
Printing

printf: formatted printing

So far we have just been copying stuff from
standard-in, files, pipes, etc to the screen or

another file.

Say I have a file with names and phone
numbers. I would like to print it out with

vertically aligned columns.
(so my printout is not in the same format as the input file)

File contents:
Bob 4929

Chuck 4882

Desired display:
Bob 4929

Chuck 4882

printf
is a command from the C programming

language to control printing.

Shell script
#!/bin/bash

printf "Hello world.\n"

a=`echo Hello world. | wc | nawk '{print $2}' `

printf "This phrase contains %d words\n" $a

Run it

alpaca.ceri.memphis.edu512:> printex.sh

Hello world.

This phrase contains 2 words

alpaca.ceri.memphis.edu513:>

#!/bin/bash

printf "Hello world.\n"

a=`echo Hello world. | wc | nawk '{print $2}' `

printf "This phrase contains %d words\n" $a

We need the double quotes “ . . . “ to define
an argument (the stuff inside the quotes)

for printf.

#!/bin/bash

printf "Hello world.\n"

a=`echo Hello world. | wc | nawk '{print $2}' `

printf "This phrase contains %d words\n" $a

The argument in double quotes has

-  Regular text (“Hello world”, “This text contains “)

-  Some funny new thing - %d – a format
specifier.

- The already known specification for a new
line - \n

#!/bin/bash

printf "Hello world.\n"

a=`echo Hello world. | wc | nawk '{print $2}' `

printf "This phrase contains %d words\n" $a

We also have another argument, the $a,
which is a shell variable, at the end.

Note that the items are delimited with
spaces, not commas.

#!/bin/bash

printf "Hello world.\n"

a=`echo Hello world. | wc | nawk '{print $2}' `

printf "This phrase contains %d words\n" $a

We also have an example of nawk (which can
be understood from the quick introduction

given previously to allow nawk use in the
homework).

Ignoring the details, this line assigns the
value of the shell variable a to be the

number of words in the string “Hello world.”
The variable a therefore contains an integer

value (as a character string).

printf: format specifiers

How to specify the format for printing
various types of things

printf "This phrase contains %d words\n" $a

We are going to print out what is in the
double quotes.

printf: format specifiers

printf "This phrase contains %d words\n" $a

No problem for everything but the %d.

And what is that shell variable $a at
the end?

printf: format specifiers

printf "This phrase contains %d words\n" $a

The shell variable a contains the
number of words. We want this

(number) information where the %d is
located in the format specification.

 The %d and the $a are “paired”.

printf: format specifiers

printf "This phrase contains %d words\n" $a

 The %d format specifier is used to
control how contents of the shell

variable, a, are printed.

printf: format specifiers

Specify how to print various types of
things

%d signed decimal integer

(The word decimal means base 10, as opposed to octal – base 8, or hexadecimal –
base 16, or a number with a decimal point. The word integer means a whole

number, no decimal point and fraction).

printf: format specifiers

Modifying how decimal integers are
printed.

%<N>.<DIGITS>d

says use a field N characters wide, with
DIGITS digits (uses leading zeros,
DIGITS can be > N (N gets overridden), or

DIGITS can be left out).

printf: format specifiers

Specify how to print various types of
things

printf "This phrase contains %d words\n" $a
This phrase contains 2 words

printf "This phrase contains %3d words\n" $a
This phrase contains 002 words

printf "This phrase contains %3.0d words\n" $a
This phrase contains 2 words

printf "This phrase contains %.4d words\n" $a
This phrase contains 0002 words

printf "This phrase contains %3.4d words\n" $a
This phrase contains 0002 words

printf: format specifiers

Specify how to print various types of
things

%d Print the associated argument as signed decimal number

%i Same as %d

%o Print the associated argument as unsigned octal number

%u Print the associated argument as unsigned decimal number

%x Print the associated argument as unsigned hexadecimal
number with lower-case hex-digits (a-f)

%X Same as %x, but with upper-case hex-digits (A-F)

