk program or in the

inl:)ut data.

httl:):/ v/ People.cs.uu.nl/ Piet/ docs/nawk/nawk_87.html

Need to choose an unlikelg character due to the
fact that index values containing a string matching
SUBSEP lead to combined strings that are
ambiguous.

Su pose SUBSEP were e
then foo["a@b", "c"]
and foo["a", "b@c"]
would be inclistinguishable because both would
actua”y be stored as
foo["a@b@c"].

httl:):/ v/ People.cs.uu.nl/ Piet/ docs/nawk/nawk_87.html

Because SUBSEP is "\034", such confusion can
arise onlg when an index contains the character
with ASCII code 034, which is a rare event.

The ?o”owing examplc treats its inl:)ut as a two-
dimensional array of fields; it rotates this array 90
degrees clockwise and Prints the result. It
assumes that all lines have the same number of

elements.
awk '{
if (max nf < NF)
max nf = NF
max nr = NR
for (x = 1; x <= NF; x++)

vector[x, NR] = $x
}
END {
for (x = 1; x <= max nf; x++) {
for (y = max nr; y >= 1; --vy)
printf("%s ", vector[x, y])
printf("\n")
y
}!

httl:):/ v/ People.cs.uu.nl/ Piet/ docs/nawk/nawk_87.html

When given the inPut:

1 2 3 456
2 34561

345612

4 561 2 3

it Procluces:

4 3 2 1

5 4 3 2
6 5 4 3

1 6 5 4

Summarg

awk emulates multidimensional arrays with sing|e~
dimensional arrays bg combining two or more
indices into a single string.

From the Point of view of awk, it looks like a single

index, but to it is coml:)osecl of two or more
discrete Parts.

httl:):/ v/ People.cs.uu.nl/ Piet/ docs/nawk/nawk_87.html

Back to our checkbook
Record information into "mybalance" as follows.

The first dimension of the array ranges from o to

12, and spechcies the entire year (0) or month
(number of month).

Our second dimension is a four-letter category,
like "food" or "inco"; this is the actual category
we're dealing with.

(remember that the dimensions are not fixed — we can add categories at will)

So, to find the entire year's balance for the food
category, 9ou'cl look in

mybalance[0, "food"].

To find June's income, 9ou'cl look in

mybalance[6, "1nco"].

Arrags are Passed by reference.
N,

We also refer to several g obal variables:
curmonth, (numeric value of month of current record),
52 (expense categorg),
s3 (Income ca’tegorg).

function doincome(mybalance) {
mybalance[curmonth,$3] += amount
mybalance[0,$3] += amount

}

function doexpense(mybalance) {
mybalance[curmonth,$2] -= amount
mybalance[0,$2] -= amount

}

function dotransfer(mybalance) {
mybalance[0,$2] -= amount
mybalance[curmonth,$2] -= amount

mybalance[0,$3] += amount
mybalance[curmonth,$3] += amount

Passing of information between ca”ing routine
and subroutine.

Two basic ways.

By reference

Tell subroutine where the information is in the
memory and the subroutine uses it. Changes
made bﬂ the subroutine are global.

E)g va

uc

Give the subroutine a co

DY of the information.

An9 Changes macle 139 the subroutine are local to
its copy of the data.

The main code block contains the code that
parses each line of inPut data.

Remember, because we have set Fs correctly, we
can refer to the first field as 1, the second teld
as $2, etc.

When the functions are called, they can access
the current values of curmonth, $2, $3 and amount
from inside the function.

#main program

{
curmonth=monthdigit (substr($1,4,3))
amount=S7

#record all the categories encountered
if ($2 1= "=-")

globcat[$2]="yes"
if ($3 1= "-")

globcat[$3]="yes"

#tally up the transaction properly

if ($2 == "-") {
if (($3 == "-") {
print "Error: inc and exp fields are both blank!"
exit 1
} else {

#this is income

doincome (balance)

if ($ —_—— IIYII)
doincome (balance?)

} else if ($3 == "-") {
#this is an expense
doexpense(balance)

if (S —_—— IIYII)
doexpense (balance?2)
} else {

#this is a transfer
dotransfer (balance)
if ($5 == "Y")
dotransfer(balance2)
}
}

#end of main program
END {
bal=0
bal2=0
for (x in globcat) {
bal=bal+balance[0,x]
bal2=bal2+balance2[0,x]
}
printf("Your available funds: %10.2f\n", bal)
printf ("Your account balance: %10.2f\n", bal2)

lnPut Hle.

