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6.1 INTRODUCTION 

The idea behind this chapter is to use a few fundamental concepts to help develop a 
way of thinking about GPS data processing that is intuitive, yet has a firm theoretical 
foundation.    Intuition is based on distilling an alarming array of information into a 
few core concepts that are basically simple.  The fundamental concepts I have chosen 
to explore and develop here are generally based on equivalence principles and 
symmetry in problems.  This involves looking at the same thing from different ways, 
or looking at apparently different things in the same way.  Using symmetry and 
equivalence, we can often discover elegant explanations to problems.  

The ultimate goal is that, the reader will be able to see answers to apparently 
complicated questions from first principles.  An immediate goal, is to use this 
theoretical-intuitive approach as a vehicle to introduce a broad variety of algorithms 
and  their application to high precision geodesy. 

6.1.1 Background 

It is useful to begin by placing this work into context briefly, by listing some of the 
common features of GPS data processing for high precision geodesy: 

 
User Input Processing 
•operating system interface 
•interactive user control 
•automation (batch control, defaults, contingency rules, etc.) 
•help (user manual, on-line syntax help, on-line module guide, etc.) 
 
Data Preprocessing 
•GPS observation files, site database, Earth rotation data, satellite ephemerides, 
surface meteorological data, water vapour radiometer data 
•formatting 
•tools (satellite removal, data windowing, concatenation, etc.) 
•editing (detecting and removing outliers and cycle slips) 
•thinning (data decimation, data smoothing) 
•data transformation (double differencing, ionosphere-free combination, etc.) 
•ambiguity initialisation (and possible resolution) 
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Observation Models 
•nominal values for model parameters 
•(observed - computed) observations and partial derivatives 
•orbit dynamics and satellite orientation 
•Earth rotation and surface kinematics 
•media propagation (troposphere, ionosphere) 
•clocks 
•relativistic corrections (clocks, spacetime curvature) 
•antenna reference point and phase centre offset 
•antenna kinematics 
•phase modelling (phase centre variation, polarisation, cycle ambiguity) 
 
Parameter Estimation 
•parameter selection 
•stochastic model and a priori constraints 
•inversion (specific algorithms, filtering, blocking techniques, etc.) 
•residual analysis (outliers, cycle slips) and re-processing 
•sensitivity analysis (to unestimated parameters) 

 
Solution Processing 
•a priori constraints 
•ambiguity resolution 
•solution combination and kinematic modelling 
•frame projection and transformation tools 
•statistics (formal errors, repeatability, in various coordinate systems, etc.) 
 
Output Processing 
•archive solution files 
•information for the user 
•export formatting (RINEX, SINEX, IONEX, etc.) 
•presentation formatting (e.g., graphics) 

6.1.2 Scope and Content 

This chapter introduces some theoretical ideas behind GPS data processing, leading 
to discussions on how this theory relates to applications.  It is certainly not intended to 
review specific software, but rather to point to concepts underlying the software.   

Obviously, it would be beyond the scope of this text to go into each of the above 
items in detail.  Observation models have already been covered in depth in previous 
chapters.  I have therefore chosen to focus on three topics that generally lie within the 
areas of  data preprocessing, parameter estimation, and solution processing.   

I’ ll start with a very practical equivalence, the equivalence of pseudorange and 
carrier phase, which can be used to develop data processing algorithms.  Then I 
explain what I mean by the equivalence of the stochastic and functional model, and 
show how this leads to different (but equivalent) methods of estimating parameters.   
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Finally,  I discuss frame invariance and estimability to (1) introduce geometry from a 
relativistic perspective, and (2) help the reader to distinguish between what can and 
what cannot be inferred from GPS data.  In each case, I begin with a theoretical 
development of the concept, followed by a discussion, and then the ideas are used for 
a variety of applications. 

6.2 EQUIVALENCE OF PSEUDORANGE AND CARRIER PHASE 

To enhance intuition on the development of data processing algorithms, it can be 
useful to forget that carrier phase has anything to do with cycles, and instead think of 
it as a precise pseudorange with an additional bias.  If we multiply the carrier phases 
from a RINEX file, which are in units of cycles, by their nominal wavelengths, the 
result is a set of data in distance units ( Φ1 1 1≡ λ ϕ  and  Φ2 2 2≡ λ ϕ ). The advantage of 
expressing both pseudorange and carrier phase observables in the same units is that 
the symmetry in the observation equations is emphasised, thus assisting in our ability 
to visualise possible solutions to problems. 

6.2.1 Theoretical Development 

We start with an equation that will serve as a useful working model of the GPS 
observables, which can be manipulated to develop suitable data processing 
algorithms. In chapter 5, we see carrier phase developed in units of distance.  
Simplifying equations (5.23) and (5.32), the dual-frequency carrier phase and 
pseudorange data can be expressed in a concise and elegant form (where we purposely 
space the equations to emphasise the symmetry): 
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The reader should beware that all of parameters in this equation are generally 
biased, so should not be interpreted literally except in a few special cases which will 
be discussed.  The term ρ is the satellite-receiver range; but it is biased by clock 
errors, S/A, and tropospheric delay. It is often called the non-dispersive delay as it is 
identical for all four data types.  The term I is the ionospheric group delay at the L1 
frequency, which has the opposite sign as phase delay. It is a biased parameter, as the 
L1 and L2 signals are transmitted at slightly different times for different satellites. The 
terms N1  and N2  are the ambiguity parameters which, it should be remembered, are 
biased by initialisation constants, and are therefore generally not integers; however 
they can change by integer amounts due to cycle slips.  We call λ1 1N  and λ 2 2N  the 
carrier phase biases (which have distance units). Finally, the last column of 
parameters are multipath terms, where it has been assumed that most of the error is 
due to multipath rather than receiver noise.  
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There are a few terms missing from equation (6.1a) which will be referred to below 
in a discussion on systematic errors. These errors will negligibly affect most 
algorithms developed from this equation, however, any limitations should be kept in 
mind.  

Equation (6.1a) can be conveniently arranged into matrix form. Since this is really 
the same equation but in a matrix form, we denote it as equation (6.1b): 
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 (6.1b) 

We note that the above equation has been arranged so that the coefficient matrix has 
no units. This proves to be convenient when analysing the derived covariance matrix. 
It is worth commenting that, when performing numerical calculations, the coefficient 
for the L2 ionospheric delay should always be computed exactly using 
f f1 2 154 120≡ . 

6.2.2 Discussion 

Interpreting the Terms.    As will now be explained, not only can we apply 
equation (6.1) to raw, undifferenced observation data, but also to single and double 
difference data, and to observation residuals. Depending on the application, the terms 
have different interpretations.  In some cases, a particular term might have very 
predictable behaviour; in others, it might be very unpredictable, and require stochastic 
estimation. 

For example, in the case of the double difference observation equations, the 
ambiguity parameters N1  and N2  are not biased, but are truely integers.  Moreover, 
the ionosphere parameter I is truely an unbiased (but differential) ionospheric 
parameter.  For short enough distances and depending on various factors that affect 
the ionosphere, it might be adequate to ignore I when using double differences. 
Chapter 13 goes in this in more detail. 

Equation (6.1) might also be interpreted as a residual equation, where a model for 
the observations have been subtracted from the left hand side.  In this case, the 
parameter terms are to be interpreted as residual offsets to nominal values.   For 
example, if the equation is applied to double difference residuals, and if the 
differential tropospheric delay can be adequately modelled, then the range term ρ  can 
be interpreted as a double difference range residual due to errors in the nominal station 
coordinates.   

All parameters generally vary from one epoch to another, often unpredictably.  
Whether using undifferenced, single differenced, or double differenced data, any cycle 
slip or loss of lock that occurs will induce a change in the value of the ambiguity 
parameters, by exactly an integer.  For undifferenced data, the range term ρ  is 
typically extremely unpredictable due to the combined effects of S/A and receiver 
clock variation.    The ionospheric delay I can often be predicted several minutes 
ahead using polynomials, but it can also exhibit wild fluctuations.  Double 
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differencing will lead to smooth, predictable behaviour of ρ  (for static surveying). 
It is typical for carrier phase multipath, δm1  and δm2 ,  to be at the level of a few 

millimetres, sometimes deviating as high as a few cm, level; whereas the level of 
pseudorange multipath dm1  and dm2  is generally greater by two orders of magnitude 
(decimetres to metres).  It is extremely difficult to produce a functional model for 
multipath from first principles, and it is more typical to model it either empirically 
(from its daily repeating signature), or stochastically (which in its simplest form 
amounts to adjusting the data weight from stations with high multipath). 

 
Using Equation (6.1).    Can we use equation (6.1) to form a least-squares solution 

for the unknown parameters? Even if we interpret the multipath terms as residuals to 
be minimised, we would have 4 parameters at each epoch, and only 4 observational 
data.  We can therefore construct an exact solution for each epoch, if we ignore the 
multipath terms. (Once again, we caution that any numerical computations should use 
exact values for f f1 2 154 120≡ ). 
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 (6.2) 

Note that the carrier phase biases are constant until lock is lost on the satellite, or 
until a cycle slip occurs.  We can therefore use these equations to construct algorithms 
that (1) resolve ambiguities, and (2) detect and solve for cycle slips.  The second point 
to notice, is that between cycle slips, we know that the ambiguities are constant.  If we 
are interested in only the variation in the other parameters (rather than the absolute 
values), then we are free to ignore any constant terms due to the ambiguity parameters.   

