GPS point positioniag

(using psuedorange from code).

and earthquake location

(using P or S travel times).
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GPS posttion, nanvigaion &
time determinzation rdies
on the measadrement of the
times of arrival of satellte
signals

Theuser's 3D geographic
coordinaes and precise
time are calculated from 4
or more satellites "in view!

How GPS Works

2

Each sadlite sends
tslocaion &the
precisetime of its
transmission

3
Theuser's GPS
equip ment receivesthe
signal from each sadlite
andrecordsitslocaion

azndthe arrivd time of its
signal

Theuser's GPS equipment
computes the user's
postion from the
differences of the signd
arrival times and the
locations of the s=tellites
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OGS 2D Example Continued
* Ranging to 1 station places f
us anywhere on a circle P

* Ranging to 2 stations
reduces uncertainty
to only 2 points

* Could use a 3rd station
to determine unique
position estimate



+

S Code Point Positioning

+ Write pseudorange as a function of
- Spacecraft position Xk .
- Receiver position (ECEF) X,....
- Clock errors of spacecraft and receiver

r' =[v’(xu —x")’ +(y, —y"’)2 +(z, —:—")2 +b —B"]+ v:

- Measure pseudorange from >= 4 satellites and
you can solve for x, y,. z,. b,

r: = f)’ ('X.U 2 .1'.‘14' 2 :!i ’ bla') + 1/:

From J. HOW, MIT, GPS-RJH5.pdf




Position Equations

Where:

B=J(X =Xy +( =1y +(Z-2) +b
B=J(X - X, + (T =Ly +(Z-2,) +b
P=(X X))+ (- X)) +(Z-2) +b
P= (X=X + (T =X,y +(Z=2,) +b

-P. = Measured PseudoRange to the it SV 1o

be found (pseudorange because not measureing
range - measureing time, which can'e
converted to range).




B=J(X =Xy +( =1y +(Z-2) +b
Position Equations P XX (YY) +(Z-2,) +b
P=(X X))+ (- X)) +(Z-2) +b
Where: = (X=X +(Y=Y,} +(Z=Z,) +b

-X. , Y., Z = Position of the i"h SV, Cartesian

Coordinates, known.

-X , Y ,Z = User position, Cartesian
Coordinates, to be found

- b = User clock bias (in distance units), to be
found.




- - P=J(X-X)Y+(Y-Y)V+(Z-Z) +b
Position EQUGTIOHS P = XX+ —Yy +(Z—Z) +b
P=yJ(X=X)+(Y-Y)+(Z-Z) +b

P4=(X—X4)2+(Y—Y4)2+(Z—Z4)2+b

The equations above are nonlineartin,the terms
we are looking for (x, vy, z).

They cannot be solved directly (by simply
inverting a matrix - at least mathematically) as
in the case of linear equations.

Will solve a linearized approximation to these
equations iteratively.




- - P=J(X-X)Y+(Y-Y)V+(Z-Z) +b
Position EQUGTIOHS P = XX+ —Yy +(Z—Z) +b
P=yJ(X=X)+(Y-Y)+(Z-Z) +b

P4=(X—X4)2+(Y—Y4)2+(Z—Z4)2+b

- Use an initial estimate (guess) of the user
position, (X,Y,Z), and b.

- Calculate an adjustment to the location.

- Use new, adjusted location as the guess.

- Continue till converges or something bad
happens (does not converge or blows up)!




station K
T =t" +1" T°=t+71°
p® :((tR +’L'R)—(IS +TS)) c:(tR —tS) c+(rR —TS) c= pRS(tR,tS)+(rR —’L’S) c

Pseudo range - we measure time, not range.

Calculate range from r=ct

Blewitt, Basics of GPS in “Geodetic Applications of GPS”




From Pathagoras

(x°,y°,z°) and 1> known from satellite navigation
message

(xR, yR,z°) and R are 4 unknowns

Assume ¢ constant along path, ignore relativity.