23 Aug 2000 food - - Y Jimmy's Buffet
23 Aug 2000 - inco - Y Boss Man

OutPut to the screen:
Your available funds: 1174.22

Your account balance: 2399.33

30.25
2001.00

Shell arrays (now that we know what th69 are —
does the Shell have them?)

The shell also has arrays.

In the 5}‘16”) the index has to be a number (]:)ut the
numbers clon't havc to be consecutive ancl it does
not eat up memory for empty indices).

Shell arrays

#!/bin/sh
#call with array gamit.sh

YRS='2011 2008 2004
DAYS[2004]='037049 055059
DAYS[2008]='005031"
DAYS[2011]='072116"

for YR in S$YRS
do

for day in ${DAYS[S$S{YR}]}
do

STRTDOY="echo $day | nawk
STOPDOY="echo $day | nawk

done

done

[yr][v]

084112 114115 235238 243244 333349’

'{print substr($1,1,3)}'"
'{print substr($1,4,3)}'"

to test if an element exists, can use

for (1 in myarray) {
print “It’s there”
} else {

print “It’s missing”

}

(reneric Mappmg Tools Graphics

The Basics Plus Plottmg in X-Y SPace

.|Gcneric mapping tools (GM '

Goal — make scientific illustrations (“generic” of
GMT 1s generic to geo sciences)

Goal — make scientitic illustrations

Maps

- Color/bw/shaded topogral:)h9 and bat]ﬁgmetrg,
- Point data (earthquakes, seismic or gps
stations, etc.),

- Line data (Faults, eq ruPture zZones, roacls),

- Vector fields w/ error e”ipses,

- Focal mechanisms
- 5D surface
- Cross sections

- Profiles
- Other stutf

What is GMT

GMT 1s an open source collection of ~60 tools
(and and additional 35 suPPor‘c tools) for
manipula’cing geogral:)hic and Cartesian data sets

(including Filtering) trend Fitting) gricﬂcling,
Prcy’ecting, etc.)

What is GMT

Produces PostScril:)t File (PS).

Make illustrations ran ing from siml:)le X~y Plots to
contour maps to arty icia”y luminated surfaces

and 5-D Persl:)ecti\/e VIEWS

GMT suPJDor‘cs 30 map Pro’ections and
transformations and comes wit suPPort data
such as GSHHS coastlines, rivers, and Political

boundaries.

I it does not have a map Projection you want: it 1s
open source and UNIX.
(1.e. you can do it 9ourself)

Design Philosoplqg

Follows the ciesign Philosophg of UNIX — filters
(linear, single data stream):

data — Drocc—:ssing — final illustration.

Processing How is broken down to a series of
g
elementarg stcl:)s.

Fach stelo IS ac:complished by a se!:)arate GMT or
U le tOOI (machine shop Philosoplﬂg) .

Design P]ﬁilosoplqg

Beﬂeﬁts (UNIX on|9 has benefits) ;

(1) only a few Pro%rams are needed

(in the world where 60+%5is a “few”, magbe they are remcerring to the log of the number of

Programs.)

(2) each Program 1S sma” ancJ casy to uPclate and
maintain

(magbe — alternate is each task is subroutine that is small and casy to maintain)

Design Philosophg
Béﬂeﬁ’ts (UNIX on|9 has benefits):
3) each s’ceP IS ING el:)enclcnt of the Erevious stfczf

ancl the clata tg pe ancl can there ore be use
N a Varietg of aPPIications

4) the programs can be chained together in shell
scripts or with il:>f:sJ therebg creating a
process tailored to do a user~speciﬁc task

Design Philosophg

GMT was cﬂeliberatelg written for command line
usage, not a windows (or interactive)
environment, in order to maximize power and
Hexibi litg o el T

Written bg Paul Wessel and Walter Smith while
gracluate students at Lamont Dohertg/ Columbia
Universitg in the mid 80’s when the SUN

workstations came out (and UNIX took over the

world).

(Now at the Universitg of Hawaii and NOAA
respectivelg

The GMT homepage 1S: gmt.soest.hawaii.eclu

GMT documentation

Tutorial

Technical Reference and Cookbook
(aka Manual)
both available on web

|f1tt|:>: // gmt.soest.hawai i.edu/
in HTML, PDF and PostScriPt format.

As is standard with UNIX

GMT is well documented with (UNIX stgle) “man”
pages (also on web).