We can rearrange equation (6.1) to reflect this idea, by attaching the ambiguity 
parameters to the carrier phase observations.  Of course, we might not know these 
parameters perfectly, but that will have no effect on the estimated variation in the 
other parameters.  Furthermore, we can explicitly introduce the pseudorange multipath 
terms into the parameter vector: 
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where we have explicitly included pseudorange measurement noises e1  and e2 .  As 
we did for  equation (6.1), equation (6.3) can be inverted: 
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Notice the striking similarity in equations (6.2) and (6.4), and reversal of roles 
between carrier phase and pseudorange.  One can see the familiar ionosphere-free 
linear combination of data as solutions for the range term; whereas in equation (6.2) it 
applies to pseudorange, in equation (6.4) it applies to carrier phase.  Similarly, the 
ionospheric delay term is equal the familiar ionospheric or geometry-free linear 
combination of pseudorange in equation (6.2), and of carrier phase in equation (6.4).   

The coefficients for the ambiguity and multipath estimates are symmetrical between 
equations (6.2) and (6.4).  We can interpret this as follows.  In equation (6.2), the 
pseudorange is being effectively used as a model for the carrier phase due in order to 
infer the carrier phase bias parameters.  On the other hand, in equation (6.4) the carrier 
phase is effectively being used to model time variations in the pseudorange in order to 
infer pseudorange multipath variations.  The symmetry of the coefficients in the two 
equations is therefore not surprising given this explanation.  

 
Statistical Errors.  Since the level of errors are strikingly higher for pseudorange 

as compared with carrier phase, we should look at the propagation of errors into the 
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above parameters. The method used here is similar to the familiar computation of 
dilution of precision for point positioning.  The covariance matrix for the parameter 
estimates given by equation (6.2) can be computed by the usual procedure as follows: 

( )C A C AT
1

= − −

data
1  (6.5) 

where A is the coefficient matrix in equations (6.1) or (6.3), and C W 1
data = −  is the 

data covariance matrix.  If we assume that the data covariance is diagonal, that there is 
no difference between the level of errors on L1 and L2, and that the variance for 
carrier phase is negligible compared to the pseudorange then we write the data 
covariance: 
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Recall that in a real situation, a typical value might be ε ≈ −10 4 , which justifies our 
simplification by taking the limit ε → 0 .  Applying equations (6.5) and (6.6) to 
equation (6.2), and substituting values for the frequencies, we find the parameter 
covariance: 
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The formal standard deviations for the parameters are the square root of the 
diagonal elements: 

 
Parameter Standard Deviation 

ρ  2.978σ  
I  2.186σ  
N1  5128 1. σ λ  
N2  6532 2. σ λ  

 
Table 6.1:  Formal errors of parameter derived at a single 
epoch using dual frequency code and carrier phase data 

 
The formal error for the ionosphere-free range term is approximately 3 times the 

level of the measurement errors.  This result also applies to the estimates of range 
variation in equation (6.4) which uses the ionosphere-free carrier phase data. It 
illustrates the problem for short baselines, where there is a trade-off between raising 
the effective measurement error, versus reducing systematic error from the ionosphere 
(see chapter 13).  The formal error for the ionospheric delay (at the L1 frequency) is 



                                                                                 6.  GPS Data Processing Methodology 8 

approximately 2 times the level of the measurement errors, which shows that the L1 
and L2 signals are sufficiently well separated in frequency to resolve ionospheric 
delay. The large scaling factors of 5.128 to 6.532 for the carrier phase ambiguities 
shows that pseudorange multipath must be adequately controlled if there is any hope 
to resolve ambiguities (or detect cycle slips) using pseudorange data.  For example, if 
we aim for an N1  standard deviation of 0.25 cycles, then the pseudorange precision 
must be approximately 5 times smaller than this, which is less than 1 cm! 

   
Systematic Errors.    At this point, it is worth recalling that we have not used any 

functional model for the range term or the ionospheric term, other than that they 
satisfy the following assumptions: 
• The range term (which includes range, tropospheric delay, and clock offsets) are 

identical for all observables.   
• Ionospheric delay varies as the inverse square of the frequency, with the phase 

delay having the same magnitude but opposite sign to the group delay 
Equations (6.2) and (6.4) tells us that we can form an estimators for the carrier 

phase ambiguities and pseudorange multipath variation, even in the extreme situation 
when we have no functional model for range, tropospheric delay, clocks, and 
ionospheric delay (other than the above simple assumptions).  For example, no 
assumptions have been made concerning motion of the GPS antenna, and we can 
therefore derive algorithms to fix cycle slips and resolve carrier phase ambiguities that 
are suitable for kinematic applications.  Similarly, pseudorange multipath can be 
assessed as an antenna is moved through the environment.   

In the next section, we derive algorithms that can be considered application 
independent.   This is only strictly true as far as the above assumptions are valid.  For 
completeness, we list here reasons why the above assumptions might not be valid: 
• The carrier signal is circularly polarised, and hence the model should really include 

the phase wind up effect caused by relative rotation between the GPS satellite’s 
antenna and the receiver’s antenna [Wu et al., 1993].  This is particularly important 
for moving antennas with data editing algorithms operating on undifferenced data.  
It has also happened in the past that one of the GPS satellites began to spin due to 
some malfunction, thus causing a dramatic phase wind up effect in the carrier 
phase, which was of course not observed in the pseudorange.  One way around 
such problems is to use the widelane phase combination, which is rotationally 
invariant ( ) ( )ϕ ϕ ϕ λ λW ≡ − = −1 2 1 1 2 2Φ Φ . The phase wind up effect can be 

almost eliminated by double differencing, or by using an iterative procedure to 
account for antenna orientation (which can often be modelled adequately using a 
preliminary solution for the direction of motion).  An interesting twist on this is to 
try to use the observed phase wind up to help with models of vehicle motion.  For 
this purpose, the single differenced ionospheric phase could be used between a 
nearby reference antenna, and an antenna on a moving vehicle.  Over short 
distances, the ionospheric delay would almost cancel, leaving a clear signature due 
to antenna rotation.  

• The model should really include antenna phase centre offsets and antenna phase 
centre variation.  We are free to define any such errors under the umbrella term 
multipath, but it is advisable to correct the data for such effects.  Double 
differencing over short baselines almost eliminates phase centre effects, provided 
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the same antenna types and method of mounting are used. 
• There is generally an slight difference in the time of transmission for the L1 and L2 

signals, which is different for each satellite (typically a few metres).  Moreover, the 
effective time of reception might be slightly different in receivers which make no 
attempt to self-calibrate this interchannel delay.  Certainly, for precise geodetic 
applications, such a bias is irrelevant, as it would either cancel in double 
differencing, or be harmlessly absorbed as a clock parameter; however, for 
ionospheric applications, these biases must be modelled.  

• There might be a slight variable bias in the receiver between the different 
observable types due to any internal oscillators and electronics specific to the L1 
and L2 frequencies.  Hence the assumption that the range term is the same for all 
observables becomes invalid.  Receivers are not supposed to do this, but hardware 
problems have been known to cause this effect, which is often temperature 
dependent.  The effect is mitigated by double differencing, but can be problematic 
for undifferenced processing, for data processing algorithms, and for ionospheric 
estimation software.   

• There might be slight variable biases due to systematic error in the receiver, such as 
tracking loop errors that are correlated with the Doppler shift.  For well designed, 
geodetic-class receivers, these biases should be down at the millimetre level.   

6.2.3 Applications 

Multipath Observables.  This is the simplest and most obvious application from 
the previous discussion.  Equation (6.4) shows how pseudorange multipath can be 
estimated epoch by epoch.  It relies on the assumption that the carrier phase biases are 
constant.  If not, then the data should first be edited to correct for any cycle slips.  It 
should also be remembered that such multipath estimates are biased; therefore, only 
multipath variation and not the absolute multipath can be inferred by this method.  
This method is particularly useful for assessing the quality of the environment at a 
GPS station.  This might be used for site selection, for example.  Another application 
is to look at the multipath statistics.  These could then be used to compute 
pseudorange data weights in least squares estimation, or for other algorithms that use 
the pseudorange.   

 
Data Editing.   Data editing includes the process of outlier detection, cycle slip 

detection, and cycle slip correction. Equations (6.1-6.4) point to a possible method for 
data editing, as it shows that the parameters are correlated, and therefore perhaps at 
each epoch, the set of four observations can be assessed for self-consistency.  But 
outlier detection requires data redundancy, which we do not have for individual 
epochs.   

However, we can monitor the solution for the parameters, equation (6.2), and ask 
whether they are behaving as expected.   This line of thought leads naturally to a 
sophisticated approach involving a Kalman filter to predict the solution at the next 
epoch, and then compare this prediction with the new data.   If the data rate is 
sufficiently high that prediction becomes meaningful, then this approach might be 
useful.   

However, experience by the author and those developing the GIPSY software at the 
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Jet Propulsion Laboratory showed this approach to be problematic, at least for 
undifferenced data.   The presence of selective availability, the possible occurrence of 
high variability in ionospheric total electron content, and the poor frequency stability 
of receiver’s internal oscillators limit the usefulness of Kalman filtering for typical 
geodetic data taken at a rate of 1 per 30 seconds.  Even going to higher rates does not 
significantly improve the situation if the receiver clock is unpredictable.  Moreover, 
results were difficult to reproduce if the analyst were allowed to tune the filter.   

As a result, a simpler, fully automatic algorithm was developed known as 
TurboEdit [Blewitt, 1990], which uses the positive aspects of filtering (i.e., noise 
reduction through averaging, and using  prediction as a means of testing new data).  
The new algorithm attempted to minimise sensitivity to unusual, but acceptable 
circumstances, by automatically adapting its procedures to the detected level of noise 
in the data.  The specific TurboEdit algorithm will not be described in detail here, but 
rather we shall next focus on some principles upon which data editing algorithms can 
be founded. 

Firstly, we shall look at the use of pseudorange to help detect and correct for cycle 
slips.  (In this context, by cycle slip we mean a discontinuity in the integer ambiguity 
parameter, which can be caused by the receiver incorrectly counting the cycles, or if 
the receiver loses lock on the signal).  From Table 1, we see that a pseudorange error 
of 1 cm would result in an instantaneous estimate for the carrier phase biases at the 
level of 5 to 6 cm, which corresponds to approximately one quarter of a wavelength.  
Therefore, it would seem that pseudorange multipath would have to be controlled at 
this level if we were to simply use these estimates to infer whether the integer 
ambiguity had changed by one cycle.  This seems like a dire situation. 

