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GPS point positioning 

(using psuedorange from code). 

and earthquake location 

(using P or S travel times). 





17 



18 
From J. HOW, MIT, GPS-RJH5.pdf 



  

P1 = ( X − X1)2 + (Y − Y1)2 + (Z − Z1)2 + b

P2 = ( X − X2 )2 + (Y − Y2 )2 + (Z − Z2 )2 + b

P3 = ( X − X3)2 + (Y − Y3)2 + (Z − Z3)2 + b

P4 = ( X − X4 )2 + (Y − Y4 )2 + (Z − Z4 )2 + b



  

P1 = ( X − X1)2 + (Y − Y1)2 + (Z − Z1)2 + b

P2 = ( X − X2 )2 + (Y − Y2 )2 + (Z − Z2 )2 + b

P3 = ( X − X3)2 + (Y − Y3)2 + (Z − Z3)2 + b

P4 = ( X − X4 )2 + (Y − Y4 )2 + (Z − Z4 )2 + b



  

P1 = ( X − X1)2 + (Y − Y1)2 + (Z − Z1)2 + b

P2 = ( X − X2 )2 + (Y − Y2 )2 + (Z − Z2 )2 + b

P3 = ( X − X3)2 + (Y − Y3)2 + (Z − Z3)2 + b

P4 = ( X − X4 )2 + (Y − Y4 )2 + (Z − Z4 )2 + b



  

P1 = ( X − X1)2 + (Y − Y1)2 + (Z − Z1)2 + b

P2 = ( X − X2 )2 + (Y − Y2 )2 + (Z − Z2 )2 + b

P3 = ( X − X3)2 + (Y − Y3)2 + (Z − Z3)2 + b

P4 = ( X − X4 )2 + (Y − Y4 )2 + (Z − Z4 )2 + b



Blewitt, Basics of GPS in “Geodetic Applications of GPS” 

  

            T R = t R + τ R                         T S = t S + τ S

PRS = t R + τ R( ) − t S + τ S( )( )  c = t R − t S( )  c + τ R − τ S( )  c = ρRS t R ,t S( ) + τ R − τ S( )  c
Pseudo range – we measure time, not range. 

Calculate range from r=ct 



  
ρRS t R ,t S( ) = xS t S( ) − xR t R( )( )2

+ yS t S( ) − yR t R( )( )2
+ zS t S( ) − z R t R( )( )2

(xS,yS,zS) and tS known from satellite navigation 
message 

From Pathagoras 

(xR,yR,zR) and tR are 4 unknowns 

Assume c constant along path, ignore relativity. 



Complicating detail, satellite position has to be 
calculated at transmission time, not receive time. 

Satellite range can change by up to 60 m during the 
approximately 0.07 sec travel time from satellite to 

receiver. 

Using receive time can result in 10’s m error in range. 



Calculating satellite transmit time 

   

t S 0( ) = t R = T R − τ R( )
t S 1( ) = t R −

ρSR t R ,t S 0( )( )
c

tS 2( ) = t R −
ρSR t R ,t S 1( )( )

c


Start w/ receiver time, need receiver clock bias 

(once receiver is operating clock bias is kept less than 
few milliseconds)  



  

PR1 t R ,t1( ) = x1 t1( ) − xR t R( )( )2
+ y1 t1( ) − yR t R( )( )2

+ z1 t1( ) − z R t R( )( )2
+ τ R − τ 1( )  c

PR2 t R ,t2( ) = x2 t2( ) − xR t R( )( )2
+ y2 t2( ) − yR t R( )( )2

+ z2 t2( ) − z R t R( )( )2
+ τ R − τ 2( )  c

PR3 t R ,t3( ) = x3 t3( ) − xR t R( )( )2
+ y3 t3( ) − yR t R( )( )2

+ z3 t3( ) − z R t R( )( )2
+ τ R − τ 3( )  c

PR4 t R ,t4( ) = x4 t4( ) − xR t R( )( )2
+ y4 t4( ) − yR t R( )( )2

+ z4 t4( ) − z R t R( )( )2
+ τ R − τ 4( )  c

Note, have to keep track of which superscript is an 
exponent and which is a satellite or receiver 
identification (later we will also have multiple 

receivers). 
We have 4 unknowns (xR,yR,zR and tR) 

And 4 (nonlinear) equations 
(later we will allow more satellites) 
So we can solve for the unknowns 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



GPS geometry 

Raypaths (approximately) straight lines. 

