
Some random notes:

Using vi/vim to look at files

Use “-R” (readonly) flag to prevent
accidental overwriting of the file.

But

Use “-r filename” flag after an editor or
system crash. (Recovers the version of
filename that was in the buffer when the

crash occurred.)

Awk (continuation)

- NOTE –

We are going to use awk as the generic
program name (like kleenex for facial tissue)

Wherever you see awk, you will actually use
nawk (or gawk if you are using that on a

LINUX box).

AWK Relational Operators

Returns 1 if true and 0 if false

!!! opposite of bash test command

AWK Relational Operators

 All relational operators are left to right
associative

< : test for less than
<= : test for less than or equal to

> : test for greater than
>= : test for greater than or equal to

== : test for equal to
!= : test for not equal

AWK Boolean (Logical) Operators

Boolean operators return 1 for true and 0
for false

&& : logical AND; tests that both
expressions are true, left to right

associative.

AWK Boolean (Logical) Operators

|| : logical OR ; tests that one or both of
the expressions are true left to right

associative.

! : logical negation; tests that expression is
true.

Unlike bash, the comparison and relational
operators don’t have different syntax for

strings and numbers.

ie: to test for equality use “==“ in awk

rather than “==“ to compare strings and “-eq”
to compare numbers when using the bash

test command.

More Built-in AWK Variables

FS : field separator specifies how to define
fields (usually space, maybe also tab

[whitespace]), may be modified by resetting
the FS built in variable. (we have seen this already)

OFS : output field separator default is “ “ or
a whitespace

More Built-in AWK Variables

RS : record separator specifies when the
current record ends and the next begins

default is “\n” or newline, useful option is “”,
or a blank line.

ORS : output record separator default is a
“\n” or newline.

More Built-in AWK Variables

NF : number of fields (in line) variable.

NR : number of records (gives current line
number).

FILENAME : the name of the file currently
being read.

Basic structure of AWK use

The essential organization of an AWK
program follows the form:

pattern { action }

The pattern specifies when the action is
performed.

Like most UNIX utilities, AWK is line
oriented.

That is, the pattern specifies a test that is
performed with each line read as input.

If the condition is true, then the action is
taken.

The default pattern is something that
matches every line.

This is the blank or null pattern.

Two other important patterns are specified
by the keywords "BEGIN" and "END.”

As you might expect, these two words
specify actions to be taken before any lines

are read, and after the last line is read.

The AWK program:

BEGIN { print "START" }

{ print }

END { print "STOP" }

adds one line before and one line after the
input file.

This isn't very useful, but with a simple
change, we can make this into a typical AWK

program:

BEGIN { print "File\tOwner"," }

{ print $8, "\t", $3}

END { print " - DONE -" }

The characters "\t" Indicates a tab
character so the output lines up on even

boundries.

The "$8" and "$3" have a meaning similar to
a shell script.

Instead of the eighth and third argument,
they mean the eighth and third field of the

input line.

You can think of a field as a column, and the
action you specify operates on each line or

row read in.

There are two differences between AWK
and a shell processing the characters within

double quotes.

AWK understands special characters follow
the "\" character like "t”.

The Bourne and C UNIX shells do not.

Also, unlike the shell (and PERL) AWK does
not evaluate variables within strings.

The second line, for example, could not be
written:

 {print "$8\t$3" }

As it would print ”$8$3.”

(where  is a usually invisible tab).

Inside quotes, the dollar sign is not a special
character. Outside, it corresponds to a field.

Say we want to print out the owner of every
file

Field or column (RS=“ “)

1111111111 2 33333333 4444 5555 666 77 8888 9999999999999

-rwxrwxrwx 1 rsmalley user 7237 Jun 12 2006 setup_exp1.sh

So we need field 3 and 9.

Example file – create the file owner.nawk
and make it executable.

#!/bin/awk -f

BEGIN { print "File\tOwner" }

{ print $9, "\t", $3}

END { print " - DONE -" }

Now we have to get the input into the
program. Pipe in the long directory listing.

alpaca.ceri.memphis.edu507:> ls -l | owner.nawk

File Owner

CHARGE-2002-107 rsmalley

022285A.cmt rsmalley

190-00384-07.pdf rsmalley

. . .

zreal2.f rsmalley

zreal2.o rsmalley

 - DONE -

alpaca.ceri.memphis.edu508:>

Say I want to print out a command line
argument?