This situation can be improved, if we realise three useful observations of 
experience:  (1) Most often, cycle slips are actually caused by loss of lock, in which 
case the slip is much greater than one cycle; therefore, detection is simpler than 
correction.  (2) Unless we have conditions so adverse that any result would be 
questionable, most often we have many epochs of data until we reach a cycle slip; 
therefore, we can average the results from these epochs to estimate the current value 
of the carrier phase bias.  (3) If we have an initial algorithm that flags epochs where it 
suspects a cycle slip may have occurred, we can seperately average the carrier phase 
bias solutions either side of the suspected cycle slip, and test the hypothesis that the 
carrier phase bias has changed by at least an integer number of wavelengths.   

Following this logic, we can estimate how many epochs of data are required either 
side of the cycle slip so that the pseudorange errors can be averaged down sufficiently 
for us to test the hypothesis that a cycle slip has ocurred.  Using the results in Table 1, 
and assuming the errors average down as the square root of the number of epochs, we 
can, for example, write the error in the estimated cycle slip on L1 as: 

( )σ σ
slip n

n
= 2

5128.
 (6.8) 

where n is the number of epochs either side of the hypothesised cycle slip. For 
example, if we insist that this computed error be less than one quarter of a cycle, i.e., 
approximately 5 cm, and if we assume that the pseudorange error σ is approximately 
50 cm, then we see that the number of epochs must be greater than approximately 
5000.   This is clearly an unrealistic approach as it stands.  
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 We can use the above approach, if instead we use the well known widelane carrier 
phase ambiguity.  From equation (6.7) and using the law of propagation of errors, we 
can compute the formal variance in the widelane ambiguity, N N NW ≡ −1 2  

( )

( )
( ) ( ) ( )( )
( )

CW

26.297 33.480

33.480 42.663

26.297 33.480 42.663

26.297 - 66.960 120 42.663 120

= − �

�
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� −
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=
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σ λ
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1 2 2
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1

2

1 1
1

1

2

154 154

015720.

 (6.9) 

This derivation uses the exact relation ( ) ( ) ( )λ λ1 2 2 1 120 154= =f f .  (As a rule for 

numerical stability, it is always wise to substitute explicitly for the L1 carrier 
wavelength only at the very last step).   

Remarkably, the standard error in the widelane wavelength does not reach 1 cycle 
until the pseudorange errors approach σ λ λ= = ≈1 1015720 63613 120. . cm .  We can 
therefore use such widelane estimates on an epoch by epoch basis as an algorithm to 
flag possible cycle slips.  The hypothesis can then be tested by averaging down the 
pseudorange noise either side of the proposed slip, as discussed previously. 

Widelaning data editing methods are generally very successful for modern geodetic 
receivers, which have well behaved pseudorange.  However, they do not distinguish as 
to whether the slip occurred on L1, L2, or both.    

This problem can be resolved by looking at either the biased range parameter ρ  or 
biased ionospheric parameter I  in equation (6.4).  Note that the carrier phase 
ambiguity parameters appear to the right side of this equation.  Were there to be a 
cycle slip, it would manifest itself as a discontinuity in both parameters I  and ρ .  
Using this method requires that either one of these parameters be predictable, to 
effectively bridge the time period during which the receiver lost lock on the signal.  
For double differenced data, this should be rather straightforward for both parameters, 
particularly for short baselines.  For undifferenced data, parameter ρ  tends to be too 
unpredictable due to S/A and receiver clock variation; however, I  is usually 
sufficiently well behaved that time periods of up to several minutes can be bridged.  A 
low order polynomial predictor could be used for this purpose. 

Data editing algorithms can be designed to be adaptive to the changing quality of 
the data and the predictability of the parameters.  The level of pseudorange noise can 
be easily monitored, as discussed, using equation (6.4) to estimate the multipath terms 
(taking care to correct for cycle slips detected so far).   

The predictability of the parameters can be tested by applying the prediction 
algorithm backwards in time to previous data which are known to be clean or 
corrected for cycle slips.  For example, if we have a loss of lock and subsequent data 
outage of 5 minutes, we might want to test a simple algorithm which predicts the I   
parameter using a second order polynomial on 15 minutes of data prior to the loss of 
lock.  The test could be conducted by extrapolating the polynomial backwards, and 
comparing it with existing data.   
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Data Thinning. For static GPS where data are collected over a period of several 
hours, a carrier phase data rate of 1 epoch every 5 minutes should be more than 
sufficient to achieve high precision results.  In fact, using higher rate data is unlikely 
to improve the result significantly.  The reason for this is that if we continue to 
increase the data rate, we may well be able to reduce the contribution of measurement 
error to errors in the parameter estimates; however, we will do little to reduce the 
effect of systematic error, for example, low frequency components of multipath.   

Therefore, if we are presented with a file with carrier phase data every 30 seconds, a 
simple and effective way to speed up the processing is to decimate the data, only 
accepting one point every 5 minutes.    

For pseudorange data, however, a higher data rate often leads to improved results, 
presumably because measurement error and high frequency components of multipath 
continue to be significant error sources.   A better approach than decimation would be 
to interpolate the high rate pseudorange data to every 5 minute data epoch, because the 
interpolation process would help average down the high frequency noise.  For 
subsequent least squares analysis to be valid, the interpolator should strictly only 
independent 5 minute segments of high rate data, so that no artificial correlations are 
introduced (which could, for example, confound other algorithms in your software).   

A convenient method of interpolation is to use the carrier phase as a model for the 
pseudorange.  The multipath expressions in Equation (6.4) provides us the solution to 
this problem.  For example, we can rearrange (6.4) to express a model of the 
pseudorange data in terms of the carrier phase data and the pseudorange multipath: 

P dm

dm
1 1 2 1

1 2 1

4091 3091

4091 3091

= − +
= − + +

.
~

.
~

. .

Φ Φ
Φ Φ B

 (6.10) 

The carrier phase here is effectively being used to mimic the time variation in the 
pseudoranges, correctly accounting for variation in range and ionospheric delay.  The 
constant B is due to the (unknown) carrier phase biases.  We can procede to express 
an estimator for P1  as the expected value: 

( )
( )

( )

�

. .

. .

P E P

E dm B

E B

1 1

1 2 1

1 2

4091 3091

4091 3091

≡

= − + +

= − +

Φ Φ

Φ Φ

 (6.11) 

where, for the carrier phase data, the expected values are simply the actual data 
recorded at the desired 5-minute epoch, and we have assumed that the expected value 
for multipath is zero.  If we wish our resulting estimate �P1  to be truely independent 
from one 5 minute epoch to the next, then E(B) can only be based on data found in a 5 
minute window surrounding this epoch, giving us the following expression:   

� . . . .P P1 1 2 1 1 24091 3091 4091 3091= − + − +Φ Φ Φ Φ  (6.12) 

 
(where the angled brackets denote the time average operator).  The result is a 
smoothed estimate for the pseudoranges.  Remember, only the smoothed pseudorange 
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that falls on the 5 minute epoch should to be saved.  
 
Parameter Estimation.   It is common in geodetic software to first use the 

pseudorange to produce a receiver clock solution, and then use the double differenced 
carrier phase to produce a precise geodetic solution.   The reason we need to know the 
receiver clock time precisely is to determine the time the data were collected, and 
hence fix the geometry of the model at that time.  Once this has been done, the clock 
parameters are then effectively removed from the problem by double differencing.  
The disadvantage to this scheme, is that we might be interested in producing a high 
precision clock solution. 

One way of approaching this is to estimate clock parameters explicitly along with 
the geodetic parameters, using undifferenced carrier phase data. The problem with this 
is that there is an extremely high correlation with the (undifferenced) carrier phase 
bias parameters.  

An alternative, elegant one-step procedure is to process undifferenced carrier phase 
and pseudorange data simultaneously, effectively using the pseudorange to break the 
correlation.  For example, suppose we process dual frequency ionosphere-free carrier 
phase and pseudorange together.  The models for both types of observables are 
identicle, apart from the carrier phase bias (which can, in any case, assume a nominal 
value of zero), and apart from the lack of a phase wind-up effect in the pseudorange 
data. Similarly, the parameters we estimate would be identical; that is, no extra 
parameters are required.  Apart from expanding the possible applications (where 
clocks are involved), this method provides an extra degree of reliability, especially for 
kinematic applications, where the pseudorange effectively provides a consistency 
check on the carrier phase solution. 

One very interesting new application of this idea is called precise point positioning. 
Developed by researchers at JPL [Zumberge et al., 1996], this technique is identical to 
conventional pseudorange point positioning, except that (1) both pseudorange and 
carrier phase data are processed simultaneously, and (2) precise satellite ephemerides 
are used.  Precise point positioning allows a single receiver to be positioned with 1 cm 
accuracy in the global frame (ITRF).  We return to this exciting new tool later in this 
chapter. 

 
Ambiguity Resolution.  The application of equation (6.2) to ambiguity resolution 

is basically very similar to the application to data editing and the correction of cycle 
slips. It must be remembered, however, that only the double differenced carrier phase 
biases are an integer number of wavelengths.  Therefore, equation (6.2) should be 
interpreted as for double differenced data and parameters. Alternatively, undifferenced 
parameters can be estimated, and subsequently the estimates can be double 
differenced.   

As discussed for cycle slip correction, the pseudorange multipath too large for 
reliable ambiguity resolution using equation (6.2) directly.  On the other hand, the 
widelane carrier phase ambiguity N N NW ≡ −1 2  can be fixed very reliably using 

pseudoranges, even of mediocre quality.   The advantage to this method is that it is 
independent of baseline length. 