Really function of travel time (t) but can change to 
psuedo-range. 

(xsat1 , ysat1 ,tsat1 ) 

(xrx , yrx  , zrx ,trx ) 

Drx,sat1 = F(t) 



Note that GPS location is almost exactly the same as 
the earthquake location problem. 

(in a homogeneous half space – raypaths are straight 
lines, again function of travel time but can also look 

at distance). 

(xs1 , ys1 ,ts1 ) 

(xeq , yeq , zeq ,teq ) 

deq,1 = F(t) 



Lets look at more general earthquake location 
problem of a layered half space. 

Raypaths are no longer restricted to straight lines 
(mix of refracted and head waves shown). 

Now look at travel time, not distance (tt related to distance). 

(xeq , yeq , zeq ,teq ) 

teq,1 

(xs1 , ys1 ,ts1 ) 



This view will help us see a number of problems with 
locating earthquakes (some of which will also apply to 

GPS). 

(xeq , yeq , zeq ,teq ) 

teq,1 

(xs1 , ys1 ,ts1 ) 



(xeq , yeq , zeq ,teq ) 
teq,1 

(xs1 , ys1 ,ts1 ) 

This development will also work for a radially 
symmetric earth. 

Here again we will look at travel times (t) rather than 
distance. 



   

χ = x, y, z,t( )

Let c be a vector in 4-space giving the location of the 
earthquake 

(3 cartesian coodinates plus time) 

Let X be a vector in 3-space – location of  the station 

   

Xk = xk , yk , zk( )

Discussion follows Lee and Stewart 



   
τ k ,observed xk , yk , zk( ) = τ k ,observed


Xk( )

What data/information is available to locate an 
earthquake? 

Arrival time of seismic waves at a number of known 
locations 



Plus we have a model for how seismic waves travel in 
the earth. 

This allows us to calculate the travel time to station k 

   
Tk ,calculated


Xk ,

χ( )

   

χ = x, y, z,t( )

from an earthquake at (location and time) 

(does not really depend on t, but carry it along) 

So we can do the forward problem. 



   
τ k ,calculated


Xk ,

χ( ) = Tk ,calculated


Xk , χ( ) + t

From the travel time plus the origin time, t 
(when the earthquake occurred) 

we can calculate the arrival time at the kth station 



We want to estimate the 4 parameters of c 

so we will need 4 data (which gives 4 equations) as a 
minimum 

Unless the travel time – distance relationship is linear 

 (which it is not in general) 

we cannot (easily) solve these 4 equations. 

So what do we do? 



One possibility is to do the forward calculation for a 
large number of trial solutions (usually on a grid) 

and select the trial solution with the smallest 
difference between the predicted and measured data 

This is known as a grid search (inversion!) and is 
expensive 

(but sometimes it is the only way) 
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Modifications of this method use ways to cut down on 
the number of trial solutions 

monte carlo 

steepest descent 

simulated annealing 

other 



Another approach 

solve iteratively by 

1) Linearizing the travel time equations 

2) Assuming a location 

3) Use least squares to compute an adjustment to the 
location (which depends on the linearization and its 

derivatives), which we will use to produce a new 
(better) location 

4) Go back to step 2 using location from step 3 

We do this till some convergence criteria is met 

(if we’re lucky) 



Assuming a location 

For earthquake location the initial location is typically  

- the latitude and longitude of the closest station, 
and 

- some predetermined/selected time offset before 
the first arrival for the origin time and 

- a predetermined/selected depth. 
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From J. HOW, MIT, GPS-RJH5.pdf 
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From J. HOW, MIT, GPS-RJH5.pdf 



This is basically Newton’s method. 