Now we have a little problem.

In the shell, $1 is the first command line
argument.

In awk, $1 is the first column of the input
line.

How does one “fix” this?

Say I want to print out a shell or
environment variable?

Here again there is a little problem.

AWK does not understand $VAR since the $
goes with column numbers.

How do I fix this?

Quotes to the rescue!

#!/bin/sh

denom=2

MSG="hello world"

NUMS="0.0,0"

echo msg: $MSG | nawk '{print $0}'

echo nums: $NUMS | nawk '{print $0}'

nawk '{print $1/'$denom' , '$denom' , '$NUMS' , "'"$MSG"'" }'
<<END

1

2

END

SCALE=2

FACTOR=5

RESCALE=`nawk 'BEGIN {print '$SCALE'*'$FACTOR'}'`

echo $RESCALE

alpaca.ceri.memphis.edu619:> Pvar.nawk

msg: hello world

nums: 0.0,0

0.5 2 0 0 hello world

1 2 0 0 hello world

10

alpaca.ceri.memphis.edu620:>

#!/bin/sh

denom=2

MSG="hello world"

NUMS="0.0,0"

echo msg: $MSG | nawk '{print $0}'

echo nums: $NUMS | nawk '{print $0}'

nawk '{print $1/'$denom' , '$denom' , '$NUMS' , "'"$MSG"'" }'
<<END

1

2

END

SCALE=2

FACTOR=5

RESCALE=`nawk 'BEGIN {print '$SCALE'*'$FACTOR'}'`

echo $RESCALE

alpaca.ceri.memphis.edu619:> Pvar.nawk

msg: hello world

nums: 0.0,0

0.5 2 0 0 hello world

1 2 0 0 hello world

10

alpaca.ceri.memphis.edu620:>

There are three ways to figure out the
quotes

1) Learn how to think UNIX.

2) Experiment.

3) Ask a UNIX Wizard/Guru.

Many ways to skin a cat with escape/quotes
lpaca.581:> nawk 'BEGIN { print "Dont Panic!" }'

Dont Panic!

Would be nice to have in correct English

(i.e. with the apostrophe).

BUT

That is also a quote – which means something
to the shell!

(Try it by just putting in an apostrophe.)

alpaca.581:> nawk 'BEGIN { print "Dont Panic!" }'

Dont Panic!

alpaca.582:> nawk 'BEGIN { print "Don'\''t Panic!" }'

Don't Panic!

alpaca.583:> nawk 'BEGIN { print "Don'"'"'t Panic!" }'

Don't Panic!

Alpaca.584:> echo Don\'t Panic! | nawk '{print}'

Don't Panic!

alpaca.585:> echo Don\'t Panic! | nawk "{print}"

Don't Panic!

Look carefully at the 2 lines above – you can
(sometimes) use either quote (‘ or “) to

protect the nawk program (depends on what
you are trying to protect from the shell).

alpaca.586:> echo Don”’”t Panic! | nawk "{print}"

Don't Panic!

alpaca.587:> nawk 'BEGIN { print "\"Dont Panic!\"" }'

"Dont Panic!”

accessing shell variables in nawk

3 methods to access shell variables inside a
nawk script ...

1. Assign the shell variables to awk variables
after the body of the script, but before you

specfiy the input

awk '{print v1, v2}' v1=$VAR1 v2=$VAR2 input_file

Note: There are a couple of constraints with
this method;

- Shell variables assigned using this method
are not available in the BEGIN section

- If variables are assigned after a filename,
they will not be available when processing

that filename …
e.g.

awk '{print v1, v2}' v1=$VAR1 file1 v2=$VAR2 file2

In this case, v2 is not available to awk when
processing file1.

