Some random notes:

Using vi/vim to look at files

Use "-R" (readonly) flag to prevent
accidental overwriting of the file.

But

Use *-r filename"” flag after .an editor or

system crash. (Recovers the version of

filename that was in the buffer when the
crash occurred.)

Awk (continuation)

AWK PROGRAMMING LANGUAGE

- NOTE -

We are going to use awk as the generic
program name (like kleenex for facial tissue)

Wherever you seé awk, you will actually use
nawk (or gawk if you are using that on a

LINUX box).

AWK Relational Operators

Returns 1 if true and O if false

Il opposite of bash test command

AWK Relational Operators

All relational operators are left to right
associative

< i tTest for less than
<=*i test for less than or equal 1o
> + test for greater than
>= i test for greater than or equal to
== ..test for-equal to
I=" i test for not equal

AWK Boolean (Logical) Operators

Boolean operators'return. 1 for true and O
for false

&4 ' logical AND; tests that both
expressions are true, left to right
associative.

AWK Boolean (Logical)'Operators

|17+ logical OR ; tests that one.or both of
the expressions are true left to right
associative.,

I logical negatioh; tests that expression is
True.

Unlike bash, the comparison and relational
operators don't Have different syntax for
strings and numbers.

ie:” to test for equality use "=="+ in‘awk

rather than "==" to compare strings and "-eq"
to compare numbers when'using the’bash
test command.

More Built-in AWK Variables

FS field.separator specifies how.to define
fields (usually space, maybe also tab
[whitespace]), may: be modified by resetting
the FS built in variable. (we have seen this dlready)

OFS : output field separator default is " ".or
a whitespace

More Built-in AWK Variables

RS/ : record separator specifies when the
current record ends and the next begins
default is "\n" or newline, useful option is ™
or-a blank line.

ORS : output record separator default is'a
"\n” or newline!

/

More Built-in AWK Variables

NF :-number.of fields (inline) variable.

NR : number of records (gives current line
number).

FILENAME : the name of the file currently
being read.

Basic structure of AWK use

The-essential organization of-an AWK
program:follows the form:

pattern { action }

The pattern specifies when the action:is
performed.

Like most UNIX utilities; AWK-is line
oriented.

That is, the pattern specifies a test that is
performed with each-line read as input.

If the condition'is.true, then the action is
taken.

The default pattern is something that
matches every line.

This is the blank or null pattern.

Two-other important-patferns are specified
by the keywords "BEGIN" and "END.*

As you might expect; these two wards
specify.actions to be taken before any lines
are read, and after the last line. is read.

The AWK program:

BEGIN { print’"START" }
{ print /}
ENDy { "print '"STOP' }

adds one line before andone lineafter the
input file.

This isn 't very useful, but with a simple
change; we canmake this info a-typical AWK
program:

BEGIN { print "File\tOwner'," }
{ print $8; \"\t", $3}
END { '‘print "/ - DONE -" }

The characters.'\t" Indicates a tab
character so-the output linesup on even
boundries.

The "$8" and "$3" have.a meaning similar to
a shell script.

Instead of the eighth and third argument;
they mean the eighth and third field of the

input line.

You can think-of a field as a column, and the
action you specify operates on each line or
row:read in.

There are two differences between AWK
and a shell processing the characters within
double quotes.

AWK understands special characters follow

the "\" character like "t

The Bourne and € UNIX shells'do not.

Also, unlike the shell (and PERL) AWK does
not-evaltate variables withinstrings:

The second line, for.example, could not'be
written:

{print "$8\1$3" }

As it would print "$8=>$3.”
(wWhere =» is a usually invisible<tab).

Inside quotes, the dollar sign is not a special
character. Qutside, it corresponds.to a field:

Say we want fo print out the owner of every
file

Field or column (RS=" *“)
11711731111 233333333 4444 5555 666 77 8888 9999999999999

—rwxrwxrwx 1 rsmalley user 7237 Jun 12 2006 setup expl.sh

So we need field 3 and 9.

Example file - create the file owner.nawk
and make.it executable.