If xn is an approximation to f(xn)=0 and f’(xn)≠0, then 

 xn+1 ~ xn-f(xn)/f’(xn). 



Least squares “minimizes” the difference between 
observed and modeled/calculated data. 

Assume a location (time included) 

and consider the difference between the calculated 
and measured values 

   

χ* = x*, y*, z*,t*( )



Least squares minimizes the difference between 
observed and modeled/calculated data. 

   

τ observed = τ calculated + ν

τ observed = τ

X ,

χ( ) + ν

noise 

for one station we have 

Did not write calculated here because I can’t 
calculate this without knowing c. 



   

τ

X ,

χ( ) ≈ τ calculated


X ,

χ*( ) + x − x*( ) ∂τ∂x χ*

   + y − y*( ) ∂τ∂y χ*

+ z − z*( ) ∂τ∂z χ*

+ t − t*( ) ∂τ∂t χ*

τ

X ,

χ( ) ≈ τ calculated


X ,

χ*( ) + ∂τ

∂x
Δx + ∂τ

∂y
Δy + ∂τ

∂z
Δz + ∂τ

∂t
Δt

First – linearize the expression for the arrival time 
t(X,c) 

Now I can put calculated here because I can calculate 
this using the known c*, but I don’t know these. 



Now consider the difference between the observed 
and linearized t – the residual 

   

Δτ = τ observed − τ calculated

Δτ = τ

X ,

χ( ) + ν − τ calculated

Δτ = τ calculated


X ,

χ( ) + ∂τ

∂x
Δx + ∂τ

∂y
Δy + ∂τ

∂z
Δz + ∂τ

∂t
Δt

⎛
⎝⎜

⎞
⎠⎟
+ ν

                                                                 − τ calculated


X ,

χ( )

Δτ =
∂τ
∂x

Δx + ∂τ
∂y

Δy + ∂τ
∂z

Δz + ∂τ
∂t

Δt + ν



 
Δτ =

∂τ
∂x

Δx + ∂τ
∂y

Δy + ∂τ
∂z

Δz + ∂τ
∂t

Δt + ν

We have the following for one station 

  

Δτ = ∂τ
∂x

∂τ
∂y

∂τ
∂z

∂τ
∂t

⎛

⎝
⎜

⎞

⎠
⎟  

Δx
Δy
Δz
Δt

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ ν

Which we can recast in matrix form 



   

Δτ1

Δτ 2

Δτ 3



Δτm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

∂τ1

∂x
∂τ1

∂y
∂τ1

∂z
∂τ1

∂t
∂τ 2

∂x
∂τ 2

∂y
∂τ 2

∂z
∂τ 2

∂t
∂τ 3

∂x
∂τ 3

∂y
∂τ 3

∂z
∂τ 3

∂t
   

∂τm

∂x
∂τm

∂y
∂τm

∂z
∂τm

∂t

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Δx
Δy
Δz
Δt

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+

ν1

ν2

ν3



νm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

For m stations (where m≥4) 

 b = Ax + ν
Which is usually written as Jacobian 

matrix 



   

A =

∂τ1

∂x
∂τ1

∂y
∂τ1

∂z
1

∂τ 2

∂x
∂τ 2

∂y
∂τ 2

∂z
1

∂τ 3

∂x
∂τ 3

∂y
∂τ 3

∂z
1

   

∂τm

∂x
∂τm

∂y
∂τm

∂z
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

                             Evaluating the time term 

  Δ

τ = Aδ x + ν
 b = Ax + ν



 b = Ax + ν

Expresses linear relationship between residual 
observations and unknown corrections. 