Also note: awk variables are referred to by
just their name (no $ in front)

awk '{print v1, v2, NF, NR}' v1=$VAR1 file1 v2=$VAR2 file2

2. Use the -v switch to assign the shell
variables to awk variables.

This works with nawk, but not with all
flavours of awk.

nawk -v v1=$VAR1 -v v2=$VAR2 '{print v1, v2}' input_file

3. Protect the shell variables from awk by
enclosing them with "'" (i.e. double quote -

single quote - double quote).

awk '{print "'"$VAR1"'", "'"$VAR2"'"}' input_file

Looping Constructs in AWK

awk loop syntax are very similar to C and perl

while: continues to execute the block of
code as long as condition is true

while (x==y) {

. . .

block of commands

. . .

}

do/while
do the block of commands, while the test is

true
do {

. . .

block of commands

. . .

} while (x==y)

The difference between while (last slide)
and do/while is when the condition is tested.

It is tested prior to running the block of
commands for a while loop, but tested after
running the block of commands in a do/while

loop (at least one trip through block of
commands will occur)

for loops

The for loop, allows iteration/counting as one
executes the block of code.

It is one of the most common loop
structures.

for (x=1; x<=NF; x++) {

. . .

block of commands

. . .

}

for (x=1; x<=NF; x++) {

. . .

block of commands

. . .

}

This is an extremely useful/important
construct as it allows applying the block of

commands to the elements of an array

(at least numerical arrays with all the
elements “filled-in”).

break and continue

break: breaks out of a loop

continue: restarts at the beginning of the
loop

x=1

while (1) {

if (x == 4) {

x++

continue

}

print "iteration",x

if (x > 20) {

break

}

x++

}

if/else/else if blocks

similar to bash but syntax is different (no
then or fi, uses brackets { . . . } instead)

if (conditional1) {

. . .

block of commands

. . .

} else if (conditional2) {

. . .

block of commands

. . .

} else {

. . .

block of commands

. . .

}

else if and else
are optional

Simple awk example:

Say I have some sac files with the horrid iris
dmc format file names

1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC

and it would rename it to something more
“user friendly” like KMBO.LHZ to save on

typing while doing one of Chuck’s homeworks.

alpaca.540:> more rename.sh

#!/bin/sh

#to rename horrid iris dmc file names

#call with rename.sh A x y

#where A is the char string to match, x and y are the field

#numbers in the original file name you want to use in the

#final name, and using the period/dot for the field seperator

#eg if the file names look like

#1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC

#and you would ;ike to rename it KMBO.LHZ

#the 8th field is the station name, KMBO

#and the 10th field is the component name, LHZ

#so you would call rename.sh SAC 8 10

#(it will do if for all file names in your directory

#containing the string "SAC”)

for file in `ls -1 *$1*`

do

mv $file `echo $file | nawk -F. '{print $'$2'"."$'$3'}'`

done

alpaca.541:>

Example

Checkbook balancing program in awk

- Simple tab-delimited text file into which
recent deposits and withdrawals are

entered.

- The idea is to hand this data file to an awk
script that would automatically add up all the

amounts and report the balance.

Input file format:

Fields are separated by one or more tabs.

After the date (field 1, $1), there are two
fields: ”exp field" and "inc field”.

When entering an expense, a four-letter
nickname is entered in the exp field, and a

"-" (blank entry) in the inc field.
When entering a deposit, a four-letter

nickname is entered in the inc field, and a
"-" (blank entry) in the exp field.

Here's what an expense (debit) looks like:

23 Aug 2000
food
-
-
Y
Jimmy's Buffet

30.25

Here's what a deposit looks like:

23 Aug 2000
-

inco
-
Y
 Boss Man

 2001.00

Fields

111111111112  3333  4  5  66666666  7777777

Note, there are tabs (not spaces) between
the fields, which you can’t see in the display.

Now for the code

set up global variables

#!/usr/bin/awk -f

BEGIN {

FS="\t+"

months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec"

}

"#!...” allows execution directly from shell.

BEGIN block gets executed before nawk
starts processing our checkbook file.

Set FS to "\t+” (one or more tabs).

In addition, we define a string called months.

Set subroutines (aka functions)

Define your own awk function.
Format -- "function", then the name, and

then the parameters separated by commas,
inside parentheses.