#Y/bin/awk ~f

BEGIN»{“print "File\tOwner' 3}
{ print $9, "\t",/ S$3}

END { print ' - ‘DONE =" .}

Now we have to get the input into the
program. Pipe in‘the long directory listing.

alpaca.ceri.meémphis.edu507:> 1s -1 [#owner.nawk
File Owner

CHARGE-2002-107 rsmalley
022285A.cmt rsmalley
190-00384-07 .pdf rsmalley

zreal2.f rsmalley
zreal2.0 rsmalley

— DONE -
alpaca.ceri.memphis.edu508:>

Say I want to print out a command line
argument?

Now we have a little problem.

In the shell, $1is the first command line
argument.

In awk, $1.is the first column of the input
line.

How does one "fix" this?

Say I want to print out a shell or
environment variable?

Here.again there is alittle problem.

AWK does not understand $VAR since the $
goes with column numbers.

How do I fix this?

Quotes to the rescuel

#1/bin/sh

denom=2

MSG="hello,world"

NUMS="0.0,0"

echol msg: S$MSG .| nawk '{print SO}
echol nums: $NUMS || nawk '{print S0}
nawk Y {print S$1/"Sdenom'| , | “Sdenom!'
<<END ; ;
1
2

SCALE=2
FACTOR=5

RESCALE=" nawk 'BEGIN {print SSSCALE'*'SFACTOR'}'"
echo- SRESCALE

alpdca.ceri.memphis.edu619:> Pvar.nawk
msg: hello world

nums: 0.0,0

0.5 270 0 hello world

120 0 hello world

10

alpaca.ceri.memphis.edu620:>

#1/bin/sh

denom=2

MSG="hello,world"

NUMS="0.0,0"

echo msg: $MSG | nawk '{print SO0}
echo nums: SNUMS || nawk_ '{print $0}'
nawk }' {print S$1/'Sdenom/ , "“Sdenom/ ,
<<END . | T
1

2

SCALE=2
FACTOR=5

RESCALE=" nawk 'BEGIN {print SSSCALE'*'SFACTOR'}'"
echo- SRESCALE

alpdca.ceri.memphis.edu619:> Pvar.nawk
msg: hello world

nums: 0.0,0

0.5 270 0 hello world

120 0 hello world

10

alpaca.ceri.memphis.edu620:>

There are . three ways to figure out.the
quotes

1) Learn how to think UNIX.

2) Experiment.

3):Ask a UNIX Wizard/Guru.

Many ways to skin.a cat with escape/quotes

lpaca.581:> nawk 'BEGIN { print "Dont Panicl!' }'
Dont Panic!

Would be'nice to have in.correct.English
(i.e. with the apostrophe).
BUT
That.is also a quote. - which means something

to the shelll
(Try it by just putting in.an apostrophe.)

alpaca.®81l:> nawk $BEGIN { primt: "Dont Pamic!' }'

Dont Panic!

alpaca.582:> nawk 'BEGIN { print "Don'\''t Panic!" }'
Don’t Panic!

alpaca.583:> nawk 'BEGIN {‘print "Don “"'"'t Panic!" }'
Don't Panic!

Alpaca.584:> echo Don\'t Panic! | nawk ' {print}'

Don 't./Panic!

alpaca.585:> echo Don\'t Panic! - | nawk' "{print}"
Don't Panic!

Look carefully at the 2 lines above -.you can
(sometimes)use either quote (' or ") to
protect the nawk:program (depends on what
you are trying to protect from the shell).

alpaca.586:> echo Don”’”t Panic! | nawk "{print}"
Don’t Panic!

alpaca.587:> nawk 'BEGIN {‘print "\'"Dont Panic!\"" }'
"Dont Panic!”

accessing shell variables in nawk

3 methods to access shell variables inside a
nawk script:...

1. Assign the shell variables to awk variables
after thebody of the script, but before you
specfiy the input

awk '{print vl, wv2¥' v1=SVARLl w2=$VAR2 input file

Note: There are a.couple of ‘constraints with
this method;

- Shell 'variables assighed using thissmethod
are not available in the BEGIN section
- If variables are.assigned after a filename,
they will not be available when processing

that filename ...
e.g.

awks "{print vly v2}"' v1i=SVAR1 filel v2=SVAR2 file2

In this case, v2 is not available to.awk when
processing filel.