Plus unknown noise terms. 

Linearized observation equations 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 

  Δ

τ = Aδ x + ν



  Δ

τ = Aδ x + ν

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 

  A
TΔ

τ = AT Aδ x

Previous linear least squares discussion gives 
us  

Next use least squares to minimize the sum of 
the squares of the residuals for all the 

stations. 

  
F χ*( ) = Δτ k χ*( )⎡

⎣
⎤
⎦

 2

k=1

m

∑



Design matrix – A 

Coefficients  
Partial derivatives of each observation 

With respect to each parameter 
Evaluated at provisional parameter values 

A has 4 columns (for the 4 parameters) 
and 

As many rows as satellites (need at least 4) 

Can calculate derivatives from the model for the 
observations 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



This is called Geiger’s method 

Published 1910 

Not used till 1960 

(when geophysicists first got hold of a computer) 



So far 

Have not specified type of arrival. 

Can do using P only, S only (?!), P and S together, or 
S-P. 

Need velocity model to calculate travel times and 
travel time derivatives 

(so earthquakes are located with respect to the 
assumed velocity model, not real earth. 

Errors are “formal”, i.e. with respect to model.)  

Velocity models usually laterally homogeneous. 



(xeq, yeq , zeq , teq ) 

tteq,1 

(xs1, ys1,t1) 

Problems: 
Column of 1’s – if one of the other columns is constant 
(or approximately constant) matrix is singular and 
can’t be inverted. 



(xeq, yeq , zeq , teq ) 

tteq,1 

(xs1, ys1,t1) 
   

A =

∂τ1

∂x
∂τ1

∂y
∂τ1

∂z
1

∂τ 2

∂x
∂τ 2

∂y
∂τ 2

∂z
1

∂τ 3

∂x
∂τ 3

∂y
∂τ 3

∂z
1

   

∂τm

∂x
∂τm

∂y
∂τm

∂z
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

How can this happen: 
- All first arrivals are head waves 
from same refractor (so all have 
same derivative). 
- Earthquake outside the network 



   

A =

∂τ1

∂x
∂τ1

∂y
∂τ1

∂z
1

∂τ 2

∂x
∂τ 2

∂y
∂τ 2

∂z
1

∂τ 3

∂x
∂τ 3

∂y
∂τ 3

∂z
1

   

∂τm

∂x
∂τm

∂y
∂τm

∂z
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

∂τ1

∂x
∂τ1

∂y
c 1

∂τ 2

∂x
∂τ 2

∂y
c 1

∂τ 3

∂x
∂τ 3

∂y
c 1

   

∂τm

∂x
∂τm

∂y
c 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  

∂τ k

∂z
= constant ∀ k

All first arrivals are head waves from same refractor 
(all have same slope). 

In this case we 
cannot find the 
depth and origin 

time independently. 



   

A =

∂τ1

∂x
∂τ1

∂y
∂τ1

∂z
1

∂τ 2

∂x
∂τ 2

∂y
∂τ 2

∂z
1

∂τ 3

∂x
∂τ 3

∂y
∂τ 3

∂z
1

   

∂τm

∂x
∂τm

∂y
∂τm

∂z
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

c1 c2

∂τ1

∂z
1

c1 c2

∂τ 2

∂z
1

c1 c2

∂τ 3

∂z
1

   

c1 c2

∂τm

∂z
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  

∂τ k

∂x
≈ constant ∀ k

∂τ k

∂y
≈ constant ∀ k

Earthquake outside the network 

In this case only the azimuth is constrained. 

If using  both P and S, can also get range, but S 
“noisier” than P so is marginal improvement. 

Probably also suffering from depth-origin time 
coupling 



Similar problems with depth. 

Gets worse with addition of noise (changes length of 
red lines – intersection point moves left/right or up/

down [green] much more than in perpendicular 
direction [yellow].) 
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Other problems: 

Earthquake locations tend to “stick-on” layers in 
velocity model. 