%f Interpret and print the associated argument as floating
point number

%e Interpret the associated argument as double, and print it
in <N>±e<N> format

%E Same as %e, but with an upper-case E in the printed format

printf: format specifiers

Specify how to print various types of
things

%g Interprets the associated argument as double, but prints it
like %f or %e

%G Same as %g, but print it like %E

%c Interprets the associated argument as character: only the
first character of a given argument is printed

%s Interprets the associated argument literally as string

%b Interprets the associated argument as a string and
interpreting escape sequences in it

%q Prints the associated argument in a format, that it can be
re-used as shell-input (escaped spaces etc..)

printf: format specifiers

Modifiers are specified between the
introducting % and the character that

specifies/identifies the format:

<N> Any number: specifies a minimum field width, if the text
to print is smaller, it's padded with spaces

* The asterisk: the width is given as argument before the
string. Usage (the ”*” corresponds to the ”20”): printf ”%*s
\n” 20 “test string”

“Alternative format” for numbers: see table below

- Left-bound text printing into the field (standard is right-
bound)

0 Pads numbers with zeros, not spaces

<space> Pad a positive number with a space, where a minus (-)
is for negative numbers

+ Prints all numbers signed (+ for positive, - for negative)

printf: format specifiers

Precision for a floating- or double –
precision number can be specified by
using .<DIGITS>, where <DIGITS> is

the number of digits for precision after
the decimal point.

malleys-imac-2:ESCI7205 smalley$ printf "%.10f\n" 14.3

14.3000000000

Combine with <N> (total # characters, “-”, decimal point, e)

smalleys-imac-2:ESCI7205 smalley$ printf "%15.10f\n" 14.3

 14.3000000000

printf: format specifiers

If <N> or <DIGITS> is an asterisk (*),
the precision is read from the argument

that precedes the number to print.

smalleys-imac-2:ESCI7205 smalley$ printf "%.*f\n" 10 4.3

4.3000000000

smalleys-imac-2:ESCI7205 smalley$ printf "%.*f\n" 10 14.3

14.3000000000

smalleys-imac-2:ESCI7205 smalley$ printf "%*.*f\n" 15 10 14.3

 14.3000000000

printf: format specifiers

Scientific notation
(seems to ignore the <N> field if too

small)

smalleys-imac-2:~ smalley$ printf "%*.*e\n" 6 4 143200000000

1.4320e+11

smalleys-imac-2:~ smalley$ printf "%*.*e\n" 6 4 -143.200000000

-1.4320e+02

smalleys-imac-2:~ smalley$ printf "%*.*e\n" 6 3 -143.200000000

-1.432e+02

smalleys-imac-2:~ smalley$ printf "%.*e\n" 3 -143.200000000

-1.432e+02

smalleys-imac-2:~ smalley$printf "%*.*e\n" 15 3 -143.200000000

 -1.432e+02

smalleys-imac-2:~ smalley$

Later on we will talk about how computers
represent numbers

Integer format
(integers, counting numbers)

Floating point format
(numbers with decimal point)

Floating point numbers can be
Real or Complex

printf: format specifiers

For strings, the precision specifies the
maximum number of characters to print

(i.e. the maximum field width).

(We already saw) For integers, it specifies the
number of characters/digits to print
(with leading zero- or blank-padding!).

Escape codes
\\
Prints the character \ (backslash)

\a
Prints the alert character (ASCII code 7 decimal)

\b
Prints a backspace

\f
Prints a form-feed

\n
Prints a newline

\r
Prints a carriage-return

\t
Prints a horizontal tabulator

\v
Prints a vertical tabulator

\<NNN>
Interprets <NNN> as octal number and prints the
corresponding character from the character set

\0<NNN>
same as \<NNN> *

\x<NNN>
Interprets <NNN> as hexadecimal number and prints
the corresponding character from the character set (3 digits)*

\u<NNNN>
same as \x<NNN>, but 4 digits *

\U<NNNNNNNN>
same as \x<NNN>, but 8 digits *

(* - indicates nonstandard, may not work)

A few of the most useful format
specifiers

%s

String

%c

ASCII character. Print the first character of the
corresponding argument

%d

Decimal integer

%f

Floating-point format

%E

Scientific notation floating-point format

Special shell variables

$< : special BSD Unix csh command that
essentially acts as read except it is not

white space delimited

set name = “$<“

instead of

read firstname lastname

Special shell variables

$# : the number of arguments passed to the
shell.