Complicating detail, satellite position has to be
calculated at transmission time, not receive time.

Satellite range can change by up to 60 m during the
approximately 0.07 sec travel time from satellite to

receiver.

Using receive time can result in 10's m error in range.




Calculating satellite transmit time

Start w/ receiver time, need receiver clock bias

(once receiver is operating clock bias is kept less\than
few milliseconds)




Note, have to keep track of which superscriphis an

exponent and which is a satellite or receiver
identification (later we will also have mulTiple
receivers).

We have 4 unknowns (x<,yR,z% and %)
And 4 (nonlinear) equations
(later we will allow more satellites)




GPS geometry
Raypaths (approximately) straight lines.

Really function of travel time () but can change to
psuedo-range.

A A(x

satl + y satl + 7|'5a7‘.7)

A

Drx,saf] = F ( 7«')




Note that GPS location is almost exactly the same as
the earthquake location problem.

(in a homogeneous half space - raypaths are straight
lines, again function of travel tfimesbut can also look
at distance).

/\ /\
A /\

(Xs ’ Y.S']/T.S'

deq,] ol F(T)

(Xeg: Yeq: Zeg. Teg) <




Lets look at-more general earthquake location
problem of a layered half space.
Raypaths are no longer restricted to straight lines
(mix of refracted and head.waves shown).
Now look at travel time, not distance. (+t related to distance).
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(Xeg . Yeq: Zeg.Teg)




This view will help us see a number of problems with

locating earthquakes (some of which will also apply to
GPS).

(Xs1 ’ ys1 fts1)

(Xeq: Yeq: Zeq: Teq)




This development will also work for a radially
symmetric earth.

(Xs] / y$] /T.S'])

(Xeqf yeqf Zeq ’teq) AN

ere again we will look at travel times (f) rather tha
distance.




Let c be a vector in 4-space giving the location of the
earthquake

(3 cartesian coodinates plus,time)

X = (x,y,z,t)

Let X be a vector in 3-space - location of the'station

—_

X, = (xk’yk’zk)

Discussion follows Lee and Stewart




What data/information is available to locate an
earthquake?

Arrival Time of seismic waves at a nhumberaef known
locations

7:k,obse:rved (xk ? yk ? Zk ) = Tk,observed (Xk )




Plus we have a model for how seismic waves travel in
the earth.

This allows us to calculate the travel time to station k

Tk,calculated (Xk ? % )

(does not really depend on t, but carry it'along)

from an earthquake at (location and time)

Y = (x,y,z,t)

So we can do the forward problem.




From the travel time plus the origin time,

(when the earthquake occurred)

we can calculate the arrival time at the kibk station

7:k,calculated (Xk ? % ) = Tk,calculated (Xk ? % ) t1




We want to estimate the 4 parameters of ¢
so we will need 4 data (which gives 4 equations) as a
minimum
Unless the travel time - distance relationshipiis. linear

(which it is not in general)

we cannot (easily) solve these 4 equations!

So what do we do?




One possibility is to do the forward calculation for a
large number of trial solutions (usually on a grid)

and select the trial solution with the'smallest
difference between the predicted and measured,data

This is known as a grid search (inversionl) and is
expensive
(but sometimes it is the only way)




Modifications of this method use ways to cut down on
the number of frial solutions

mohte carlo

steepest descent

simulated annealing

other




Another approach
solve iteratively by
1) Linearizing the travel time equations
2) Assuming a location

3) Use least squares to compute an adjustment,io the

location (which depends on the linearization and its
derivatives), which we will use to produce a new
(better) location

4) Go back to step 2 using location from step 3
We do this till some convergence criteria is met

(if we're lucky)




Assuming a location

For earthquake location the initiaNocation is typically

- the latitude and longitude of the closest station,
and

- some predetermined/selected time offset before
the first arrival for the origin tfime and

- a predetermined/selected depth.