Also note: awk variables are referred to by
just their name (no-$ in front)

awk ' {print vl,.v2, NF, NR}' v1=SVARIl filel v2=$SVAR2 file2

2. Use the -v switch to'assign the shell
variables.toawk variables.

This works with nawk, but not with all

flavours of awk:

nawk -v v1=$VAR1l -v v2=$VAR2 '{print vl, v2}' input file

3.'Protect the shell variables from awk by
enclosing them'with " " (i.e. dotible quote -
single quote - double quote).

awk '{print M '"SVAR1"'", "'"S$VAR2""}' input file

Looping Constructs in AWK

awk’loop syntax.are very-similar.to C'and-per]

while: continues to execute the block of
code as long as condition is frue

while (' x==y) {

block of commands

do/while
do theblock of commands, while the test is
True

do, {
block of commands

} while (x==y)

The difference between while (last slide)
and do/while iswhen the condition is tested.
It is tested prior o running the:block of
commands for a while loop, but tested after
running-the block of commands in a do/while
loop (at least one trip through block of
commands will occur)

for loops

The for loop, allows iteration/counting as one
executes the block of code.

I't is one of the most common loop

structures.

for(x=1; x<=NF; x++) {

block of commands

for (x=1; x<=NF; x++) {

block of commands

This is.an extremely useful/important
construct as it allows applying the block of

commands to the élements of an array

(at least numerical arrays withiall the
elements- filled-in").

break and continue

break: breaks out of a loop

continue: restarts at the beginning of the
loop

x=1
while (1) {
if (. x&== 4) {
X++
continue
}
print "iteratiom",x
if (x> 20) {
break

}

X++

if/else/else’if blocks

similar to bash but syntax is different (no
then or fi, uses brackets { .. . }instead)

if (conditionall) {
block of commands

} else if (conditional2) {

else if and else

k}lc:)c]:{ of commands are Op'nonal
} else {

block of . commands

Simple awk-example:

Say'I have some sac files with the horrid. iris
dmc format file nhames

1999.289.10.05426.0000.TIU+KMBO:00.LHZ« SAC

and it would rename it to something more
“user friendly” like KMBO.LHZ to save ‘on
typing while'doing one of Chuck's-homeworks:

alpaca.540:> more rename.sh
#!/bin/sh

#to rename horrid iris dmc file names

#call ‘with rename.sh A x'y

#where A is the char string tormatch, x.and y are the field
#numbers in the original file name you want to use in the
#findl namé, and using the period/dot for thé field seperator

#eg ‘if the file: names look ‘like
#1999.289.10.05.26.0000.IU.KMBO.00.LHZ.SAC

#and you would ;ike to rename it KMBO,.LHZ

#the 8th field is/the station name, KMBQO

#and ' the.10th field .is the component name, .LHZ

#so you would.call rename.sh SAC 8 10

#(it will do if for all file names in your directory
#containing the string’ "SAC”)

for file in.s 1ls =1 *$S1*7

do

mv:$file “echo Sfile | nawk -F. '{print $'s$2'","s'$3'}"'"
done

alpaca.541l:>

Example

Checkbook balancing program in awk

- Simple tab-delimited text file into which
recent deposits and withdrawals are
entered.

- The idea'is to hand this data file o an awk
script that would automatically add up all the
amounts and report the balance.

Input file format:
Fields are separated by one or more tabs.

After the date (field 1, $1), there are two
fields: "exp field" and "inc field".

When entering an expense, a four-letter
nickname is entered in the exp field, and a
"-"(blank entry) in the inc field.
When entering-a deposit, a four-letter
nickname is entered in the inc field, and a

-" (blank entry) in the exp field.

Here's what an expénse (debit) looks like:

23 Aug 2000 ‘food - -2 Y Jimmy's ‘Buffet 30.25

Here's’'what. a deposit:looks like:

23+Aug 2000 = inco = = Y Boss Man 2001.00

Fields

11111111111=>»2 =>» 3333 = 4 =>. 5 =» 66666666 => 1777777

Note, there are tabs (not spaces) between
the fields, which you can't: see in the display.

Now for the code

set up global variables

#1/usr/bin/awk -f
BEGIN {
FS="\t+”
months="Jan FebyMar Apr May Jun Jul ‘Aug Sep Oct: Nev Dec"

}

“#1.." allows execution directly from shell.

BEGIN block gets executed before nawk
starts processing our checkbook file.

Set FS to "\1+" (one or more tabs).