Useful when checking calling arguments (did
you enter the correct number of them?),

writing if:then:else blocks and loops.

We will cover this more later.

Special shell variables

“$@”: (need quotes) represents all command
line arguments at once, maintaining

separation, same as
“$1” “$2” “$3”

“$*” : (should have quotes) represents all
command line arguments as one, same as

“$1 $2 $3 $4”

Without quotes, $* equals “$@”

smalleys-imac-2:ESCI7205 smalley$ arglist.sh first second\
third

Listing args with "$@":

Arg #1 = first

Arg #2 = second

Arg #3 = third

Arg list seen as separate words.

Listing args with "$*":

Arg #1 = first second third

Entire arg list seen as single word.

Listing args with $* (unquoted):

Arg #1 = first

Arg #2 = second

Arg #3 = third

Arg list seen as separate words.

smalleys-imac-2:ESCI7205 smalley$

Special shell variables

$- : Options given to shell on invocation.

$? : Exit status of previous command.

$$: Process ID of shell process.

$! : Process ID of last background command.
Use this to save process ID numbers
for later use with the wait command.

Special shell variables

$IFS : Internal field separator
the list of characters that act as word

separators.
Normally set to space and newline (maybe

tab) (is a bash, not tcsh variable).

$ echo $IFS

$ echo $IFS | od -x

0000000 0a00

0000001

$ echo $IFS | od -c

0000000 \n

0000001

$

Special files

/dev/null : null device is a special file that
discards all data written to it (but reports
that the write operation succeeded), and

provides no data to any process that reads
from it (yielding EOF immediately).

Also know as the bit bucket, black hole, or a
WOM (write only memory).

Special files
/dev/tty : redirects the script’s standard-in

to the terminal
Script

#!/bin/sh

printf "Hello. My name is hdmacpro. What is yours?\n"

read name < /dev/tty

printf "Nice to meet you %s.\n" $name

printf "Hello. My name is hdmacpro. What is yours?\n?"

read name

printf "Nice to meet you %s.\n?" $name

Run it
alpaca.ceri.memphis.edu517:> tsttty.sh

Hello. My name is hdmacpro. What is yours?

bob

Nice to meet you bob.

Hello. My name is hdmacpro. What is yours?

?Bob

Nice to meet you Bob.

?alpaca.ceri.memphis.edu518:>

Intro - arithmetic

%echo $((3+4))

7

%echo $((x=2))

2

%echo $((++x))

3

%echo $((x++))

3

%echo $x

4

%((y=10))

%echo $y

10

Arithmetic
bash shell arithmetic resembles C
programming language arithmetic

(very helpful if you don’t already know C!).

In bash, the syntax $(()) can be used to
calculate arithmetic expressions or to set

variables to complex arithmetic expressions

%echo $((10%3))

1

%echo $((10/3))

3

Basic Arithmetic Operators

shell arithmetic is integer only

+ : addition
-  : subtraction

* : multiplication
/ : division

% : remainder or modulus

Assignment Operators

= : set variable equal to value on right
(no spaces allowed around equals sign)

%x=2; echo $x

2

+= : set variable equal to itself plus the value
on right (spaces allowed, but not required)

%x=2; echo $((x +=2))

4

-= : set variable equal to itself minus the
value on right (spaces allowed, but not required)

%x = 2; echo $((x-=2))

0

Assignment Operators

*= : set variable equal to itself times the
value on right (spaces allowed, but not required).

%x = 2; echo $((x *= 4))

8

Assignment Operators

/= : set variable equal to itself divided by
value on right (spaces allowed, but not required).

%x = 2; echo $((x/= 2))

1

%= : set variable equal to the remainder of
itself divided by the value on the right

%x = 4; echo $((x %= 3))

1

Unary Operations

A unary expression contains one operand and
one operator.

++ : increment the operand by 1

Unary Operations

if ++ occurs after the operand, $x++, the
original value of the operand is used in the

expression and then incremented.

if ++ occurs before the operand, ++$x, the
incremented value of the operand is used in

the expression.