When earthquake crosses a layer boundary, or the 
depth change causes the first arrival to change from 

direct to head wave (or vice verse or between 
different head waves), there is a discontinuity in the 
travel time derivative (Newton’s method). May move 

trial location a large distance. 

Solution is to “damp” (limit) the size of the 
adjustments. 
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Other problems: 

Not related to earthquake location, but focal 
mechanism determination. 

Raypath for first arrival from solution may not be 
actual raypath, especially when first arrival is head 

wave. 
Results in wrong take-off angle. 



More inversion pitfalls 

Bill and Ted's misadventure. 

Bill and Ted are geo-chemists who wish to measure 
the number of grams of each of three different 

minerals A,B,C held in a single rock sample. 

Let   
a be the number of grams of A,   
b be the number of grams of B,   
c be the number of grams of C 

d be the number of grams in the sample.   

From Todd Will 



From Todd Will 

By performing complicated experiments Bill and Ted 
are able to measure four relationships between 
a,b,c,d which they record in the matrix below: 

  

93.477      10.202 −28.832

1.93          32.816    62.414

26.821      36.816    57.234

23.2134 −86.3925  44.693

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

34.7177
70.9241
82.9271
−26.222

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                             Ax = b
Now we have more equations than we need 

What to do? 



One (relatively unsophisticated) thing to do is throw 
out one of the equations 

(in reality only a Mathematician is naïve enough to 
think that three equations is sufficient to solve for 

three unknowns – but lets try it anyway). 

So throw out one - leaving 

  

93.477      10.202 −28.832

1.93          32.816    62.414

26.821      36.816    57.234

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

34.7177
70.9241
82.9271

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

                                 Ax = b
From Todd Will (different A and b from before) 



Remembering some of their linear algebra the know 
that the matrix is not invertible if the determinant is 

zero, so they check that 

93.477      10.202 −28.832

1.93          32.816    62.414

26.821      36.816    57.234

≈ −2

OK so far 

(or “fat, dumb and happy”) 

From Todd Will 



So now we can compute 

From Todd Will 

  

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

93.477      10.202 −28.832

1.93          32.816    62.414

26.821      36.816    57.234

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1

34.7177
70.9241
82.9271

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

0.5
0.8
0.7

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

                                 x = A−b

So now we’re done. 



From Todd Will 

Next they realize that the measurements are really 
only good to 0.1 

So they round to 0.1 and do it again  

  

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

93.477      10.202 −28.832

1.93          32.816    62.414

26.821      36.816    57.234

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1

34.7
70.9
82.9

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

−1.68294
8.92282
−3.50254

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

                                        x = A−b

Now they notice a small problem – 

They get a very different answer 

(and they don’t notice they have a bigger problem 
that they have negative weights/amounts!) 



From Todd Will 

So what’s the problem? 

First find the SVD of A. 

   

A =

93.477      10.202 −28.832

1.93          32.816    62.414

26.821      36.816    57.234

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

A =

h1  

h2  

h3( )  

100    0 0
0     100 0
0     0    0.0002

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a1
a2
a3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Since there are three non-zero values on the diagonal 
A is invertible 



From Todd Will 

   

A =

93.477      10.202 −28.832

1.93          32.816    62.414

26.821      36.816    57.234

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

A =

h1  

h2  

h3( )  

100    0 0
0     100 0
0     0    0.0002

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a1
a2
a3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

BUT, one of the singular values is much, much less 
than the others 

So the matrix is “almost” rank 2 

(which would be non-invertible) 



We can also calculate the SVD of A-1 

   

A−1 = a1  a2  a3( )  
0.01    0 0

0     0.01 0
0     0    5000

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟


h1

h2

h3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

From Todd Will 



From Todd Will 

So now we can see what happened 

(why the two answers were so different) 

Let y be the first version of b 
Let y’ be the second version of b (to 0.1) 

   

A−1y − A−1 ′y = A−1 y − ′y( )  =

a1  a2  a3( )  
0.01    0 0

0     0.01 0
0     0    5000

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 


h1

h2

h3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 y − ′y( )

So A-1 stretches vectors parallel to h3 and a3 by a 
factor of 5000. 