I'n addition, we define a string called months.

Set subroutines (aka functions)

Define your own awk function.
Format --"function”, thenthe name, and
then the parameters separated by commas,
inside parentheses.

Finally a '{ }'* code block contains the code
that you'd like this function to execute.

function monthdigit (mymonth) ;{
return (index(months,mymonth)+3)/4

}

nawk provides a "return” statement-that
allows the function to returna value.

function monthdigit (mymonth) '{
return’ (index(ménths, mymonth)+3) /4

}

This function converts a month name in a 3-
letter-string format into its numeric
equivalent. For example, this:

print monthdigit("Mar")

...will print this:

3

What does-this do?

index(months,mymonth)

Built-in string function index, returns the
starting position of the'occurrence of a

substring (the second parameter) in'another
string (the first paramter), or it will return
O.if the string isn't found.

months= Jan Feb Max Apr May:Jun Jul Aug. Sep Oct Nov Dec”

000000000111111111122222222223333333333444444444
123456789012345678901234567890123456789012345678

()

print indexX(months,”Aug”)
29

To get the number associated with'the
month (based on the'string with the 12
months)add 3 te the index (29+3=32) and
divide by 4 (32/4=8, Aug:is 8™ month).

The string months was:desighed so the
calculation'gave the month number.

More functions/subroutines

three basic kinds of transactions; credit
(deincome), debit (doexpense) and transfer
(dotransfer).

function doincome (mybalance) {
mybalance[curmonth,$3] += amount
mybalance[0,$3] += amount

}

function. doexpense (mybalance) {
mybalance[curmonth,$2]} ~= amount
mybalance[0,$2] -= amount

}

function dotramsfer(mybalance) {
mybalance[0,$2] -=samount
mybalance[curmonth, $2] -= amount
mybalance[0,$3] += amount
mybalance[curmonth,$3] +=! amount

i The main code block will process each line of
the checkbook file sequentially, calling one
of these functions so that the appropriate
fransactions are recorded in'an awk array.

All Three functiohs accept one argument,
called 'mybalance.

mybalance is a placeholder fora two-
dimensional array, which we 1l pass inas an
argument.

We will be storing the data in a 2-
dimensional “array”.

What is an "array’?

An array is a table of values, called elements.

The elements of an arrayare distinguished
by their indices.

Indices.in awk may be either numbers or
strings.

(as awk maintains a single set of names for naming variables, arrays and
functions, you cannot have a variable and an array with the same name in'the
same awk program.)

Arrays in awk superficially resemble arrays
in other programming languages; but there
are fundamental differences.

The most fundamental or significant
difference is that any number or string may
be Used as an array’index in"awk,.not just
consecutive integers.

(in the end in awk, arrayindicies, even numerical ones;are strings)

In awk; you also don'tneed to specify the
size of an array before you start:to use if.

Arrays in awk are associative.
' This means that each array is a collection of
pairs: an index, and its corresponding array
element value:

Element 4
Element 2
Elementys 1
Element 3

The pairs are shown in jumbled order
because the’array index order is irrelevant
and has nothing to do with storage in
memory:

One advantage of‘associative arrays. is that
new pairs can be added at any time.
Adding a 10™ element whose value'is "number
ten” to our éxample array:

Element Value "number ten"
Element Value 30

Element Value "foo"
Element Value 8

Element vValue "

Now the array: is sparse, which just means
some indices are missing: it has elements 1
through 4 and 10, but doesn 't have elements
5 through 9.

Indices of :associative arrays don't have to
be positive integers.
Any number, or even a string, can be an
index.
Here. is an array which translates words
from English into French:

Element, "dog" Value "chien"
Element "cat' Value "chat"
Element "oné" Value "un"
Element 1 Value "un”

We use the number: one in each language
spelled-out and in.numeric form--a'single
array can have both numbers and strings as
indices.

(array subscripts inawk are actually:always strings)

The principal-way of using’an array is o
refer to one of its elements.

An array reference is an expression which
looks like this:

array[index]

Here, array is the name of an'array.

The expression index’is the index of the
element of the array that you want.

Array elements are'assigned values just like
awk variables:

array[subscript] = value

array is the name of your array.

subscript is'the.index of the element of the
array.that you want to-assign a value.

value is the value'you are‘assigning to that
element of the array.

mis-indexing of arrays (when they are
indexed by infegers) is one of the most
common bugs in programming.