Unary Operations

-- : decrement the operand by 1

+ : unary plus maintains the value of the
operand, x=+x

- : unary minus negates the value of the
operand, -1*x=-x

- ! : logical negation

Intro – relational and logical operators, test

Relational Operators (in arithmetic expressions $((. . .)))

Returns 1 if true and 0 if false

All relational operators are left to right
associative

= or == : test for equal to
< : test for less than

<= : test for less than or equal to
> : test for greater than

>= : test for greater than or equal to
!= : test for not equal

Bash does not understand floating point
arithmetic.

It treats numbers containing a decimal point
as strings.

Boolean (Logical) Operators

Boolean operators return 1 for true and 0
for false

&& : logical AND

tests that both expressions are true left to
right associative

%echo $(((3 < 4) && (10<15)))

1

%echo $(((3<4) && (10>15)))

0

|| : logical OR

tests that one or both of the expressions
are true left to right associative.

%echo $(((3<4) || (10>15)))

1

! : logical negation

tests negation of expression.

Bitwise Operators

Bitwise Operators treat operands as 16
(actually depends on word size on computer) bit binary values

Example: 4019 equals
0000111110110011base2 (0FB316 in
hexadecimal) in integer format.

(Internally in the computer, integers are expressed in a format called two’s-
complement. Positive integers are in straight base 2. Negative integers are

“funny”.)

Bitwise Operators

~ : bitwise negation changes 0’s to 1’s (bits)
and vice versa

& : bitwise AND
^ : bitwise exclusive OR

| : bitwise OR
<< : bitwise left shift (numerically is *2)

<<=n : bitwise left shift by n bits (numerically is *2n)

>> : bitwise right shift (numerically is ÷2n)

<<=n : bitwise left shift by n bits (numerically is ÷2n)

Relational Operators (between character strings)

Returns 1 if true and 0 if false

All relational operators are left to right
associative.

= or == : test for equal to
< : test for less than

> : test for greater than
!= : test for not equal

Relational Operators (between numerical values)

Returns 1 if true and 0 if false

All relational operators are left to right
associative

-lt (<)
-gt (>)
-le (<=)
-ge (>=)
-eq (==)
-ne (!=)

test

test: condition evaluation utility

common scripting tool that tests expressions
and many details about files using a long list

of flags

Returns

0 if expression true and
1 if expression false or does not exist

(backwards to normal logic!)

test
two formats in bash scripting

test flag expression

or
[flag expression]

examples

bash-2.05$ ['abc' == 'abc']; echo $?

0

bash-2.05$ ['abc' = 'abc']; echo $?

0

bash-2.05$ ["abc" != "def"];echo $?

0

Note – we are testing character strings.

To test numerical values
$ test 3 -gt 4, echo $?

1

Note – the numerical tests are specified
with a different format.

Returns

0 if expression true and
1 if expression false or does not exist

(backwards to normal logic!)

bash-2.05$ a=1

bash-2.05$ b=2

bash-2.05$ c=3

bash-2.05$ [$a = 1];echo $?

0

bash-2.05$ [$a -eq 1];echo $?

0

bash-2.05$ [$a > 1];echo $? What is this?

0

bash-2.05$ [$a -gt 1];echo $?

1

bash-2.05$ [$b -eq 1];echo $?

1

bash-2.05$ [$b -eq $c];echo $?

1

bash-2.05$ [$b -eq $(($c-1))];echo $?

0

bash-2.05$ [$b == $(($c-1))];echo $?

0

bash-2.05$ [$b == $(($c-2))];echo $?

1

Test combinations with

-a (and) and –o (or)

if [$# -eq 0 -o $# -ge 3]

then

. . .

fi

if [\($REGPARM = spat -o $REGPARM = chile \) -a $CMT = 1]

then

. . .

fi

(the [. . .]’s above are a form of the test
expression)

(the backslashes are needed to “escape” the
parentheses in the test expression)

You can use the return values together with
&& and ||

using the two test constructs

examples

$ test 3 -gt 4 && echo True || echo false

false

bash-2.05$[$a = 1]&&[$b == $(($c-1))];echo $?