  

PR1 t R ,t1( ) = x1 t1( ) − xR t R( )( )2
+ y1 t1( ) − yR t R( )( )2

+ z1 t1( ) − z R t R( )( )2
+ τ R − τ 1( )  c

PR2 t R ,t2( ) = x2 t2( ) − xR t R( )( )2
+ y2 t2( ) − yR t R( )( )2

+ z2 t2( ) − z R t R( )( )2
+ τ R − τ 2( )  c

PR3 t R ,t3( ) = x3 t3( ) − xR t R( )( )2
+ y3 t3( ) − yR t R( )( )2

+ z3 t3( ) − z R t R( )( )2
+ τ R − τ 3( )  c

PR4 t R ,t4( ) = x4 t4( ) − xR t R( )( )2
+ y4 t4( ) − yR t R( )( )2

+ z4 t4( ) − z R t R( )( )2
+ τ R − τ 4( )  c

We have 4 unknowns (xR,yR,zR and tR) 

Returning to GPS 



We cannot solve this directly 

Will solve interatively by 

1) Assuming a location 

2) Linearizing the range equations 

3) Use least squares to compute new (better) location 

4) Go back to 1 using location from 3 

We do this till some convergence criteria is met (if 
we’re lucky) 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



Linearize 

for one satellite we have 

   

Pobserved = Pmodel +

ν

Pobserved = P x, y, z,τ( ) + ν

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



linearize 

  

P x, y, z,τ( ) ≈ P x0 , y0 , z0 ,τ 0( ) + x − x0( ) ∂P
∂x x0 , y0 ,z0 ,τ0( )

   + y − y0( ) ∂P
∂y x0 , y0 ,z0 ,τ0( )

+ z − z0( ) ∂P
∂z x0 , y0 ,z0 ,τ0( )

+ τ − τ 0( ) ∂P
∂τ x0 , y0 ,z0 ,τ0( )

P x, y, z,τ( ) ≈ Pcomputed +
∂P
∂x

Δx + ∂P
∂y

Δy + ∂P
∂z

Δz + ∂P
∂τ

Δτ

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



Residual 
Difference between observed and calculated 

(linearized) 

   

Pobserved = P x, y, z,τ( ) + ν

ΔP = Pobserved − Pcomputed

ΔP = P x, y, z,τ( ) + ν − Pcomputed

ΔP = Pcomputed +
∂P
∂x

Δx + ∂P
∂y

Δy + ∂P
∂z

Δz + ∂P
∂τ

Δτ +

ν − Pcomputed

ΔP =
∂P
∂x

Δx + ∂P
∂y

Δy + ∂P
∂z

Δz + ∂P
∂τ

Δτ +

ν

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



  
ΔP =

∂P
∂x

Δx + ∂P
∂y

Δy + ∂P
∂z

Δz + ∂P
∂τ

Δτ +

ν

So we have the following for one satellite 

   

ΔP = ∂P
∂x

∂P
∂y

∂P
∂z

∂P
∂τ

⎛

⎝
⎜

⎞

⎠
⎟  

Δx
Δy
Δz
Δτ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+

ν

Which we can recast in matrix form 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



   

ΔP1

ΔP1

ΔP1



ΔPm

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

∂P1

∂x
∂P1

∂y
∂P1

∂z
∂P1

∂τ
∂P2

∂x
∂P2

∂y
∂P2

∂z
∂P2

∂τ
∂P3

∂x
∂P3

∂y
∂P3

∂z
∂P3

∂τ
   

∂Pm

∂x
∂Pm

∂y
∂Pm

∂z
∂Pm

∂τ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Δx
Δy
Δz
Δτ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+