If you mis-index an array-in awk, it makesa
new element with that index and a null value.

(Wastes space and does not:return value you were trying:to obtain.)

To explicitly set.an array. element, -use
brackets to'specify which index-of The array
you are setting.

strings - when used. as indices or values -
have to be in quotes

BEGIN {
animals|['"dog"] “perro”
animals["cat"] "gato”

stuff
stuff
stuff
stuff
print
print

[1]=1

[4]=4

[-1]=-=-1

[0]=0

animalsf "dog"]
stuff[l]

print
print

stuff[2]

-custr 31 Reference to elements that don't

print
print
print

}

stuff[4] -
stuff[-1] QX|ST

stuff[0]

Execute the nawk script

smalley$S.nawk -f arrays.nawk
perro

Null output for. the ones that don't exist

-1
0
smalley$S

to delete an array element, use the delete
command

delete myarray[1]

Say we have this file and.we want fo put it
intfo numerical order in an.awk array.

carpincho:ESCI7205 smalley$S more data.tXxt

4
1
3
2
a
7
B
C

arpincho:ESCI7205 smalley$

Try this.

Hll (white box--= look at raw-and sorted file;-green box - fill-array with sorted
elements-and numerical index, yellow box print out array indices and values.)

carpincho:ESCI7205 smalley$ more awkexl.nawk

#!/bin/bash

cat data.txt

echo

sort -n data.txt

echo - TR

‘sort -n data.txt|\

awk, "BEGIN {c=0}+{

if (S0 > 0)) {

print c,.$0
myarray[c]=$0; c++;

e — > >

for (e7in myarray-) printf "s: %s %s ",eymyarray[cls1
printf "\n”; "
}

; v 8 4 v S 4 v S

carpincho:ESCI7205¢smalley$

carpinche:ESCI7205 smalleyS awkexk.nawk

: Origninal file
3

7

b After sort

b

: Store In

Z array: array
7

------ index plus
" value

When print

|Lf:72i1 t: 3 2)4 3: i 5 4516 7 ::0 1o jout (r‘C(ndOm
carpincho:ESCI7/205 smalley$ or'der')

you can also set arrays-using the split
command

split(“string”,destination array,separator)

split also returns the number of indices

numelements=split("Jan,Feb,Mar,Apr,May" ,mymonthsy",”)

Splits the string into array elements using
the. ;" to break the string inte elements, and
rettrns numelements=5-and
mymonths[1]="Jan"

A multi-dimensional array is an array in
which an elementiis identified by a sequence
of indices, instead of a single index.

For example, a two-dimensional array
requires fwo indices.

The usual way to refer to an element of a
two-dimensional array named grid is with

grid[x y1I.

Back to our checkbook

Record information into "mybalance" as
follows.

The first dimension of the array ranges

from O to 12, and specifies.the entire year
(0) or month (humber of month).

QOur'second dimension is a.four-letter
category, like."food" or "inco"; this'is the
actual category we re dealing with.

(remember that theidimensions are not fixed - we can add categories at will)

So, To find the entire year s balance for the
food category, you'd look:in

mybalance[O;"food"].

To-find'June s income, you d look in

mybalance[6,"inco"].

Arraysrare passed by reference.

We also referto several global variables:
curmonth, (numeric value of month of
current record), $2 (expense category), $3
(income category).

function doincome (mybalance) {
mybalance[curmonth,$3] += amount
mybalance[0,$3] += amount

}

function.doexpense (mybalance) {
mybalance[curmonth,$2} ~= amount
mybalance[0,$2] -= amount

}

function dotransfer(mybalance) {
mybalance[0,$2] -=,amount
mybalance[curmonth, $2] -= amount
mybalance[0,$3] += amount
mybalance[curmonth,$3] += amount

Passing of: information between calling
routine and subroutine.
Two basic ways.

By reference
Tell subroutine where the information is.in
the memory and the subroutine uses it.

Changes made by the subroutine are global.

By value
Give-the subroutine a copy of the
information.
Any changes made by the subroutine are
local to its copy of. the data.

I The main code block contains the code that
parses each line of input data.

Remember, because we have set’'FS

correctly, we can.refer to the first field as
$1, the second field as $2, etc.