As with correcting cycle slips, we need to address how we resolve the ambiguities 
for N1  and N2  separately.  Assuming we know the widelane, the problem reduces to 
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finding the correct value for N1 .  Once again, one possible answer lies in the solutions 
for the the (double differenced) ionospheric term  I.  Using equation (6.4), and 
assuming we have a very good model for  I, we can find the best fitting values of the 

ambiguities for 
~Φ Φ1 1 1 1≡ − λ N  and 

~Φ Φ2 2 2 2≡ − λ N , subject to the constraint 

N N N1 2− = �
W , where �NW  is the widelane ambiguity, previously resolved using 

equation (6.2) 

( ) ( )

( )

I

I N N

N N

N Nw

= −
= − − −
= − − +

= − − + −

1546 1546

1546
1 2

1 1 1 2 2 2

1 2 1 1 2 2

1 2 2 2 1 1

.
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.
~

.

�

Φ Φ
Φ Φ

Φ Φ

Φ Φ

λ λ
λ λ
λ λ λ

 (6.13) 

This situation is relatively easy over baselines of a few km, where it can be assumed 
that, to a good approximation, I = 0.  However, the coefficient ( )λ λ2 1 54− ≈ . cm is 

very small, so we can easily run into problems over 5 km during daylight hours, and 
over 30 km at night.  However, it is an almost an instantaneous technique, and was 
used successfully for rapid static surveying of post-seismic motion following the 
Loma Prieta earthquake of 1989 [Blewitt et al., 1990].   

Over longer baselines, Melbourne [1985] suggested an approach that uses the 
ionosphere-free phase combination of equation (6.4) and a good model for the range 
term.  Later experience has shown that the range model must be based on a 
preliminary bias-free solution (since our a priori knowledge of the troposphere is 
generally inadequate). From equation (6.4), we can find the value of N1  that best fits 
the range model, subject to the usual widelane constraint: 

( ) ( )
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λ λ

λ λ
λ λ λ
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 (6.14) 

The coefficient ( )1546 2546 1072 1. . .λ λ− ≈ cm  shows that this method will work 

provided we can control our estimated (double differenced) range errors to within a 
few centimetres.  Using precise orbit determination and stochastic tropospheric 
estimation, this method has proved successful over thousands of km [Blewitt, 1989], 
and even over global scales [Blewitt and Lichten, 1992]. 

 

6.3 EQUIVALENCE OF STOCHASTIC AND FUNCTIONAL MODELS 

We are familiar with standard least squares theory, where the observations have 
both a functional model, which tells us how to compute the observation, and a 
stochastic model, which tells us the expected statistics of the errors.  If we decide to 
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augment the functional model with extra parameters, an equivalent result can be 
obtained if instead we modify the stochastic model.  As we shall see, this equivalence 
introduces great flexibility into estimation algorithms, with a wide variety of geodetic 
applications.. 

6.3.1 Theoretical Development 

Terminology.    Consider the linearised observation equations: 

z Ax v= +  (6.15) 

where z is the column vector of observed minus computed observations, A is the 
design matrix, x is the column vector of corrections to functional model parameters, 
and v is a column vector of errors.   Let us assume the stochastic model  

( )
( )

E v

E vv C WT

=

= ≡ −

0
1
 (6.16) 

Assuming a well conditioned problem, the best linear unbiased estimator of x is: 

( )�x A WA A WzT T=
−1

 (6.17) 

which has the following statistical properties: 

( ) ( )
( ) ( )

E x E x x

E xx A WA CT T
x

�

� �
�

= =

= ≡
−1  (6.18) 

If we use a Bayesian approach to estimation, we may make the a priori assumption 
( )E x = 0 where we implicitly introduce pseudo-data x = 0 with an a priori 

covariance C0 .  In this case, the estimator becomes: 

( )�x A WA C A WzT T= + − −

0
1 1

 (6.17b) 

We see that (6.17b) approaches (6.17) in the limit C0 → ∞ , hence we can consider 
(6.17) the special case of (6.17b) where we have no a priori information. 

Augmented Functional Model.    Suppose we aim to improve our solution by 
estimating corrections to an extra set of functional model parameters y.  We therefore 
consider the augmented observation equations: 

z Ax By v= + +  (6.19) 

We can write this in terms of partitioned matrices: 
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( )z A B
x

y
v=

�

�
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� +  (6.20) 

 
We can therefore see by analogy with (6.17) that the solution for the augmented set of 
parameters will be 
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We now use the following lemma on matrix inversion for symmetric matrices, 
which can easily be verified: 
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Applying this lemma, we can derive the following elegant result for the estimates of x, 
the parameters of interest (defining the projection operator P): 

( ) ( )�x A WPA A WPz P I B B WB B WT T T T= ≡ −
− −1 1

      where    (6.23) 

That is, we have derived a method of estimating parameters x, without having to go 
to the trouble of estimating y.  The result (6.23) is remarkable, in that it has exactly the 
same form as equation (6.17), where we substitute the original weight matrix for the 
reduced weight matrix: 

( )
′ ≡

= −
−

W WP

W WB B WB B WT T1
 (6.24) 

If we are in fact interested in obtaining estimates for y at each batch, we can 
backsubstitute �x  into (6.21) (for each batch) to obtain: 

( ) ( )� �y B WB B W z AxT T= −
−1

 (6.25) 

Augmented Stochastic Model.   We need to find a stochastic model that gives rise 
to the reduced weight matrix (6.24).   A stochastic model is correctly stated in terms of 
the expectation values (6.16), but unfortunately, the reduced weight matrix is singular 
(because P is an idempotent matrix: PP=P).  However, an interesting interpretation 
arises if we derive the stochastic model from first principles.  If we treat the 
augmented part of the model as a source of noise (called process noise) rather than as 
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part of the functional model, we can write the augmented stochastic model as follows: 

( )
( )( )( )

( ) ( )

′ = ′ ′

= + +

= +

= +

C E v v

E By v By v

E vv BE yy B

C BC B

T

T

T T T

y
T

 (6.26) 

Where Cy  is, by definition, an a priori covariance matrix for the parameter, y.  

Note that we can choose Cy  to be arbitrarily large, if we wish the data to completely 

influence the result.  If we now invert this expression, it ought to correspond to the 
reduced weight matrix of (6.24).  But first, we need to know another very useful 
matrix inversion lemma (worth remembering!): 

( ) ( )Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ1 12 2
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1
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1
1
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1
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�  (6.27) 

 where Λ Λ12 21≡ T .  Applying this lemma to equation (6.26), we find: 
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Comparing this expression with (6.24), we find the only difference is the presence 
of the a priori covariance matrix for parameters y.  The functional and stochastic 
approach are equivalent in the limit that the a priori stochastic parameter covariance is 
made sufficiently large.  (See the discussion following (6.17b)). For the two models to 
be equivalent, the augmented stochastic model should only account for correlations 
introduced by data’s functional dependence on the process noise (as defined by the 
matrix B), with no a priori information on the actual variance of the process noise.  

 
Stochastic Estimation.  In the context of least squares analysis, a parameter in 

general is defined in terms of its linear relationship to the observable (i.e., through the 
design matrix).  A stochastic parameter has the same property, but is allowed to vary 
in a way that can be specified statistically.  In computational terms, a constant 
parameter is estimated as a constant over the entire data span, whereas a stochastic 
parameter is estimated as a constant over a specified batch interval, and is allowed to 
vary from one interval to the next.  For example, a special case of this is where the 
stochastic parameter is allowed to change at every data epoch.  

The least squares estimator includes specific a priori information on the parameter, 
in terms of (1) how its value propagates in time from one batch to the next, and (2) 
how its variance propagates to provide an a priori constraint on the next batch’s 
estimate.  Here, we introduce two of the most important models used in stochastic 
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estimation for precise GPS geodesy: 
(1) The simplest is the white noise model, which can be specified by: 

( )
( )

E y

E y y

i

i j ij

=

=

0
2σ δ

 (6.29) 

(2) The random walk model can be specified by 

( )
( )( ) ( )

E y y

E y y t t

i j

i j i j

− =

− = −

0

2
ϑ

 (6.30) 

In the absence of data, the white noise parameters become zero with a constant 
assumed variance, whereas the random walk parameters retain the last estimated 
value, with a variance that increases linearly in time.  The white noise model is useful 
where we wish to impose no preconceived ideas as to how a parameter might vary, 
other than (perhaps) its expected average value.  As (6.30) does not require us to 
specify ( )E yi , the random walk model is particularly useful for cases where we do 

expect small variations in time, but we might have little idea on what to expect for the 
overall bias of the solution.    

The white noise and random walk models are actually special cases of the first order 
Gauss-Markov model of process noise [Bierman, 1977], however, this general model 
is rarely used in GPS geodesy.    

6.3.2 Discussion 

Model Equivalence.    The equivalence of (6.23) with (6.21), and (6.24) with 
(6.26) proves the correspondence between modifying the functional model and 
modifying the stochastic model.  Instead of estimating extra parameters, we can 
instead choose to modify the stochastic model so as to produce the reduced weight 
matrix, or equivalently, an augmented covariance.  Note that, as we would expect, the 
weight matrix is reduced in magnitude, which is why it is said that estimating extra 
parameters weakens the data strength.  It follows that the corresponding covariance 
matrices for the data and for the estimated parameters will increase.      

We can summarise the above theoretical development by the maxim: 
 

(covariance augmentation) ≡ (weight matrix reduction) ≡ (parameter estimation) 
 
That is, augmenting the stochastic model can be considered implicit estimation of 

additional parameters, with the advantage of that there is a saving in computation.  
The only disadvantage is that the full covariance matrix between all x and y 
parameters is not computed. Fortunately, there are many applications where the full 
covariance matrix is of little interest, particularly for problems that are naturally 
localised in space and time.  