ν1

ν 2

ν 3



ν n

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

For m satellites (where m≥4) 

  

b = Ax +


ν

Which is usually written as 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



  

∂PRS

∂xR = xS t S( ) − xR t R( )( )2
+ yS t S( ) − yR t R( )( )2

+ zS t S( ) − z R t R( )( )2
+ τ R − τ 1( )  c

∂PRS

∂xR =
−1( )  1

2( )  2( )  xS t S( ) − xR t R( )( )
xS t S( ) − xR t R( )( )2

+ yS t S( ) − yR t R( )( )2
+ zS t S( ) − z R t R( )( )2

∂PRS

∂xR =
xR t R( ) − xS t S( )( )

ρR , similarly for y and z

∂PRS

∂τ R = c

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 

Calculate the derivatives 



   

A =

x0 − x1

ρ1

y0 − y1

ρ1

z0 − z1

ρ1 c

x0 − x2

ρ2

y0 − y2

ρ2

z0 − z2

ρ2

c

x0 − x3

ρ3

y0 − y3

ρ3

z0 − z3

ρ3

c

   

x0 − xm

ρm

y0 − ym

ρm

z0 − zm

ρm

c

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

So we get 

Is function of direction to satellite 

Note last column is a constant 
Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



Consider some candidate solution x’ 
Then we can write 

  

ν = b − A ′x

Where x’ is the old candidate solution 

We would like to find the x’ that minimizes the n hat 

Ax’ is the new candidate solution 

b are the observations 

n hat are the residuals 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



So the question now is how to find this x’ 

One way, and the way we will do it, 

Least Squares 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



Since we have already done this – we’ll go fast 

   v̂ =

b − A ˆ′x

   
J x( ) = 

ν i
2

i=1

m

∑ =

ν T ν =


b − Ax( )T 

b − Ax( )

Vary value of x to minimize 

Use solution to linearized form of observation 
equations to write estimated residuals 

Blewitt, Basics of GPS in “Geodetic Applications of GPS” 



86 
   

δ  J x̂( ) = 0

δ

b − Ax̂( )T 

b − Ax̂( )( ) = 0

δ

b − Ax̂( )T{ } b − Ax̂( ) + b − Ax̂( )T

δ

b − Ax̂( ){ } = 0

−Aδ  x̂( )T 
b − Ax̂( ) + b − Ax̂( )T

−Aδ  x̂( ) = 0

−Aδ  x̂( )T 
b − Ax̂( ) + b − Ax̂( )T

−Aδ  x̂( ) = 0

Aδ  x̂( )T 
b − Ax̂( ) = 0

δ  x̂T AT( ) b − Ax̂( ) = 0

δ  x̂T AT

b − AT Ax̂( ) = 0

AT

b = AT Ax̂

x̂ = AT A( ) −1
AT

b

Normal equations 

Solution to 
normal 

equations 



   
x̂ = AT A( ) −1

AT

b

Assumes 

Inverse exists 

(Generalized inverse always exists – solution may not 
make sense but exists.) 

(m greater than or equal to 4, necessary but not 
sufficient condition) 

Can have problems similar to earthquake locating (two 
satellites in “same” direction for example – has 

effect of reducing rank by one) 



   
x̂ = AT A( ) −1

AT

b

Assumes 

Solution is unique (i.e. earthquake or GPS is in one 
place. Can see for flat earth example – there are 

actually two solutions, one above and one below the 
plane. 

But – no guarantee mathematically, and may be a 
number of local minimums into which one can get 

“stuck” 



GPS tutorial Signals and Data 

http://www.unav-micro.com/about_gps.htm 



GPS tutorial Signals and Data 

http://www.unav-micro.com/about_gps.htm 