Finally a "{ }" code block contains the code
that you'd like this function to execute.

function monthdigit(mymonth) {

return (index(months,mymonth)+3)/4

}

nawk provides a "return" statement that
allows the function to return a value.

function monthdigit(mymonth) {

return (index(months,mymonth)+3)/4

}

This function converts a month name in a 3-
letter string format into its numeric

equivalent. For example, this:
print monthdigit("Mar")

....will print this:

3

What does this do?

index(months,mymonth)

Built-in string function index, returns the
starting position of the occurrence of a

substring (the second parameter) in another
string (the first paramter), or it will return

0 if the string isn't found.

months="Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec”

 000000000111111111122222222223333333333444444444

 123456789012345678901234567890123456789012345678

 

print index(months,”Aug”)

29

To get the number associated with the
month (based on the string with the 12

months) add 3 to the index (29+3=32) and
divide by 4 (32/4=8, Aug is 8th month).

The string months was designed so the
calculation gave the month number.

More functions/subroutines

three basic kinds of transactions, credit
(doincome), debit (doexpense) and transfer

(dotransfer).
function doincome(mybalance) {

mybalance[curmonth,$3] += amount

mybalance[0,$3] += amount

}

function doexpense(mybalance) {

mybalance[curmonth,$2] -= amount

mybalance[0,$2] -= amount

}

function dotransfer(mybalance) {

mybalance[0,$2] -= amount

mybalance[curmonth,$2] -= amount

mybalance[0,$3] += amount

mybalance[curmonth,$3] += amount

}

The main code block will process each line of
the checkbook file sequentially, calling one
of these functions so that the appropriate
transactions are recorded in an awk array.

All three functions accept one argument,
called mybalance.

mybalance is a placeholder for a two-
dimensional array, which we'll pass in as an

argument.

We will be storing the data in a 2-
dimensional “array”.

What is an “array”?

An array is a table of values, called elements.

The elements of an array are distinguished
by their indices.

Indices in awk may be either numbers or
strings.

(as awk maintains a single set of names for naming variables, arrays and
functions, you cannot have a variable and an array with the same name in the

same awk program.)

Arrays in awk superficially resemble arrays
in other programming languages; but there

are fundamental differences.

The most fundamental or significant
difference is that any number or string may

be used as an array index in awk, not just
consecutive integers.

(in the end in awk, array indicies, even numerical ones, are strings)

In awk, you also don't need to specify the
size of an array before you start to use it.

Arrays in awk are associative.
This means that each array is a collection of
pairs: an index, and its corresponding array

element value:

Element 4 Value 30

Element 2 Value "foo"

Element 1 Value 8

Element 3 Value ""

The pairs are shown in jumbled order
because the array index order is irrelevant

and has nothing to do with storage in
memory.

One advantage of associative arrays is that
new pairs can be added at any time.

Adding a 10th element whose value is "number
ten” to our example array.

Element 10 Value "number ten"

Element 4 Value 30

Element 2 Value "foo"

Element 1 Value 8

Element 3 Value ""

Now the array is sparse, which just means
some indices are missing: it has elements 1

through 4 and 10, but doesn't have elements
5 through 9.

Indices of associative arrays don't have to
be positive integers.

Any number, or even a string, can be an
index.

Here is an array which translates words
from English into French:

Element "dog" Value "chien"

Element "cat" Value "chat"

Element "one" Value "un"

Element 1 Value "un”

We use the number one in each language
spelled-out and in numeric form--a single

array can have both numbers and strings as
indices.

(array subscripts in awk are actually always strings)

The principal way of using an array is to
refer to one of its elements.

An array reference is an expression which
looks like this:

array[index]

Here, array is the name of an array.

The expression index is the index of the
element of the array that you want.

Array elements are assigned values just like
awk variables:

array[subscript] = value

array is the name of your array.

subscript is the index of the element of the
array that you want to assign a value.

value is the value you are assigning to that
element of the array.

mis-indexing of arrays (when they are
indexed by integers) is one of the most

common bugs in programming.

If you mis-index an array in awk, it makes a
new element with that index and a null value.

(Wastes space and does not return value you were trying to obtain.)