 
Stochastic Parameters.    The above theory indicates possible ways to deal with 
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stochastic parameters, that are allowed to vary in time according to some stochastic 
model.  Equations (6.23), (6.26) and (6.28) provides a simple mechanism for us to 
estimate a special class of stochastic parameters called white noise parameters, that 
are allowed to vary from one (specified) batch of data to the next, with no a priori 
correlation between batches.  The a priori covariance matrix in (6.28) can be ignored 
if we wish, but it can be useful if we believe we know the parameter variance a priori 
(from some other source), and we do not wish to weaken the data strength 
unnecessarily.    

For example, if we have some parameters which are stochastic in time, we could 
group the data into batches covering a set time interval, and apply equation (6.23) to 
estimate the x parameters at each batch interval.  The final x parameter estimates could 
then be derived by accumulating the normal equations from every batch, and then 
inverting. 

The formalism presented above also suggests a method for implementing random 
walk parameter estimation.  Specifically, (6.28) allows for the introduction of an a 
priori covariance, which could come from the previous batch interval solution, 
augmented by the model (6.30).  Several convenient formulisms have been developed 
for the step-by-step (batch sequential) approach to estimation, including algorithms 
such as the Kalman Filter.   It is beyond the scope of this chapter to go into specific 
algorithms, but we shall describe filtering in general terms.   

 
Filtering.  In filtering algorithms, the a priori estimate for each batch is a function 

of the current running estimate mapped from the previous batch.  The current estimate 
is then specified as a weighted linear combination of the a priori estimate, and the data 
from the current batch.  The relative weights are determined by the gain matrix, which 
can also account for the a priori correlations between stochastic parameters in 
accordance with the user-specified stochastic model (6.29) or (6.30).  The principles 
of separating stochastic from global parameters are the same as described earlier.  The 
process of backsubstitution in this context is called smoothing, which is essentially 
achieved by running the filter backwards to allow earlier data to be influenced by the 
later data in a symmetric way.   

 
Algorithm Equivalence.   Whatever algorithm is used, we should always 

remember that it is the underlying stochastic and functional models that determine the 
solution.  That is, it is possible to construct a conventional weighted least-squares 
estimator  to produce the same answer as, say, a Kalman filter.  The choice of 
algorithm is largely one of computational efficiency, numerical stability, and 
convenience in being able to control the stochastic model. 

Although we have not shown it here, there is a similar equivalence between 
stochastic estimation and applying a transformation to remove so-called nuisance 
parameters.  A simple example of this is the ionospheric linear combination of data, 
which removes ionospheric delay.  This is equivalent to estimating ionospheric delay 
as white noise for each observation. Likewise, the double differencing  transformation 
is equivalent to estimating white noise clock parameters (assuming all available data 
are effectively transformed).  There are parameter estimation algorithms that make use 
of this kind of equivalence, for example, the use of the Householder transformations 
in the square root information filter (SRIF) to produce a set of statistically 
uncorrelated linear combinations of parameters as a function of linear combinations of 
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data.  Hence, in the SRIF, there is no longer a distinction between stochastic and 
functional model, and algorithm development becomes extremely easy (for example, 
as used by Blewitt [1989] to facilitate ambiguity bootstrapping). 

In summary,  one can effectively implement the same functional and stochastic 
model in data estimation using the following methods: 

(1) explicit estimation by augmenting the functional model; 
(2) implicit estimation by augmenting the stochastic model; 
(3) parameter elimination by transforming the data and stochastic model. 
This presents a rich variety of possible techniques to deal with parameters, which 

partly explains the very different approaches that software packages might take.  
Specific algorithms, such as the square root information filter may effectively embody 
approaches at once, which illustrates the point that the algorithm itself is not 
fundamental, but rather the underlying functional and stochastic model. 

 

6.3.3 Applications 

 
Global and Arc Parameters.  We sometimes call x global parameters and y local 

parameters (if they are localised in space, e.g., for a local network connected to a 
global network through a subset of stations) or arc parameters (if they are localised in 
time, e.g., coordinates for the Earth’s pole estimated for each day).  More generally y 
can be called stochastic parameters,  since it allows us to estimate a parameter that 
varies (in some statistical way) in either space or time.  As we have seen, we don’ t 
actually have to explicitly estimate y, if all we are interested in are the global 
parameters, x.  

 
Earth Rotation Parameters.   A typical daily solution for a global GPS network 

might contain coordinates for all the stations, plus parameters to model the orientation 
of the Earth’s spin axis in the conventional terrestrial frame and its rate of rotation (for 
example, X and Y pole coordinates, and length of day).  We can then combine several 
day’s solutions for the station coordinates, in which case the station coordinates can be 
considered global parameters.  It is also possible to estimate station velocity at this 
stage, to account for tectonic motion.   Next, we can orient this station coordinate (and 
velocity) solution to a conventional frame, such as the ITRF (IERS Terrestrial 
Reference Frame).  If we then wished to produce improved estimates for daily Earth 
rotation parameters in this frame, we could then apply equation (6.25) to compute the 
corrections: 

( ) ( )∆ ∆� �y B WB B WA xT T= −
−1

 (6.31) 

This can easily be done if the coefficient matrix relating ∆�y  to ∆ �x  is stored along 
with each daily solution.   This is an example of smoothing, without having to resort 
to the full Kalman filter formulism.  Effectively, the Earth rotation parameter have 
been estimated as white noise parameters.  The length of day estimates can then be 
integrated to form an estimate of variation in the Earth’s hour angle (UT1-UTC), 
which would effectively  have been modelled as random walk (which can be defined 
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as integrated white noise).  
 
Helmert Wolf Method.  The spatial analogy to the above is sometimes called the 

Helmert-Wolf Method or Helmert Blocking..  The data are instead batched according 
to geographic location, where the stochastic y parameters are the station coordinates of 
a local network.  The x parameters comprise station coordinates at the overlap (or 
nodes) between local networks.  The x parameters are first estimated for each network 
according to (6.23); then these estimates are combined; finally the y parameters can 
obtained using (6.25).  Helmert Blocking seen in this context is therefore simply a 
specific application of a more general concept. 

 
Troposphere Estimation.  The random walk model is commonly used for 

tropospheric zenith bias estimation, because (1) this closely relates to the expected 
physics of atmospheric turbulence [Truehaft and Lanyi, 1987], and (2) surface 
meteorological measurements don’ t provide sufficient information for us to constrain 
the overall expected bias.   

Filtering algorithms can easily allow the tropospheric zenith bias to vary from one 
data epoch to the next.  Traditional least-squares algorithms can also estimate the 
troposphere stochastically by either explicit augmentation of the set of parameters, or 
by using the reduced weight matrix (6.24).  However, the traditional method is too 
cumbersome for dealing with a separate parameter at every data epoch, which is why 
it is common to estimate tropospheric biases which are constant over time periods of 
an hour or so.  Results indicate that this works well for geodetic estimation, but of 
course, it might be unsatisfactory for tropospheric research.    

 
Clock Estimation.    The white noise model is commonly used for clock 

estimation when processing undifferenced data.  This is partly because one does not 
have to worry about any type of glitch because the a prior correlation is assumed to be 
zero.  As already mentioned, white noise clock estimation is an alternative to the 
double differencing approach.  The advantage, of course, is that we obtain clock 
estimates, which leads us naturally to the application precise point positioning. 

 
Precise Point Positioning.  We can consider receiver coordinates as local 

parameters, connected to each other only through the global parameters (that affect all 
spatially separated observations), which include orbit, satellite clock, and Earth 
rotation parameters.   The global network of permanent GPS stations is now reaching 
the point that the addition of an extra station would do very little to change the 
estimated orbit and satellite clock parameters.  We can therefore take the global 
solution to be one using the current global network, and consider a user’s receiver 
coordinates as the local parameters.   Application of (6.25) to a single receivers carrier 
phase and pseudorange data using the global parameter solution for x would therefore 
give us a precise point position solution for y.   

This can actually be simplified further. The term ( )z Ax− �  in (6.25) is simply the 

user’s receivers data, minus a model computed using the global parameters (orbits, 
clocks, and Earth rotation parameters).  Therefore, we can solve for y by only storing 
the global parameters and the single receiver’s data. Further still, the orbit and Earth 
rotation parameters can be processed to produce a table of orbit positions in the Earth 
fixed frame.  
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Putting all of this together, we can therefore see that (1) producing a single receiver 
point position solution using a precise ephemerides in the Earth fixed frame is 
essentially equivalent to (2) processing the station’s data as double differences 
together in a simultaneous solutions with the global network’s data.  The only 
difference is that the user’s receiver cannot influence the orbit solution.  This is 
astonishingly simple, and has revolutionised high precision geodetic research due to 
the very short time it takes to produce high precision results, which is typically a few 
minutes for a 24 hour data set [Zumberge et al., 1996]. 

6.4 FRAME INVARIANCE AND ESTIMABILITY 

Strange as it may seem, station coordinates are generally not estimable parameters.  
This statement may appear ludicrous, given that GPS is supposedly designed to allow 
us to position ourselves.  But position relative to what?  In the simple case of point 
positioning, we are positioning ourselves relative to the given positions of the GPS 
satellites, in the reference frame known as WGS-84.  How are the orbits known?  
They are determined using the Control Segment’s tracking stations at known 
coordinates.  How are these tracking station coordinates known?  By using GPS.  And 
so the questions continue, in a circular fashion. 

To view this problem clearly, we consider the general case of the one step 
procedure, estimating all the satellite orbits and all the station coordinates at the same 
time. In this section, we consider the nature of these coordinates, and consider exactly 
what is estimable when attempting to position a global network of GPS stations.  