-

-

M Linearization

Choose 1nitial state estimate:

= — [~ \ - T
Xo = (J‘uo'."'uo*'-uO'buo)

Assume that actual state 1s given by

X=X.,+0x

Linearize the pseudorange measurement

- 7©+7, ~ @)+ L f

which can be rewritten as

T-f(X,)=6r~ L OX +V,

'?I:I

(X—X,)+V,

and then solved for ox to find the actual state

From J. HOW, MIT, GPS-RJH5.pdf




SIS Pseudoranging

+ Solution procedure fairly simple with 4
measurements - can just invert matrix G

+ With more than 4 (normal case), must solve a
least squares problem - “pseudo-inverse”

T=G&x+V, = F=(G'G)'GM

* One complication is that linearization of G
depends on our current best estimate of x
- Which is (hopefully) improving = iteration might
be required.

From J. HOW, MIT, GPS-RJH5.pdf




This is basically Newton's method.

If x, is an approximation to f(x,)=0 and f'(x,)=0, then
X ~ X,-F(x,)/f'(x,).

/7 Tangent at x,

/ " Tangent at x;




Least squares "minimizes” the difference between
observed and modeled/calculated data.

Assume a location (time included)

and consider the difference between the calculated
and measured values




Least squares minimizes the difference between
observed and modeled/calculated data.

for one station we have

observed =~ calculated

—r()?,;?)+v

observed

Did not write calculated here because I can't
calculate this without knowing c.




First - linearize the expression for the arrival time

Now I can put calculated here because I can calculate
this using the known c¢*, but I don't know these.




Now consider the difference between the observed
and linearized t - the residual

AT = Tobserved o Tcalculated

calculated

0T 0T 0T 0T

AT=T()?,)Z)+V—T

AT = (Tcalculated(X’)?)—l_a_xAx—'_5Ay+gAZ+EAZL]—I_v

o 7:calcula‘[ed (X’ % )




We have the following for one station

Which we can recast in matrix form

0T 0T 0T 0T
AT=| — = = =
ox dy dz ot




For-m stations (where m24)

Jacobian

matrix

( Jdt, dt, 0T, OT, }
o o
Jdt, dt, 0T, OT, /
ox dy dz ot
Jdt, dt, 01, 0T,
ox dy dz Ot
. . . . \
Jdtr  dTt  JdT 0T
ox dy dz Ot )

Which is usually written as




Evaluating the time term




Expresses linear relationship between residual
observations and unknown corrections.

Plus unknown noise terms.

Linearized observation equations

Blewitt, Basics of GPS in “"Geodetic Applications of GPS"




Next use least squares to minimize the sum of
the squares of the residuals for all the
stations.

Previous linear least squares discussion gives
us

A'AT = A" A6x

Blewitt, Basics of GPS in “"Geodetic Applications of GPS"




Desigh matrix - A

Coefficients
Partial derivatives of each ebservation
With respect to each parameter
Evaluated at provisional parameter values

A has 4 columns (for the 4 parametenrs)
and
As many rows as satellites (need at least 4)

Can calculate derivatives from the model for the
observations

Blewitt, Basics of GPS in “Geodetic Applications of GPS"




This is called Geiger's method

Published 1910

Not used till 1960

(when geophysicists first got hold of a computer)




So far
Have not specified type of arrival.

Can do using P only, S only (?!), P and,S together, or
S-P.

Need velocity model to calculate travel fimes and
travel time derivatives
(so earthquakes are located with respect to the
assumed velocity model, not real earth.
Errors are “"formal”, i.e. with respect to model.)

Velocity models usually laterally homogeneous!




Problems:

Column of 1's - if one of the other columns is constant
(or approximately constant) matrix is singular and
can't be inverted.