0

bash-2.05$[$a = 1]&&[$b == $(($c-1))]&&[$b -eq $c];echo $?

1

bash-2.05$[$a = 1]&&[$b == $(($c-1))]||[$b -eq $c];echo $?

0

bash-2.05$[$a = 1]&&([$b == $(($c-1))]||[$b -eq $c]);echo $?

0

bash-2.05$[$a = 1]||([$b == $(($c-1))]&&[$b -eq $c]);echo $?

0

Some tests

-d Directory
-e Exists (also -a)

-f Regular file
-h Symbolic link (also -L)

(remember 0 is TRUE and 1 if FALSE!!!)

bash-2.05$ [-e 'eqs.vim']; echo $?

0

bash-2.05$ [-e 'eqs']; echo $?

1

bash-2.05$ filename=eqs.vim

bash-2.05$ echo $filename

eqs.vim

bash-2.05$ [-e $filename]; echo $?

0

bash-2.05$ test -d "$HOME" ;echo $?

0

Loops and Logic

do
. . .

Done

Does the commands in the “block” between
do and done.

in bash, this construct is used in conjunction
with loop structures for, while, and until

A 'for loop' is a programming language
statement which allows code to be

repeatedly executed.

for VARIABLE in 1 2 3 4 5 .. N

do

. . .

done

example
list=`ls -1 z*xyz`

for ITEM in $list

do

 #echo plot contour $ITEM

 psxy -R$REGION -$PROJ$SCALE -M$ -W5/$VLTGRAY $CONTINUE \

$ITEM $VBSE >> $OUTPUTFILE

done

More examples
for i in 1 2 3 4 5

do

 echo "Welcome $i times”

done

for i in $(seq 1 2 20)

do

 echo "Welcome $i times”

done

for ((c=1; c<=5; c++))

do

echo "Welcome $c times..."

done

for ((; ;))

do

 echo "infinite loops [hit CTRL+C to stop]”

done

while:
continues to loop as long as the condition

tests true

#!/bin/bash

. . .

while read vari1 vari2 … varin

do

 . . .

done < inputfile

This will read from the input file till it
hits EOF (read returns 0, true, if there
were no errors, on EOF [or an error] it

returns a non zero value – false)

Full example

Script

#!/bin/bash

cat<<EOF>cities.dat

105.87 21.02 Hanoi LM

282.95 -12.1 LIMA LM

178.42 -18.13 SUVA LM

EOF

while read clon clat city junk

do

 echo $city $clon $clat

done < cities.dat

Run it

alpaca.ceri.memphis.edu516:> junk.sh

Hanoi 105.87 21.02

LIMA 282.95 -12.1

SUVA 178.42 -18.13

alpaca.ceri.memphis.edu517:

This script first
makes the input
data file, then
reads it and

prints out a part
of it. Notice
where the

redirected input
is located – at
the end of the

“command”.

The structure of the while loop

While the test is true, do the block of code
between the “do” and “done”

while test

do

. . . block of code . . .

done

The structure of the while loop

The redirected input goes at the end.

One can enter the while command from the
command line

(there is nothing special about it as far as
the shell is concerned

(also notice where the semicolons, that
separate lines, go).

%while read line; do echo "$line \n"; done < cities.dat

105.87 21.02 Hanoi LM \n

282.95 -12.1 LIMA LM \n

178.42 -18.13 SUVA LM \n

%

until:

until continues to loop as long as the
condition exits unsuccessfully (is false)

(the until loop is used much less than the while loop)

#!/bin/bash

myvar=0

until [$myvar –eq 5]

#until this expression is false

do

echo $myvar

myvar=$(($myvar + 1))

done

%sh –f junk.sh

0

1

2

3

4

Break:
allows you to break out of a loop

can be used with a number to specify what
do loop to break out of

while condition1 # Outer loop, loop 2

do

…

while condition2 # Inner loop, loop 1

do

…

break 2 # Break out of outer loop (usually after

some test)

done

done

... # Execution continues here after break

if/then/fi

If the test is true, then run the block of
code between the then and the fi (if spelled

backwards).

if [$1 = "Heather”]

then

printf "Hi %s. We were expecting you.\n" $1

fi

if/then/else/fi
If the test is true, run block of code

between then and else. If the test is false,
run block of code between else and fi.

