
Data Analysis in Geophysics
ESCI 7205

Class 1

Bob Smalley

Basics of the Computer Environment

Course Description

Introduction and Operating
Systems

�  Interface between Hardware and User.

What is an operating system

(OS or O/S)?

See: http://en.wikipedia.org/wiki/Operating_system

�  Interface between Hardware and User.

�  It is a program (software) designed to manage and
coordinate activities and resources of the computer.

What is an operating system

(OS or O/S)?

See: http://en.wikipedia.org/wiki/Operating_system

� Controls the hardware (physical part of the computer
- memory allocation, fan control, internal and external
drive input/output, keyboard and mouse interactions,
etc.) and other software.

� Controls how other applications (=programs) are
implemented.

What is an operating system

(OS or O/S)?

See: http://en.wikipedia.org/wiki/Operating_system

OS’s at CERI

§ Mac OS X (Darwin/UNIX)

UNIX plus Mac GUI

  10 Macs in Student Comptuer Lab in

Long Building

  many faculty offices.

OS’s at CERI

§ Various flavors of Linux

Popular, open source version of UNIX
(often described as “UNIX-like”, but is

UNIX).

Found on a number of machines at CERI,
but not officially supported at CERI.

OS’s at CERI

§ Solaris 9 UNIX

House 3 Sun Lab, many faculty offices

2 Graphical Desktop Environment options:

- Common Desktop Environment
(traditional)

-  - GNOME 2.0 (more PC‐like)

OS’s at CERI

§ Windows (XP, Vista or 7?)

Student Computer Lab in Long Building,
many student offices, UM computer labs

and other un-enlightened places.

Why learn Unix/Linux?

� Designed to be multi-user (from the dark
ages when all computers were shared),

interactive (as opposed to “batch”), and
multi-tasking (sharing again).

� Invented by and for computer scientists/
system programmers (not users or

scientific programmers, unfortunately).

Why learn Unix/Linux?

� Powerful, flexible, and small

� Hardware independent

 (these two points are much more
important to manufacturers and designers

than general users, i.e. us)

Why learn Unix/Linux?

� “Free” (this is why is it still around) from Bell
Labs and Berkley.

� Open source – “free” – applications, including
compilers.

� Most common free applications designed as
part of the GNU Project (GNU’s Not Unix)

�  It is what is running in most geoscience (both
university and corporate) labs.

The real reason why to learn Unix/Linux?

� Because you have no choice

(“Resistance is futile”, The Borg, Star Trek).

�  It is what is running in most geophysics
departments.

� Most geophysics tools (SAC, GMT, GAMIT/
GLOBK, etc.) only run on Unix (although there is a Windows

version of GMT).

(~89% of the worlds computers run some form of Windows, ~10% run some form of the

Mac OS, and ~1% run some flavor of Unix.)

Why learn Unix/Linux?

� “Free” in the sense you don’t buy it from AT&T
or Berkley

� But there is no such thing as a “Free Lunch”.
Not “Free” in the sense that you must hire a

system programmer/manager otherwise known
as a UNIX Wizard or Guru.

(another UNIX myth shot down)

A bit of history

§  Originally developed at AT&T in the late 60s/early 70s.

§  Freely given to universities in the 70s.

§  Berkeley scientists continued to develop the OS as BSD Unix
in parallel with AT&T (AT&T eventually licensed it for

commercial use).

§  Much development, branching, and combining has led to the
most common variants of Unix (“flavors” or “distributions” in

Unix speak).

§  See http://www.bell-labs.com/history/unix/

Common flavors

�  Solaris 9 Unix

�  Distributed by Sun Microsystems, runs on Sun Hardware, PC
hardware.

�  Derived from Unix System V release (AT&T) on a Unix kernel.

�  Mac OSX

�  Distributed by Apple, runs on Mac Hardware.

�  Derived from BSD Unix OS on a Mach kernel - Darwin.

�  Linux

�  Free* and commercial# versions available built on a Linux kernel.

�  Flavors most likely to hear about are RedHat#, Ubuntu*, Fedora*,

Debian*, Suse*,….

Does this matter?

�  No, the differences between the various flavors of the Unix

operating system should not severely affect your work in this
class or even much of your research at CERI.

BUT

Does this matter?

§  Yes, you need to be aware of OS differences

ú  When file sharing with others (this is more of a hardware, rather

than an OS, issue).

ú  When compiling source code (the executable file is married to
hardware).

ú  If sharing programs, shell scripts, etc. with others.

ú  Or if moving between the different systems at CERI.

Relation to Windows

None.