When the functions are called, they can
access the current values of curmonth, $2,
$3 and amount from inside the function.

#main, program

curmonth=monthdigit(substr($1,4,3))
amount=$7

#record all the categories encountered
LB CrS 25 1 gt)

globcat[S$2])="yes"
if (83 1= "=")

globcat[$3]="yes"

#tally up the transaction properly

SRS IR oy

1E (4§63 == M2t)y
print "Error: inc. and exp fields are both blank!"
exit 1

} else {
#this is #ncome
doincome(balance)
B R Sl

doincome (balance?)

}relse if (S3 == _."-" ") {
#this is “an expense
doexpense (balance)
if ($5 s)
doexpense (balance?2)

} else {

#this is a transfer

dotransfer(balance)

B R B TRTET)
dotransfer(balance?2)

}

}

#end of main program
END {
bal=0
bal2=0
for (x in globcat) {
bal=bal+balance[0, x]
bal2=bal2+balance2{ 0} xX]
}
printf ("Your available funds: %10.2f\n", bal)
printf (" Your account balance: %10.2f\n", bal2)

Input file:

23 Aug 2000 food_ -' - Y _Jimmy's Buffet
234Aug 2000 = inco # -. Y Boss Man

Output o the screen:

Your available ! funds: 1174.22
Your account balance: 2399.33

30.25
2001.00

More string functions

print tolower(mystring)

print“toupper(mystring)

mysubzsubstr(mystring,startpos,maxlen)

mystring: a string variable or.a literal string
from which a substring will be extracted.

Startpos: starting character, position.
Maxlen: maximum length to extract.

(if length(mystring) is shorter:than.startpos+tmaxlen, your result.will be
truncated.)

substr() won Tt modify the original string, but
returns the substring instead.

match() searches for a regular expression.

match returnhs the starting position of the
match, or zero if no match is found, and sets
two variables called RSTART and RLENGTH.

RSTART contains the return value ghe locétion of
the first match), and RLENGTH SpeCifies 1Ts span in
Char'GCTer'S (ors-1.if no matchswas found):

$tring substitution sub() and gsub().

Modify the original string.

sub(regexp,replstring,mystring)

sub() finds the first sequence of characters
in mystring matching regexp, and replaces
that sequence with replstring.

gsub() performs a global replace, swapping
out all matches in the string.

AWK patterns (regular expressions)

Print out lines matching “z_max"

nawk +' /2 max/ {print S5}’

Print out 5™ field of lines matching "[1]"

nawk '/\[1\]/#{print $3,:S2, 14,0,1,1,81 }' samgps.dat

Print out stuff from lines matching:"[2]", that«don’t contain
the strings "ASLO" and "CHYY"

nawk '/\[2\]/&&%/ASLO/&&E/CHYY/ {print $3, $2}'’isamgps.dat

Print out stuff from lines that don't contain "fO" or "[?" or
“[-*or"[¢” or *[w" or "[1"

nawks: "L/\NTO/&&IVENT\2/ &8 LANE=/&&)V /N[cH &Y /\ [w/&&E/ N[1/ {print
NR, $5}' SGPSDATA

AWK patterns (regular expressions)

Print out lines where: the 4™ field squared is <2500

nawk 1 ($4%#54)<2500 #{print SO}’

Print out stuff from lines where LONMIN<=1st
field<=LONMAX and LATMIN<=2"d field<=LATMAX and the
10th field is >>MINMTEXP

nawk ' SLONMIN 'SES 1) &8 (S 1<SFSTONMAX ') &8 SLATMIN "<&
$2) &§& ($S2<="SLATMAX')&&($10>% "SMINMTEXR%) {print $I, $2, -$3,
$4.,.85, $6, $7,.$8, $9, $10, 'SMECAPRINT' }°’

Print out lines where the 3rd.field is <.60 and the 41" field is
> 10, where the pattern.is passed using a shell variable

nawktst shal=\(\N$3\<60\&\&¥S4\>10Y\)
nawk : "Snawkt8t shal' {pfint/ S0}’

AWK patterns (regular expressions)

If the first 4 characters of -the last field is > 1995, print
out the whole line and the number of fields.

nawk @substr(SNE 4, 4)>1995 {print SO, NBR'

NF is the awk variable for the number of fields.