To explicitly set an array element, use
brackets to specify which index of the array

you are setting.
strings – when used as indices or values –

have to be in quotes
BEGIN {

animals["dog"] = "perro"

animals["cat"] = "gato"

stuff[1]=1

stuff[4]=4

stuff[-1]=-1

stuff[0]=0

print animals["dog"]

print stuff[1]

print stuff[2]

print stuff[3]

print stuff[4]

print stuff[-1]

print stuff[0]

 }

Reference to elements that don’t
 exist

Execute the nawk script

smalley$ nawk -f arrays.nawk

perro

1

4

-1

0

smalley$

Null output for the ones that don’t exist

to delete an array element, use the delete
command

delete myarray[1]

Say we have this file and we want to put it
into numerical order in an awk array.

carpincho:ESCI7205 smalley$ more data.txt

4

1

3

2

a

7

B

carpincho:ESCI7205 smalley$

Try this.
(white box – look at raw and sorted file, green box – fill array with sorted

elements and numerical index, yellow box print out array indices and values.)
carpincho:ESCI7205 smalley$ more awkex1.nawk

#!/bin/bash

cat data.txt

echo ------

sort -n data.txt

echo ------

sort -n data.txt|\

awk 'BEGIN {c=0} {

if ($0 > 0) {

print c, $0

 myarray[c]=$0; c++;

 }

}

END {

 for (c in myarray) printf ":: %s %s ",c,myarray[c];
printf "\n”;

 }

'

carpincho:ESCI7205 smalley$

carpincho:ESCI7205 smalley$ awkex1.nawk

4

1

3

2

a

7

b

a

b

1

2

3

4

7

0 a

1 b

2 1

3 2

4 3

5 4

6 7

:: 2 1 :: 3 2 :: 4 3 :: 5 4 :: 6 7 :: 0 a :: 1 b

carpincho:ESCI7205 smalley$

Origninal file

After sort

Store in
array: array
index plus
value

When print
out (random
order)

you can also set arrays using the split
command

split(“string”,destination array,separator)

split also returns the number of indices

numelements=split("Jan,Feb,Mar,Apr,May",mymonths,",”)

Splits the string into array elements using
the “,” to break the string into elements, and

returns numelements=5 and
mymonths[1]=“Jan”

A multi-dimensional array is an array in
which an element is identified by a sequence

of indices, instead of a single index.

For example, a two-dimensional array
requires two indices.

The usual way to refer to an element of a
two-dimensional array named grid is with

grid[x,y].

Back to our checkbook

Record information into "mybalance" as
follows.

The first dimension of the array ranges
from 0 to 12, and specifies the entire year

(0) or month (number of month).

Our second dimension is a four-letter
category, like "food" or "inco"; this is the

actual category we're dealing with.
(remember that the dimensions are not fixed – we can add categories at will)

So, to find the entire year's balance for the
food category, you'd look in

mybalance[0,"food"].

To find June's income, you'd look in

mybalance[6,"inco"].

Arrays are passed by reference.
We also refer to several global variables:

curmonth, (numeric value of month of
current record), $2 (expense category), $3

(income category).
function doincome(mybalance) {

mybalance[curmonth,$3] += amount

mybalance[0,$3] += amount

}

function doexpense(mybalance) {

mybalance[curmonth,$2] -= amount

mybalance[0,$2] -= amount

}

function dotransfer(mybalance) {

mybalance[0,$2] -= amount

mybalance[curmonth,$2] -= amount

mybalance[0,$3] += amount

mybalance[curmonth,$3] += amount

}

Passing of information between calling
routine and subroutine.

Two basic ways.

By reference
Tell subroutine where the information is in

the memory and the subroutine uses it.
Changes made by the subroutine are global.

By value
Give the subroutine a copy of the

information.
Any changes made by the subroutine are

local to its copy of the data.

The main code block contains the code that
parses each line of input data.

Remember, because we have set FS
correctly, we can refer to the first field as

$1, the second field as $2, etc.

When the functions are called, they can
access the current values of curmonth, $2,

$3 and amount from inside the function.