Entering GMT Program/ filter name all bﬂ itsehc, or
errors in the command sPcchCication (switches)
not clata) that cause GMT to fall over — clumps

the man Page to standarci error.

What does/can GMT do?
-Filtcring -D and 2-D data

(simple Processing GMT is NOT a general
Number Cruncher)

output IS rel:)rocessed data

||u m—

P|otting -D and 2-D data

~ Points, lines (sgmbols, Fi”, geologic symbols on
faults, etc))

~ vector felds

2-D images = gragscalc and color,
illumination

5-D Persl:)ective of 2-D images
histograms, rose cliagrams

text

focal mechanism beachballs

Data Prcl:)aration

griclding) resaml:)ling, conversion

Contouring

data base: extraction, merge

cross sections

Projection / map transformation (map sphere to

Plane)

outl:)ut IS re

Qrocessecl cJata

500‘(‘(@6!3“’15 andgd]DUI"ICI"I O]C other StU]C‘F

GMT Processi ng Output

I-D ASCII Tables — For examplej a (x, y) series
may be fltered and the filtered values output.

ASCII outPut is written to the standard outPut
stream.

GMT Processi ng Output

2-D binarg (netCDF or user~cleﬁncd) gricl files

Programs that grid ASCII (X, Y, z) data or operate
on existing gri files Procluce this tHPC of outPut.

GMT Outl:)ut

Reports — Several GMT programs read inPut fles
and rel:)ort statistics and other information.

Nearlg all programs have an oPtionaI “verbose”
operation, which rePorts on the progress of

computation.

Such text is written to the standard error stream

GMT Output

The bulk of GMT output goes to

PostScri Pt

The Plo’t‘:ing programs all use the PostScr/)ot page
description |anguage to describe the outl:)ut.

These commands are stored as ASCII text (theg
are a program in the POSTSCRIPT language).

outPut IS “PostScriPt” program — cnera”g ascl

text, but not too readable.
(GMT files can get amazinglg BIG)

Y

Map boundaries

o

S 1050 1050 1050 0 360 arc S

S 1050 1050 1074 0 360 arc S

S 24 W

S 1050 1050 1062 -135 -90 arc S
S 1050 1050 1062 135 180 arc S
S 1050 1050 1062 45 90 arc S

S 1050 1050 1062 -45 0 arc S

S 1050 1050 1062 -90 -90 arcn S
S 2 W

S[]0B

End of basemap

[1 OB

Trailer

$BoundingBox: 0 0 647 647

2 Reset translations and scale and call showpage
S -295 -295 T 4.16667 4.16667 scale 0 A

showpage

o TN o° o°
o©

o©°

GMT Output

If you are rea“g ambitious, you can clirectly edit
this file using vi...butin general, dor’t.

GMT Output

Postscript is translated bg Postscript capable
(usua”y laser) Printers.

(it is an extra feature one has to bug).

- _—

GMT OutPut

F’ostscriPt is also the native Ianguage of
- Adobe lllustrator/ Photoshop

~ ghostscript,

‘ ~ ghost\/iew. | I

GMT Output

| Frequentlg use lllustrator to edit GMT Proc]uces
Postscril:)t Prior to using the Figures In papers,
Presentations, or posters

||u —

APar’t fromt
GMT com

he built-in support for coastlines,

Dletelg cﬂecouples data retrieval/

management From t]ﬁe main GMT Programs.

(Puts the onus on user! UNIX Philosophy)

GMT uses architecture—-indel:)enclent Hle formats

(Hat files — least common denominator).

Effective use of GMT is really etfective
application of the UNIX Phl osophg.

Ins

(

:a”ation/l\/\aintenance - done for us

o1} Mitch/Deshone — THANKS.

Somewhat coml:)hcatecl, not for average user.)

Setul:) — basic setul:) done for us
(dor’t have to define GMTHOME, Eath) etc. if

use standard CER] |ogm and .cs

rc files)

lﬂsta”ation/l\/\aintenance.
Some common data sets

(GTOPO-30, ETOPO-5, Predicted bathy, etc.)

are installed

= .gmtdCFaUItSH (generic, is .gmtcl@caults% for version 4) ‘F]le iﬂ 9OUY'
home or Working directorg.

(iF gou’ve copiecl sometlﬂing from the tutorial or gotten a scril:)t from someone else and it
comes out “Funng”, the “default’ settings may be the culPrit).