The last field'is field number.NF.

$NF is the value of the last field.

Smore rtvel.nawk

BEGIN { output=0 }

{Af ('/stnm/ H{

ify(output ==31) print $0;
}

else

{ ' outputr =1

}

}

nawk -f SSAMDATA/rtvel.nawk SVELFILE

Reads the input file tillifinds the string
-Stnm" and after finding.it, prints-out
records-($0).

‘{print ($S1>=02$1:360+S1)%"

Syntax: (fest?stmtlistmi2)

This will do.a test

(in this case: $1>=0)

If true it will output.stmtl (s

(does, this: 'nawk '{print S1}’

If false it will output stmt2 (eo:$1)

(does this: nawk '{print 360+S1}’

(in‘this case we are changing longitudes from the' range/format
~180<=1on<=180,to the range/format: 0<=1lon<=360)

Write a.file with nawk commands and
execute it.

#1/bin/sh

#general set up

ROOT=$HOME

SAMDATA=$ROOT/geolfigs

ROOTNAME=S$0_ ex

VELFILEROOT="echo Slatestrtvel

VELFILEEXT=report

VELFILE=S$ {SAMDATA}/S{VELFILERQOT} .S {VELFILEEXT}

#set up for making gmt input file

ERRORSCALE=1.0

SEVENFLOAT="%f %f %f %f %f &fs%f "

FORMATSS=S$ {SEVENFLOAT}"%s 3f %f.8f 2f\\\\n"
GMTTIMEERRSCFMT="\X$2, \$3, \S$4, \S5, S{ERRORSCALE}*\S$6, S{ERRORSCALE}*
\$7, \$8”

#make the station' list

STNLIST="SSAMDATA/selplot, $SAMDATA/gpsplot.dat pcc’

#now make nawk file

echo $STNLIST {printf \"SFORMATSS\", SGMTTIMEERRSCFMT, "\Sl, \S9,
SERRORSCALE,""'\$6, \S7 } = ${ROOTNAME }.nawk

#cat S{ROOTNAME}.nawk

#get data and process it
nawk =f SSAMDATA/rtvel.nawk SVELFILE | nawk —£f.${ROOTNAME} .nawk

Noticeall the “escaping” ("\" character) in
the shell variable definitions (roruarss ana
GMTTIMEERRSCFMT) Clnd the eChO.

Look at the nawk file - it looses most of the
escapes.

The next slide shows the nawk file at the
fop and the output of applying the nawk file
to an«input data file at the bottom.

/ALGOY
BASM/
CFAG/
DRAQ/
GAS2/
HARX/
KOUR/
MAW1 /
PARC/
SANT/
UEPP/

| /AREQ/

/BORC/
/CORD/
/GALA/
/HARB/
yaele)
/LPGS/
/OHIG/
/RIOG/
/TRTL./
/VICO/

| /Aascl/

/BRAZ/
/COYQ/
/GASO/
/HARK/
/IQTS/
/MAC1/
/PALM/
/RIOP/
/TUCU/
/HOB2/

| /AUTEY/

/CAS1/
/DAV1/
/GAS1/
/HART/
/KERG/
/MARG /
/PARA/
/SALT/
/UDEC/
/HRAO /

P TS AR NSNS N
~

™~

/DAVR/

{printf_"% $f %f 2f %f %f %s %f %f £ _%f\n", $2, S3, 54,

$5,71.0%$6, 1.0*S$7, $8, S¥, $9, 1.0, €6, §7 }

-78.071370 45.955800 ' -6.800000 -=8.600000 0.040000 0.040000
0.063400 ALGO12.296000 12000000 0.040000 0.040000<)
-70.418680 -23.696350 26.500000 8.800000 1.010000 1.010000
-0.308300 0.583000 1.000000:1.010000%1..010000&)
-71.532050 -37.338700 15.000000 -0.400000 0.020000 0.040000
-0.339900 8.832000 1.000000 0.020000 0.040000<
-71.492800 -16.465520 -9.800000 -13.000000 0.190000 0.120000
-0.061900 3.348000 1.000000 0.190000 0.120000<5
-71.492790 -16.465510 14.100000 -3.800000 0.030000 0.020000
~0.243900 AREQ 74161000 :1.000000 0.030000"0.020000< .7, .