#main program

{

curmonth=monthdigit(substr($1,4,3))

amount=$7

#record all the categories encountered

if ($2 != "-")

globcat[$2]="yes"

if ($3 != "-")

globcat[$3]="yes"

#tally up the transaction properly

if ($2 == "-") {

if ($3 == "-") {

print "Error: inc and exp fields are both blank!"

exit 1

} else {

#this is income

doincome(balance)

if ($5 == "Y")

doincome(balance2)

}

} else if ($3 == "-") {

#this is an expense

doexpense(balance)

if ($5 == "Y")

doexpense(balance2)

} else {

#this is a transfer

dotransfer(balance)

if ($5 == "Y")

dotransfer(balance2)

}

}

#end of main program

END {

bal=0

bal2=0

for (x in globcat) {

bal=bal+balance[0,x]

bal2=bal2+balance2[0,x]

}

printf("Your available funds: %10.2f\n", bal)

printf("Your account balance: %10.2f\n", bal2)

}

Input file:
23 Aug 2000
food
-
-
Y
Jimmy's Buffet

30.25

23 Aug 2000
-

inco
-
Y
Boss Man

 2001.00

Output to the screen:

Your available funds: 1174.22

Your account balance: 2399.33

More string functions

print tolower(mystring)

print toupper(mystring)

mysub=substr(mystring,startpos,maxlen)

mystring: a string variable or a literal string
from which a substring will be extracted.

Startpos: starting character position.
Maxlen: maximum length to extract.

(if length(mystring) is shorter than startpos+maxlen, your result will be
truncated.)

substr() won't modify the original string, but
returns the substring instead.

 match() searches for a regular expression.

match returns the starting position of the
match, or zero if no match is found, and sets
two variables called RSTART and RLENGTH.

RSTART contains the return value (the location of

the first match), and RLENGTH specifies its span in
characters (or -1 if no match was found).

string substitution sub() and gsub().
:

Modify the original string.

sub(regexp,replstring,mystring)

sub() finds the first sequence of characters
in mystring matching regexp, and replaces

that sequence with replstring.

gsub() performs a global replace, swapping
out all matches in the string.

AWK patterns (regular expressions)
Print out lines matching “z_max”

nawk '/z_max/ {print $5}’

Print out 5th field of lines matching “[1]”

nawk '/\[1\]/ {print $3, $2, 14,0,1,1,$1 }’ samgps.dat

Print out stuff from lines matching “[2]”, that don’t contain
the strings “ASLO” and “CHYY”

nawk '/\[2\]/&&!/ASLO/&&!/CHYY/ {print $3, $2}’ samgps.dat

Print out stuff from lines that don’t contain “[0” or “[?” or
“[-” or “[c” or “[w” or “[1”

nawk '!/\[0/&&!/\[\?/&&!/\[-/&&!/\[c/&&!/\[w/&&!/\[1/ {print
NR, $5}' $GPSDATA

AWK patterns (regular expressions)

Print out lines where the 4th field squared is <2500

nawk '($4*$4)<2500 {print $0}’

Print out stuff from lines where LONMIN<=1st
field<=LONMAX and LATMIN<=2nd field<=LATMAX and the

10th field is >=MINMTEXP

nawk '('$LONMIN'<=$1)&&($1<='$LONMAX')&&('$LATMIN'<=
$2)&&($2<='$LATMAX')&&($10>='$MINMTEXP') {print $1, $2, $3,
$4, $5, $6, $7, $8, $9, $10, '$MECAPRINT' }’

Print out lines where the 3rd field is < 60 and the 4th field is
> 10, where the pattern is passed using a shell variable

nawktst_shal=\(\$3\<60\&\&\$4\>10\)

nawk ''$nawktst_shal' {print $0}’

AWK patterns (regular expressions)

If the first 4 characters of the last field is > 1995, print
out the whole line and the number of fields.

nawk 'substr($NF,1,4)>1995 {print $0, NF}’

NF is the awk variable for the number of fields.

The last field is field number NF.

$NF is the value of the last field.

$more rtvel.nawk

BEGIN { output=0 }

{ if (!/Stnm/){

if(output == 1) print $0;

}

else

{ output =1

}

}

nawk -f $SAMDATA/rtvel.nawk $VELFILE

Reads the input file till finds the string
“Stnm” and after finding it, prints out

records ($0).

nawk '{print ($1>=0?$1:360+$1)}’

Syntax: (test?stmt1:stmt2)

This will do a test
(in this case: $1>=0)

If true it will output stmt1 ($1)
(does this: nawk '{print $1}’

If false it will output stmt2 (360+$1)
(does this: nawk '{print 360+$1}’

(in this case we are changing longitudes from the range/format
-180<=lon<=180 to the range/format 0<=lon<=360)

Write a file with nawk commands and
execute it.