6.4.1 Theoretical Development 

Insight from Physics.   “A view advanced by Einstein, there is a widespread belief 
among modern physicists that the fundamental equations of physics should possess 
the same form in all coordinates systems contemplated within the physical context of 
a given theory”  [Butkov, 1968].   Although coordinates are essential for the 
computation of observable models,  our intuition is better served if we think of 
geometrical objects,  which we can define as frame invariant objects.  In general 
terms, such geometrical objects are called tensors.   Tensors are classified according 
to their rank.  Formally, a tensor of rank r is defined as an invariant linear function of 
r directions [Butkov, 1968].  The rank of a tensor (not to be confused with the rank of 
a matrix) tells you the number of indices required to specify the tensor’s coordinates. 
Here, we stick to familiar objects; vectors which are tensors of rank 1 (which have a 
single direction in space), and scalars are tensors of rank zero (which have no 
directionality).    

Equations can be explicitly expressed in terms of tensors without reference to 
coordinates.  One must therefore be careful not to confuse the true vector, which is a 
geometrical object, with the column vector, which is a representation of the vector in a 
specific coordinate frame. For example, although the coordinates represented in a 
column vector change under a frame transformation, the true vector does not change.   

 
Vectors and Transformations.   A vector can be defined as an invariant linear 
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function of direction [Butkov, 1968].   We should really think of the vector as an 
axiomatic geometrical object, which represents something physical, and is therefore 
unaffected by frame transformations.   We can write the vector x in frame F as 
[Mathews and Walker, 1964]: 

x ei i
i

= 
 x  (6.32) 

in terms of coordinates xi and base vectors ei (vectors which define the direction of the 
coordinate axes). The same vector can be written in frame F’  as: 

x ei i
i

= ′ ′
 x  (6.33) 

We can, for analytical convenience, write this equivalence in matrix form, where we 
define the row matrix e and column matrix x as follows: 
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 (6.34) 

Notice that both coordinates and the base vectors must change such that the vector 
itself remains unchanged.  This axiomatic invariance of a vector requires that the 
transformation for the base vectors is accompanied by a related (but generally 
different) transformation of the coordinates.  We can start by following the convenient 
matrix form of (6.34) to define each base vector of the new frame ′ei  as a vector in the 

old frame with coordinates γ ji . Coordinates γ ji  are elements of the transformation 

matrix Γ: 

′ =

′ =


e e

e e

i j
j

jiγ

Γ
 (6.35) 

Using the equivalence relation (6.34), we find the corresponding transformation for 
coordinates: 
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Objects such as the coordinates are said to transform contragradiently to the base 
vectors.  Objects which transform in the same way are said to transform cogradiently.  

 
Scalar Functions and Transformations.  The frame transformation, represented 

by Γ, is called a vector function, since it transforms vectors into vectors. In contrast, 
geodetic measurements can be generally called scalar functions of the vectors.   The 
dot product between vectors is an example of a scalar function. Simply take a look at 
typical functional models used in geodesy, and you will find objects such as the dot 
product between vectors.  We therefore need to look at the theory of scalar functions 
of vectors and how they transform. 

A linear scalar function of a vector can be defined in terms of its effect on the basis 
vectors.  For example, in 3-dimensional space, we can define the scalar function as a 
list of 3 numbers known as the components of the scalar function: 
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When the scalar function is applied to a general vector x, the result can be written 
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The result must be independent of reference frame, because the geometrical vector x is 
frame invariant.  Therefore we can derive the law of transformation for the scalar 
components α: 
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This proves that the scalar components transform cogradiently with the base 
vectors, and contragradiently with the coordinates. 

It would appear that the scalar functions have very similar properties to vectors, but 
with slightly different rules about how to transform their components.  The scalar 
function is said to form a dual space, with the same dimensionality as the original 
vectors.  

Supposing we have a vector y in our geodetic system, we can define a special the 
scalar function that always forms the dot product with y.  The result can be expressed 
in matrix form: 
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where g is the matrix representation of the metric tensor, which can be thought of as 
describing the unit of length for possible directions in space (here represented in 3 
dimensions) [Misner, Thorne, and Wheeler, 1973]: 
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Comparing (6.38) and (6.40), we see that the components of the dot product scalar 
function are given in matrix form by  

α y
Ty g=  (6.42) 

 
Proper length.    One can therefore easily construct such a scalar function for every 

vector, simply using the vector’s coordinates, and the metric properties of the space.    
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It is easy to prove using all the above definitions, that the length of a vector, defined 
by (6.43) is completely frame invariant, no matter what kind of transformation is 
performed.  For example, if the frame were scaled up so that a different unit of length 
were being used, the metric tensor would be scaled down to compensate.   

In the language of relativity, such a length defined using a 4-dimensional spacetime 
metric, is called a proper length.  Proper length which is said to be a scalar invariant 
(i.e., a tensor of rank 0).   The geometry expressed by (6.43) is known as a Riemann 
geometry.  In a Riemannian space (e.g., the surface of a sphere), length is calculated 
along geodesics, which are in turn defined by the metric tensor.  It reduces to 
Euclidean geometry in the special case that the metric is the identity matrix, in which 
case we have cartesian coordinates.  

 In physics, the metric tensor (6.41) is a property of spacetime, to be inferred by 
experiment.  According to special relativity, a natural consequence of the universality 
of the speed of light is that spacetime according to an inertial observer has the metric 
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It might seem odd that a dot product e .et t  has a negative value, but if we accept that 
any reasonable definition of “ length” must be frame invariant, that’s what experiment 
tells us! [Schutz, 1990].  The proper length between two points of relative coordinates 
in the rest frame (∆x, ∆y, ∆z, ∆t) is therefore defined as: 

( )l x y z c t0
2 2 2 2 2

1

2≡ + + −∆ ∆ ∆ ∆  (6.45) 

which reduces to our normal concept of spatial length between two points at the same 
time coordinate (Pythagoras Theorem): 

( )s l t x y z0 0
2 2 2

1

20≡ = = + +( )∆ ∆ ∆ ∆  (6.46) 

Proper length is known experimentally to be frame invariant, as is evidenced by the 
independence of the speed of light on the motion of the source; so in two different 
frames moving at constant velocity with respect to each other, we can write: 
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 But, in general, our normal concept of the spatial length would be different! 

( ) ( )′ ≡ ′ + ′ + ′ ≠ ≡ + +s x y z s x y z∆ ∆ ∆ ∆ ∆ ∆2 2 2
1

2
0

2 2 2
1

2  (6.48) 

In general relativity, spatial length is affected not only by relative motion, but also 
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by the gravitational potential.  The geometrical error in assuming a 3-dimensional 
Euclidean space amounts to about 2 cm in the distance between satellites and 
receivers.  The relative geometrical error amounts to 1 part per billion, which is not 
insignificant for today’s high precision capabilities.  For convenience, three 
dimenstional Euclidean space underlies GPS spatial models, with relativity applied to 
geometrical delay as corrections to Pythagoras Theorem (and with relativistic 
corrections applied to compute the coordinate time of signal transmission). 

 
Scalar Function Equivalence in Euclidean Space.   We therefore procede 

assuming 3-dimensional Euclidean geometry is adequate, assuming relativistic 
corrections are applied.   In this case, the metric is represented by a 3×3  identity 
matrix.  By inspection of (6.41), we see that the basis vectors would be orthonormal, 
hence defining a Euclidean space where points are represented by cartesian 
coordinates.  

In Euclidean space, the components of the scalar function are simply the cartesian 
components of the vector.  For each and every cartesian vector, there is a 
corresponding scalar function with identical components as the vector.  One can think 
of this scalar function as the operator that projects any vector onto itself.  In a sense, 
the vector has been redefined in terms of its own functionality.  The set of scalar 
functions defining the dot product operator with respect to each vector in the geodetic 
system completely describes the geometry as far as scalar observations are concerned.   
We can therefore conclude that the dot product operator has an equal footing in 
representing geometry as the vectors themselves.  (Length is geometry! [MTW, 1973]). 

 
Measurements and Geometry.  From a modern physical point of view, 

measurement models should be independent of the selected coordinate frame.  
Therefore, the measurement model must be a function of objects which are frame 
invariant.  In geodesy, we are seeking to estimate spatial vectors in a Euclidean space.  
This seems at first to be problematic, since measurements are scalars, not spatial 
vectors.  This situation can be theoretically resolved, once we realise that vectors have 
a one to one correspondence with scalar functions defined as the dot products between 
the vectors.  These dot products define the length of a vector, and the angles between 
them.  Fundamentally, the above theoretical development proves that the dot products 
contain all the geometrical information than did the original vectors.  A pertinent 
example, is the differential delay of a quasar signal between two VLBI telescopes.  It 
represents a projection of the baseline vector connecting the two telescopes in the 
quasar direction. Many observations would reveal the vector as it projects onto 
different directions.   

We must therefore be careful when it comes to estimating coordinates.  From what 
has been said, only the dot products between vectors are estimable, not the coordinates 
themselves.   Since we have freedom to select different frames it is clear that the set of 
coordinates in a given frame must be redundant, which is to say, there are more 
coordinates than is necessary to define the vectors, and therefore scalar functions and 
modelled observations.   

Assuming the above Euclidean model, we can show explicitly the source of this 
redundancy.  Following again the VLBI analogy, consider a baseline vector x, and a 
quasar direction y, which is represented in two different solutions, one in frame F, the 
other in frame F’ .  Projection is formally represented by the dot product between the 
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two vectors.  The equivalence relation (6.34) tells us that the dot product between any 
two vectors must give the same answer no matter which frame is used.  Since we 
assume we can construct orthonormal base vectors (of unit length, and at right angles 
to each other, as in a Cartesian frame), we can write the dot product for both frames 
as: 

s x y x yT T≡ = = ′ ′x. y  (6.49) 

What types of coordinate transformation are allowed that satisfy (6.41)?    It can 
easily be shown that the transformation matrix must be orthogonal; that is its 
transpose equals its inverse.  In matrix notation, let us consider equation (6.49), where 
we apply a transformation R to go from frame F coordinates to frame F’  coordinates: 
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Such transformations are called rotations, and  (6.50) shows the property of rotation 
matrices.  We therefore deduce that global rotations have no effect on dot products 
computed according to (6.49) (which assumed Euclidean frames).    