/ \ /\ >
SN L
eq-t //

< -
<‘X

(Xeq: Yeq + Zeq + Teq)




How can this happen:
-All first arrivals are head waves
from same refractor (so all-have

same derivative).
- Earthquake outside the network

A !I,//

g ) FF,
7

e

N

<<
<‘X

(Xeq: Yeq + Zeq + Teq)




All first arrivals are head waves from same refractor
(all have same slo

0T

—* = constant V &

0z

In this case we
cannot find the

depth and origin
time independently




Earthquake outside the network

0T
—* ~constant V k&
ox

ark
—~% = constant V &

dy

In this case only the azimuth is constrained.

If using both P and S, can also get range, but' S
“noisier” than P so is marginal improvement,

£ =X

Probably also suffering from depth-origin time
coupling




Similar problems with depth.

Gets worse with addition of noise (changes length of
red lines - intersection point moves left/right or up/
down [green] much more than in perpendicular
direction [yellow].)




Other problems:

Earthquake locations tend to "stick-on" layers in
velocity model:

When earthquake crosses a layer boundary, or the
depth change causes the first arrival Yo change from
direct to head wave (or vice verse or between
different head waves), there is a discontinuity in the
travel time derivative (Newton's method). May move
trial location a large distance.

Solution is to "damp” (limit) the size of the
adjustments.




Other problems:

Not related to earthquake location, but focal
mechanism determination.

Raypath for first arrival from solutionimay not be
actual raypath, especially when first arrival isphead

wave.
Results in wrong take-off angle.




More-inversion pitfalls

Bill and Ted's misadventure.

Bill and Ted are geo-chemists who wish to measure
the number of grams of each of three different
minerals A,B,C held in a single rock sample:

Let
a be the number of grams of A,
b be the number of grams of B,
¢ be the number of grams of €
d be the number of grams in the sample.

From Todd Will




By performing complicated experiments Bill and Ted
are able to measure four relationships between
a,b,c,d which they record.in the matrix below:

\
4 10.202 -28.832
93.477 0.20 3.83 ( 347177

1.93 32816  62.414 20.9241

26.821  36.816  57.234 82.9271
26222

232134 —86.3925 44.693 \ 26

Ax=0b
Now we have more equations than we need
What to do?

From Todd Will



One (relatively unsophisticated) thing to do is throw
out one of the equations
(in reality only a Mathematician is ndive enough to
think that three equations is sufficient to solve for
three unknowns - but lets tryst anyway).

So throw out one - leaving

( \ / \

93.477  10.202 —-28.832 147177
1.93 32.816 62414 70.9241
| 26821 36816  57.234 \ 829271

Ax=0>b
_ . (different A and b from before)




Remembering some of their linear algebra the know
that the matrix is not invertible if the determinant is
zero, so they check that

93477 10.202 -28.832
1.93 32816 62414
26.821 36.816  57.234

OK so far

(or “fat, dumb and happy")

From Todd Will




From Todd Will

’

\

So how we can compute

93.477
1.93
26.821

10202 —28.832

32816  62.414

.

306.816  57.234 )

x=Ab

34.7177
70.9241

\

| 829271

So how we're done.




Next they realize that the measurements are really
only good 10 0.1

So they round to 0.1.and do it again

( \
93477 10202 -28.832 [ 1egroq )
1.93 32816 62414 8.92282

| 26821 36816 57234 \ 7350254

x=ADb
Now they notice a small problem -

They get a very different answer

(and they don't notice they have a bigger problem
-nwewi That they have negative weights/amountsl!)




So what's the problem?

First find the SVD of A.
( 03.477 10.202 —-28.832 )
1.93 32.816 62.414

| 26.821 36.816  57.234

Since there are three non-zero values on the diagonal
A is invertible

From Todd Will



BUT, one of the singular values is much, much less
than the others

( 93.477 10.202 —28.832 )

1.93 32.816  62.414

| 26.821 36.816  57.234

So the matrix is "almost” rank 2

(which would be non-invertible)

From Todd Will



We can also calculate the SVD of A~

From Todd Will




So now we can see what happened
(why the two answers were so different)
Let y be the first version of b
Let y'be the second version ofwb (1o 0.1)

So A stretches vectors parallel to h; and a; by a
factor of 5000.