#!/bin/sh

#general set up

ROOT=$HOME

SAMDATA=$ROOT/geolfigs

ROOTNAME=$0_ex

VELFILEROOT=`echo $latestrtvel`

VELFILEEXT=report

VELFILE=${SAMDATA}/${VELFILEROOT}.${VELFILEEXT}

#set up for making gmt input file

ERRORSCALE=1.0

SEVENFLOAT="%f %f %f %f %f %f %f "

FORMATSS=${SEVENFLOAT}"%s %f %f %f %f\\\\n"

GMTTIMEERRSCFMT="\$2, \$3, \$4, \$5, ${ERRORSCALE}*\$6, ${ERRORSCALE}*
\$7, \$8”

#make the station list

STNLIST=`$SAMDATA/selplot $SAMDATA/gpsplot.dat pcc`

#now make nawk file

echo $STNLIST {printf \"$FORMATSS\", $GMTTIMEERRSCFMT, \$1, \$9,
$ERRORSCALE, \$6, \$7 } > ${ROOTNAME}.nawk

#cat ${ROOTNAME}.nawk

#get data and process it

nawk -f $SAMDATA/rtvel.nawk $VELFILE | nawk -f ${ROOTNAME}.nawk

Notice all the “escaping” (“\” character) in
the shell variable definitions (FORMATSS and

GMTTIMEERRSCFMT) and the echo.

Look at the nawk file – it looses most of the
escapes.

The next slide shows the nawk file at the
top and the output of applying the nawk file

to an input data file at the bottom.

/ALGO/||/ANT2/||/ANTC/||/ARE5/||/AREQ/||/ASC1/||/AUTF/||/
BASM/||/BLSK/||/BOGT/||/BOR4/||/BORC/||/BRAZ/||/CAS1/||/
CFAG/||/COCR/||/CONZ/||/COPO/||/CORD/||/COYQ/||/DAV1/||/
DRAO/||/EISL/||/FORT/||/FREI/||/GALA/||/GAS0/||/GAS1/||/
GAS2/||/GAS3/||/GLPS/||/GOUG/||/HARB/||/HARK/||/HART/||/
HARX/||/HUET/||/IGM0/||/IGM1/||/IQQE/||/IQTS/||/KERG/||/
KOUR/||/LAJA/||/LHCL/||/LKTH/||/LPGS/||/MAC1/||/MARG/||/
MAW1/||/MCM1/||/MCM4/||/OHI2/||/OHIG/||/PALM/||/PARA/||/
PARC/||/PMON/||/PTMO/||/PWMS/||/RIOG/||/RIOP/||/SALT/||/
SANT/||/SYOG/||/TOW2/||/TPYO/||/TRTL/||/TUCU/||/UDEC/||/
UEPP/||/UNSA/||/VALP/||/VESL/||/VICO/||/HOB2/||/HRA0/||/DAVR/
{printf "%f %f %f %f %f %f %f %s %f %f %f %f\n", $2, $3, $4,
$5, 1.0*$6, 1.0*$7, $8, $1, $9, 1.0, $6, $7 }

-78.071370 45.955800 -6.800000 -8.600000 0.040000 0.040000
0.063400 ALGO 12.296000 1.000000 0.040000 0.040000⏎

-70.418680 -23.696350 26.500000 8.800000 1.010000 1.010000
-0.308300 ANT2 0.583000 1.000000 1.010000 1.010000⏎

-71.532050 -37.338700 15.000000 -0.400000 0.020000 0.040000
-0.339900 ANTC 8.832000 1.000000 0.020000 0.040000⏎

-71.492800 -16.465520 -9.800000 -13.000000 0.190000 0.120000
-0.061900 ARE5 3.348000 1.000000 0.190000 0.120000⏎

-71.492790 -16.465510 14.100000 3.800000 0.030000 0.020000
-0.243900 AREQ 7.161000 1.000000 0.030000 0.020000⏎ . . .