Windows XP

Built on MS-DOS (which is not really an
operating system, it is a file system), which has

nothing to do with Unix and everything to do with
Microsoft.

Cygwin – unix/linux like environment for windows.

Have to build everything from source.

Relation to Windows

The differences between the Unix Philosophy
and the Windows Philosophy … can be boiled

down into a question of smarts … .

Unix and Windows store the smarts in different
places.

Unix stores the smarts in the user.

Windows stores the smarts in the OS.

Learning curves

Enter the concept of the “Learning Curve”. …

A "steep" learning curve generally refers to
something that requires a lot of initial learning to

do anything, even something very simple.

A "shallow" learning curve is exactly the opposite;
can do simple stuff easily immediately.

Learning curves

Armed with those definitions, it's fairly simple to
then go ahead and say that Unix has an

inherently steep learning curve, and Windows
has a very shallow one.

Windows

Our Microsoft brethren have taken the approach
of making the shallowest possible learning curve.

Windows

To take a cue from the fast food industry,
Windows is the "under-3" toy of the OS world.

 The ultimate goal is to flat-out destroy any

barrier to entry by removing any requirement for
initial knowledge or learning of how and why, and
of making the system simplistic enough that it can

be used without any understanding of how it
works.

Unix

The Unix crowd has taken the opposite
approach.

Unix

Unix has a steep learning curve; it doesn't shield
the user from complexity; rather, it revels in the

complexity.

It recognizes that a general-purpose computer is
a fiendishly complicated device capable of doing

an unbelievable assortment of things.

Unix

It recognizes that the computer is a tool of the
user, and so takes a tool-building philosophy.

Make a lot of tools, and make each tool specific,

and let the user select the tool they think
appropriate, and let the user combine the tools

however they want.

It's not aimed at making things easy; it's aimed at
making things possible.

UNIX Philosophy

(Mac) (Unix)

“Dilbert” by, Scott Adams, Sep 30, 1994.

Hardware

Kernel

Compilers

Backing up a bit to illustrate some
concepts.

§  Hardware – the physical computer.

§  Kernel – program, usually hardware dependent, that
runs the core or key components of the operating
system (process, memory, file, device, and network

management).

§  Programs/Applications – hardware independent –
unix commands, compilers, applications

§  Shell – hardware independent - how the user
interacts with the Programs/Applications layer.

The Shell

�  The UNIX user interface is called the shell.

�  The shell does 4 jobs repeatedly:

display
prompt

execute
command

process
command

read
command the shell

Final Model

We will now take a short detour to examine the
Unix philosophy.

It will keep returning to haunt us, but if you
understand it, it will make the process less

painful.

What is the “Unix Philosophy”?

(can computer operating systems have a
“philosophy”?)

According to Doug McIlroy

(i) Make each program do one thing well.

So, to do a new job, build afresh rather than
complicate old programs by adding new features

(otherwise known as “bells and whistles”).

What is “Unix Philosophy”?

Machine shop vs. appliance

(gives you the tools and you to make appliance)

What is “Unix Philosophy”?

Advantage

-  POWERFUL

What is “Unix Philosophy”?

Disadvantages

-  Lots of reinventing the wheel

-  Requires a more educated user

-  Requires more work from the user rather than
the developer

What is “Unix Philosophy”?

Typical question: can UNIX do this?

Typical answer: NO, but YOU can write a
program!

Unix enthusiasts think this is the answer the
average user wants to hear!

Caricature of UNIX vs Windows

If you need a washing machine

Windows gives you a simple washing machine
(only one 1 setting, you shouldn’t wash your

cashmere sweater, but there are no operating
instructions[its intiutive] so you probably don’t

know that and ruined it.)

UNIX gives you a machine shop (you better know
1) how wash clothes and 2) how to design and

build a machine to do it.)

“UNIX Philosophy”

(ii) Expect the output of every program to

become the input to another, as yet unknown,
program.

- Don't clutter the output with extraneous

information useful to the user, but not needed by
the input for next program.

“UNIX Philosophy”

Unfortunately this may make things confusing for
the uninitiated user.

The output is for “next program” (in a “pipe”),

not the user.

“UNIX Philosophy”

Idea of “filter” –

Every program takes its input from Standard IN
(originally a teletype, now a keyboard),

does something to it (“filters” it) and

sends it to Standard OUT (originally a teletype,

now a screen)

(notice that the “user” is not part of this model).

“UNIX Philosophy”

Idea/use of – redirection (“<“, “<<“ and “>”,
“>>”)

- Take input from a file rather than Standard IN

-  Send output to a file rather than Standard
OUT

(Unix treats everything like a “file”, even
hardware)