From Todd Will



Returning to GPS

We have 4 unknowns (x<,yR,z% and %)




We cannot solve this directly

Will solve interatively by
1) Assuming a location
2) Linearizing the range equations
3) Use least squares to compute new (better) location

4) Go back to 1 using location from 3

We do this till some convergence criteria is met (if
we're lucky)

Blewitt, Basics of GPS in “Geodetic Applications of GPS"




Linearize

for one satellite we have

observed

—

= P(x,y,z,’c) + Vv

observed

Blewitt, Basics of GPS in “"Geodetic Applications of GPS"




linearize




Residual
Difference between observed and calculated
(linearized)

—_

= P(x,y,z,’c) + Vv

observed

AP =P - P

observed computed

AP = P(x,y,z,’c)+ v—P

computed

AP=P +a—PAx+a—PAy+a—PAz+a—PAT+\7—P

computed a X a y aZ a T computed

AP:a—PAx+a—PAy+a—PAz+a—PAT+\7
ox dy 0z 0T

Blewitt, Basics of GPS in “Geodetic Applications of GPS"




So we have the following for one satellite

AP:a—PAx+a—PAy+a—PAz+a—PAT+\7
ox dy 0z 0T

Which we can recast in matrix form

o oP dP dP
ox dy 0dz Ot

Blewitt, Basics of GPS in “Geodetic Applications of GPS"




7

\

For m satellites (where m24)

oP' oP' oP' OP
ox 9y 0z ot
oP° 0oP° oP> OP’
ox dy dz 0T
oP° oP° oJP° OoP
x  d oz oT
oP" JP" oOP" oP"
ox dy dz 0T

Which is usually written as

b=AX+V

Blewitt, Basics of GPS in “Geodetic Applications of GPS"

\

J




Calculate the derivatives

e ) T ) ) 2 ) ) ()

oP" _ (XR (tR)_ X (IS)) , similarly for y and z

ox” o,

ewitt, Basics of GPS in "Geodetic Applications of GPS"



So we get

Is function of direction to satellite

Note last column is a constant

Blewitt, Basics of GPS in “Geodetic Applications of GPS"




Consider some candidate solution x’

Then we can write

Where X' is the old candidate solution

Ax'is the new candidate solution

b are the observations

n hat are the residuals

We would like to find the x’'that minimizes the n\hat

Blewitt, Basics of GPS in “"Geodetic Applications of GPS"




So the question now is how to find this x’

One way, and the way we will do ¥,

Least Squares

Blewitt, Basics of GPS in “Geodetic Applications of GPS"




Since we have already done this - we'll go fast

Use solution to linearized form of observation
equations to write estimated,residuals

—

v=>b—Ax’

Vary value of x to minimize

Blewitt, Basics of GPS in “Geodetic Applications of GPS"




Solutien to

normal
equations




Assumes

Inverse exists

(Generalized inverse always exists - solution may not

make sense but exists.)

(m greater than or equal to 4, necessary but not
sufficient condition)

Can have problems similar to earthquake locating (two
satellites in "same” direction for example - has
effect of reducing rank by one)




Assumes

Solution is unique (i.e. earthquake or GPSiis in one
place. Can see for flat earth example - theréare

actually two solutions, one above and one below the
plane.

But - no guarantee mathematically, and may be a
number of local minimums into which one can get
“stuck”




GPS tutorial Signals and Data

Intersecting Ranges

An antenna on the roof
would have a good DOP

http://www.unav-micro.com/about_gps.htm




GPS tutorial Signals and Data

Intersecting Ranges

An antenna 1n a window
would have a poor DOP

http://www.unav-micro.com/about_gps.htm