The analogy in special relativity is the Lorentz transformation, which can be 
considered as a rotation in 4-dimensional spacetime (3 rotations + 3 velocity boosts). 
Relativistic transformations preserve proper length, but can change spatial length.  
The only change in scale which is physically acceptable is that due to the relativistic 
choice of reference frame, which depends on relative speed (special relativity) and the 
gravitational potential (general relativity).   For example, VLBI solutions computed in 
the barycentric frame (origin at the centre of mass of the solar system) produce 
baselines with a different scale to SLR solutions computed in the geocentric frame.  

6.4.2 Discussion 

Space Geodetic Consequences.   The corollary of equation (6.50) and the 
correspondence between vectors and scalar functions, is that space geodetic data 
cannot provide any information on global rotations of the entire system. Since this 
arbitrariness has 3 degrees of freedom (a rotation), it results in a 3-rank deficient 
problem. This justifies our original statement that coordinates are not estimable.  

In the case of VLBI, the entire system includes quasars, so the rotation of the Earth 
is still accessible.  However, in GPS, the system has satellites that can be only be 
considered approximately fixed (through dynamical laws which have systematic 
errors), and therefore we can conclude the data only weakly constrains long period 
components of Earth rotation.  As for relative rotation of the Earth’s plates, we can 
conclude that, on purely geometrical grounds, there is no advantage of VLBI over 
GPS (this is not to exclude other classes of arguments to favour one or the other).    
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Geometrical Paradigm.  The paradigm for this section is geometrical. In the spirit 
of Einstein, although conventions and coordinates provide a convenient representation 
of reality for computational purposes, our intuition is often better served by a 
geometrical model that is independent of these conventions.  The relationship between 
the geometrical paradigm and the conventional model is discussed below, where we 
refer the reader to Chapter 1 for a more complete description of the conventional 
terms.    

Consider a network of GPS stations, tracking all the GPS satellites.  Using the GPS 
data, we can estimate the geometrical figure defined by the stations and the satellite 
orbits. That is, GPS provides information on internal geometry, including the 
distances between stations, and the angles between baselines, and how these 
parameters vary in time. The geometrical figure defined by the stations is sometimes 
called the polyhedron, particularly in IGS jargon.  This is to remind us that, 
fundamentally, the data can tell us precisely the shape of the figure described by the 
network of points.  For permanent tracking networks, the data can also tell us how the 
polyhedron’s internal geometry changes over time.  The elegant aspect of this 
geometrical picture, is that it more closely relates to quantities that can actually be 
measured in principle, such as the time it takes for light to travel from one station to 
another.  This is in contrast to  coordinates  which are frame dependent. 

Since GPS orbits can be well modelled over an arc length of a day (2 complete 
orbits), we have access to an instantaneous inertial frame, which by definition, is the 
frame in which Newton’s laws appear to be obeyed.  In historical terminology, GPS 
data together with dynamical orbit models give us access to an inertial frame of date.  
A frame determined this way, cannot rotate significantly relative to inertial space, 
otherwise the orbits would not appear to obey Newton’s laws.   

The system can therefore determine the direction of the instantaneous spin axis of 
the Earth with respect to the polyhedron. Although the spin axis is not tangible like 
stations and satellites, it is an example of an estimable vector.   For example, GPS can 
tell us unambiguously the angles between any baseline and the instantaneous spin axis 
(called the Celestial Ephemeris Pole, CEP).  We can therefore determine a station’s 
latitude relative to the CEP without any problem.   However, the direction of the CEP 
as viewed by the polyhedron does wander from one day to the next, a phenomenon 
known as polar motion.  It would therefore be impractical to define a station’s latitude 
this way, so instead, a conventional reference pole direction is defined (called the 
conventional terrestrial pole, or CTP).   

The problem is, the choice of CTP is arbitrary, and fundamentally has nothing to do 
with GPS data.  Therefore, conventional station latitudes (relative to the CTP) strictly 
cannot be estimated, but only true latitudes can (relative to the CEP).  This state of 
affairs is not hopeless; for example, the CTP can be defined by constraining at 2 
station latitudes.  If we allow for time evolution of the polyhedron (which we must), 
then we must also specify the time evolution of the CTP with respect to the 
polyhedron, which again goes beyond GPS, and into the domain of conventions. 

GPS is also sensitive to the rate of rotation of the Earth about the CEP.  Again, this 
is because the satellites are forced to obey Newton’s laws in our model.  Since the 
spin rate can be estimated, our model can map the time series of station positions in 
the instantaneous inertial frame back to an arbitrary reference time.  We can therefore 
determine the relative longitude between stations, as angles subtended around the 
CEP.  However, just as for latitudes, the longitudes determined this way would 
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wander from one day to the next due to polar motion (an effect that is maximum near 
the poles, and negligible at the equator).  Longitudes are therefore also dependent on 
the choice of CTP.  Moreover, only relative longitude can be inferred, since GPS data 
has no way to tell us exactly the location of the Prime Meridian.  Once again, we 
would have to go beyond GPS, and arbitrarily fix some station’s longitude to a 
conventional value (preferably, near the equator), thus effectively defining the Prime 
Meridian. 

We note in passing that the CEP also varies in inertial space (by nutation and 
precession).  We only need to model this variation over the period for which we are 
modelling the satellite dynamics, which is typically over a day or so.  GPS is therefore 
insensitive to nutation and precession errors longer than this period, because, in effect, 
we are defining a brand new inertial frame of date every time we reset the orbit model.  
The reason for having relatively short orbit arcs (as compared to SLR) is not because 
of fears about nutation, but rather because of inadequacies in the orbit model.  But an 
orbit arc of a day is sufficient for the purpose of precisely determining the polyhedron, 
which implicitly requires a sufficiently precise determination of polar motion and 
Earth spin rate. (The Earth’s spin rate is often parameterised as the excess length of 
day, or variation in UT1-UTC, that is the variation in the Earth’s hour angle of 
rotation relative to atomic time).   

Finally, there is another geometrical object to which GPS is sensitive, and that is the 
location of the Earth’s centre of mass within the geometrical figure of the polyhedron.   
In Keplerian terms, the Earth centre of mass is at the focus for each and every GPS 
elliptical orbit.  Of course, Kepler’s laws are only approximate.  More precisely, the 
Earth’s centre of mass is the dynamical origin of the force models used to compute the 
GPS satellite orbits. 

 If we arbitrarily displaced the polyhedron relative to this origin, we would find the 
satellite orbits appearing to violate Newton’s laws.  We therefore can say that GPS 
can locate the geocentre, which is to say that it can determine a displacement of the 
centre of figure with respect to the centre of mass [Vigue et al., 1992].  Effectively, 
GPS therefore allows us to estimate geocentric station height, which is the radial 
distance from the Earth centre of mass.  However, it should be kept in mind, that the 
geocentre estimate is very sensitive to the accuracy of orbit force models, and is not 
determined as precisely as the geometry of the figure.  In fact, vary rarely is true 
geocentric height variation shown from GPS analyses, but rather height relative to the 
average figure, which is an order of magnitude more precise, with the (apparent) 
geocentre variation often displayed separately as a global parameter. 

6.4.3 Applications 

Free Network Solutions.    If we estimated all station coordinates and satellite 
positions, the 3-rank deficiency in the problem would imply that a solution could not 
be obtained.  However, suppose we apply very loose a priori constraints to the station 
coordinates.  The above theory predicts that our resulting coordinates would still be 
ill-defined, however the geometry of the figure would be estimable [Heflin et al., 
1992].  That is, if we were to compute the dot product between any two vectors in the 
system, we would find it to be well constrained by the data.  Such a solution has been 
called a free network solution, a fiducial-free solution, or a loose solution.   
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We discuss below several applications of free network solutions, which for example 
can be used directly to estimate geophysical parameters of interest, since geophysical 
parameters depend on scalar functions of the vectors, not the coordinates. For some 
applications, though, a frame definition may be necessary. 

 
Frame Definition.   Although conventional reference systems may have ideal 

notions of the basis vectors and origin, conventional terrestrial frames today are 
defined through the coordinates of a set of points co-located with space geodetic 
instruments.  These points serve to define implicitly the directions of the coordinate 
axes (i.e., the basis vectors).  Such frames contain an extremely redundant number of 
points, and so might also serve as a source of a priori geometrical information. 

One could choose to fix all these points, which might be advantageous for a weak 
data set, where a priori information may improve the parameters of interest.  If the 
data set is strong, finite errors in the frame’s geometry will conflict with the data, 
producing systematic errors.  To avoid this problem, we should only impose minimal 
constraints.  The large redundancy allows one to define the frame statistically, so that 
errors on the redundant set of definitions for the X,Y, and Z axis directions are 
averaged down.  This can be achieved using either 3 equations of constraint for 
orientation, or by using the fiducial free, or free network approach, where all station 
coordinates are estimated, with the final indeterminate solution being rotated to agree 
on average with the frame. 

 
Quality Assessment.  Internal quality assessment involves looking at the residuals 

to the observations, after performing the least-squares solution, and assessing the 
significance of deviations.  Residuals are estimable even in the absence of frame 
definition, and so it is recommended to assess internal quality of the data using free 
network solutions, prior to applying any constraints, otherwise it would be impossible 
to distinguish data errors from systematic errors arising from the constraints. 

External quality assessment involves comparing geodetic solutions. How can we 
tell if the geometry of the solutions (i.e., the vectors) are the same, if the solution is 
only represented by coordinates?   

If we do happen to know how the base vectors are related between the two systems, 
then we can simply transform one set of coordinates and do a direct comparison.  This 
is rarely the case, unless the base vectors are implicitly defined through constrained 
coordinates in the system.   

Alternatively, we can use the fact that, fundamentally, a vector reveals itself through 
its scalar functions, and check all of the dot products in the system. Obvious 
candidates for this include baseline length, and angles between baselines.   

Thirdly, one can solve for a rotation transformation between the two frames, apply 
the transformation, and compare all the vector coordinates, which it must be stressed, 
are to be constructed between physical points to which the observations are sensitive.    

This last point requires clarification.  The position coordinates of a point, for 
example, do not constitute the coordinates of a physical vector, unless the origin has 
some physical significance in the model.  For VLBI it does not, for SLR it does, and 
for GPS, there is a degree of sensitivity which depends on global coverage, and other 
issues.   We are allowed to use the Earth centre of mass as a physical point for satellite 
systems, so “position vector”  does become physically meaningful in the special case 
that the origin is chosen to be at the Earth centre of mass.  So, strictly, the theory does 
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not permit a direct comparison of VLBI station coordinates with, say, GPS; however, 
it does permit a comparison of the vectors.  However,  if one were to insist on 
comparing single station positions,  one could remove an estimated translational bias 
between the frames, but the resulting station coordinates would logically then be some 
linear combination of all estimated station coordinates, making interpretation 
potentially difficult. 

Finally, as already discussed, a change in scale is not considered an acceptable 
transformation between frames assuming Euclidean space. Apart from relativistic 
considerations, scaling between solutions must be considered as systematic error 
rather than a valid frame transformation.   

 
Coordinate Precision.  We should now be able to see that coordinates could not be 

estimated unless we have observational access to any physical objects that might have 
been used to define the unit vectors.  (For example, a physical inscription marking the 
Prime Meridian).  Coordinate precision therefore not only reflects the precision to 
which we have determined the true geometry of the figure, but also the precision to 
which we have attached ourselves to a particular frame. Coordinate precision (e.g., as 
formally given by a covariance matrix computation) can therefore be a very 
misleading measure of the geometrical precision.  

 
Geophysical Interpretation.   Our ability to attach ourselves to a particular frame 

has absolutely no consequence to the fundamental physics to be investigated (say, of 
the Earth, or of satellite orbit dynamics).  However particular frames may be easier to 
express the dynamic models.   For example, the inertial frame is better for describing 
the satellite equations of motion.  A terrestrial (co-rotating) frame is easier for 
describing motion of the Earth’s crust.  Nevertheless, the estimable quantities will be 
frame independent. 

One pertinent example here is the relative Euler pole of rotation between two plates, 
with the estimable quantities being, for example, the relative velocity along the 
direction of a baseline crossing a plate boundary.  Another example is crustal 
deformation due to strain accumulation.  Here, the invariant geometrical quantity is 
the symmetic strain tensor, with the invariant estimable quantities being scalar 
functions of the strain tensor.     However, space geodesy cannot unambiguously state, 
for example, the velocity coordinates of a point, since that requires arbitrarily defined 
axes.  

When comparing geophysically interesting parameters, one must take care to ensure 
frame invariance, or at least, approximate frame invariance.  For example, comparing 
station velocity components between solutions, or Euler poles of individual plates will 
generally show discrepancies that relate to frame definition. 

 
Ambiguity Resolution.   This section could more generally refer to all inherently 

scalar parameters, such as tropospheric or clock parameters.  Like these parameters, 
the carrier phase ambiguities are manifestly frame independent quantities.  As a 
consequence, no frame constraints are necessary at all to estimate ambiguity 
parameters.  In fact, there are good reasons for not including frame constraints.  Frame 
constraints, if not minimal, can distort solutions due to systematic error in the a priori 
geometry.  This can be very undesirable where the a priori information is suspect.   

As a test of this concept, Blewitt and Lichten [1992] solved for ambiguities on a 
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global scale using a network solution free of frame constraints, and found they could 
resolve ambiguities over even the longest baselines (up to 12,000 km).   

 
Covariance Projection.  One might wish to compare coordinates after applying a 

rotation between solutions.  Or perhaps one wishes to assess the geometrical strength 
of the free network solution.   In both cases, it is useful to consider the coordinate 
error as having a component due to internal geometry, and external frame definition.  
A free network solution is ill-defined externally, but well defined internally.  How can 
we compute a covariance matrix that represents the internal errors?  

We can apply a projection operator, which is defined as the estimator for 
coordinate residuals following a least squares solution to rotation.  Consider the 
linearised observation equation which rotates the coordinates into another frame, 
accounting for possible measurement error: 

x Rx v= ′ +  (6.51) 

This can be rearranged so that the 3 unknown angles contained in R are put into a 
column vector θ , and defining a rectangular matrix A as a linear function of θ  such 
that: 

A Rxθ ≡ ′  (6.52) 

Therefore, after substitution in to (6.23), we find the least squares estimator for the 
errors: 
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The covariance matrix for the estimated errors is therefore: 
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 (6.54) 

This is called projecting the covariance matrix onto the space of errors [Blewitt et 
al., 1992].  Since these errors are scalar quantities (independent of frame), they 
represent the geometrical errors of the system. Therefore, the projected covariance 
matrix is a formal computation of the precision to which the geometry has been 
estimated, without us having to define a frame. 

Note from (6.54) that we can write the original covariance matrix for coordinates 
as: 
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This shows explicitly that the coordinate covariance can be decomposed into a 
covariance due to internal geometrical errors, and an external term which depends on 
the level of frame attachment.   

 
Loosening Transformation.   In the case of loose solutions, in effect the 

orientation parameters have loose a priori constraints.  If this constraint can be 
represented by the (large) a priori covariance matrix E (external), equation (6.54) 
would more correctly read (see 6.17b): 
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x v
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− −
�

�

1 1

 (6.56) 

where we use the fact that the data themselves provide no information on global 

orientation, hence the components of A WA CT = −
�θ

1  can be considered negligibly 

small. 
We call (6.56) a loosening transformation, or a covariance augmentation. The 

resulting covariance is often called a loosened covariance, or loosened solution (even 
though we have not changed the estimates themselves).  It can be applied, for 
example, to network solutions that have a well defined constraint in orientation, for 
applications where we wish to effectively remove the frame definition.  Once 
augmented in this way, the coordinate covariance can then be projected onto another 
frame, applying the projection operator.   

Equation (6.55) should look familiar.  We have actually seen it before in equation 
(6.26), in the context of augmenting the stochastic model as an alternative to 
estimating extra parameters. Effectively, this is telling us that a combination of 
loosened solutions is equivalent to estimating and removing a relative rotation 
between constrained networks and combining them.  It also tells us that it is 
unnecessary to estimate and remove relative rotations between loose solutions prior to 
combination.  

This has very practical applications when combining network solutions from 
various analysis groups, who might apply different minimal coordinate constraints.  
Upon receiving a coordinate solution with full covariance matrix, one can procede to 
loosen the covariance matrix prior to combination with other solutions.  Therefore, 
one does not have to estimate and apply transformation parameters every time the 
coordinate solution is processed.  Moreover, covariance loosening has the elegant 
aspect in that the fundamental rank-3 deficiency is represented in an obvious way to 
the user, as the diagonal elements of the covariance matrix will be large, with the off-
diagonal elements containing the geometrical information to which the data are truely 
sensitive. 

As an example, the IGS Densification Program (IDP) currently uses the above 
concept of combining loose covariance matrices from a variety of analysis centres.  
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Algorithm development for manipulating such solutions becomes very 
straightforward, when one does not have to worry about solutions being contrained to 
different frames.   The IDP also, once again, illustrates the concept of global and local 
parameters, with each regional network being connected to the global network using 3 
common anchor stations. Using 3 anchor stations allows for the implicit estimation of 
relative rotation when combining regional and global network solutions [Blewitt et al, 
1993 and 1995].   

6.5 SUMMARY AND CONCLUSIONS 

We are now in a position to summarise some of the most important conclusions in 
terms of a few maxims, which are purposely expressed in an informal way to appeal to 
an intuitive mode of thinking. 

6.5.1 Equivalence of Pseudorange and Carrier Phase 

Models for the pseudorange can be constructed using carrier phase, and visa versa 
This allows us to develop algorithms that use both data types to: 

•Estimate pseudorange multipath 
•Edit carrier phase and pseudorange data for outliers 
•Edit carrier phase data for cycle slips 
•Smooth the pseudorange using the carrier phase 
•Process undifferenced data without a preliminary point position solution 
•Resolve carrier phase ambiguities in a model independent way 

6.5.2 Equivalence of the Stochastic and Functional Models 

(covariance augmentation) ≡ (weight reduction) ≡ (estimation)=(data  combination) 
This allows us to develop algorithms to: 

•separately estimate global and local parameters 
•partition problems in time 
•partition problems in space 
•remove nuisance parameters 
•implicitly estimate parameters 
•estimate stochastic parameters 
•estimate precise point positions using single receivers 

6.5.3 Frame Invariance and Estimability 

(invariant geometry)=(tensors, vectors, scalars) ≡ (scalar functions)=(observations) 
This allows us to understand: 

•a geometrical paradigm for space geodesy 
•which parameters are estimable 
•problems with coordinate estimability 
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•frame definition 
•the importance and utility of free network solutions 
•internal and external components of coordinate error 
•covariance projection as a means to quantify geometrical error 
•loosening transformation to remove rotational information 
•network combination analysis 

6.5.4 Concluding Remark 

What I hope to have achieved in this chapter is (1) specifically, to impart an 
intuitive understanding of certain aspects of GPS data processing and estimation, and 
(2) more generally, to have inspired a change in the way we might think about GPS 
data processing problems in general, by looking for patterns, symmetries, and 
equivalences, and exploiting these so that answers to questions become more obvious. 
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