if [$1 = "Heather”]

then

printf "Hi %s. We were expecting you.\n" $1

else

printf "Hi %s. Nice to meet you.\n" $1

fi

if/then/elif/else/fi
If [test] is true, run block of code between
then and elif. If it was false, do next [test].
If true, run block of code between else and
elif. If false, do next [test], etc., or, finally
(everything false to here) do block of code

between else and fi.
if [$1 = "Heather”]

then

printf "Hi %s. We were expecting you.\n" $1

elif [$1 = "Andy"]

printf "Hi %s. We were expecting you too.\n" $1

elif [$1 = ”Gregg"]

printf "Hi %s. We were expecting you too.\n" $1

else

printf "Hi %s. Nice to meet you.\n" $1

fi

Can have logical combination of [tests]

if [$1 = "Heather”] || [$1 = “Andy”]

then

printf "Hi %s. We were expecting you.\n" $1

elif [$1 = "Andy"]

printf "Hi %s. We were expecting you too.\n" $1

else

printf "Hi %s. Nice to meet you.\n" $1

fi

if [$1 = "Heather”] || [$1 = “Andy”]

then

printf "Hi %s. We were expecting you.\n" $1

elif [$1 = "Andy"]

printf "Hi %s. We were expecting you too.\n" $1

else

printf "Hi %s. Nice to meet you.\n" $1

fi

Would this script ever output
“We were expecting you too”?

(i.e. what is wrong with it?)

The case statement is an elegant
replacement for if/then/else if/else
statements when making numerous

comparisons.

This recipe describes the case statement
syntax for the Bourne family of shells

case "$var" in 
value1) 
commands; 
;; 
value2) 
commands; 
;; 
*) 
commands; 
;; 
esac

case "$var" in 
value1) 
commands; 
;; 
*) 
commands; 
;; 
esac

The case statement compares the value of
the variable ($var in this example) to one or

more values (value1, value2, …).
Once a match is found, the associated
commands are executed and the case

statement is terminated.
The optional last comparison “*)” is a default

case and will match anything.

For example, branching on a command line
parameter to the script, such as ’start’ or

’stop’ with a runtime control script.

The following example uses the first
command line parameter ($1):

case "$1" in

'start')

/usr/app/startup-script

;;

'stop')

/usr/app/shutdown-script

;;

'restart')

echo "Usage: $0 [start|stop]"

;;

esac

Some tcsh/csh syntax

A shell with C language-like syntax.

Control structures

- foreach, if, switch and while

foreach : a tcsh command
is a powerful way to iterate over files from
the tcsh command line (can also put in shell

scripts – don’t get prompts).

%foreach file (828/*BHZ*)#set variable file to each sac file

foreach? echo $file

foreach? set name = `echo $file | cut -f2 -d'/' `

foreach? set sta = `echo $name | cut -f1 -d'.' `

foreach? echo “copy $file to $sta.BHZ.SAC

foreach? cp $file $sta.BHZ.SAC

foreach? end

828/GAR.BHZ_00.D.1989.214:10.24.59

copy 828/GAR.BHZ_00.D.1989.214:10.24.59 to GAR.BHZ.SAC

Aside – new command
cut

The cut command has the ability to cut out
characters or fields. cut uses delimiters.

file = 828/GAR.BHZ_00.D.1989.214:10.24.59

Set name = `echo $file | cut -f2 -d’/’`

Says return the second field (-f2), using ‘/’ as a
delimiter (-d’/’) (assign it to the variable name)

name = GAR.BHZ_00.D.1989.214:10.24.59

set sta = `echo $name | cut -f1 -d'.' `

Says return the first field (-f1), using ‘.’ as a
delimiter (-d’.’) (assign it to the variable sta)

sta = GAR

If-then-else block in tcsh/csh

Two formats

if (expression) simple command

or
if (expression) then

 ...

else

 ...

endif

The tcsh/csh switch statement can replace
several if ... then statements.

switch (string)

 case pattern1:

 commands...

 breaksw

 case pattern2:

 commands...

 breaksw

 default:

 commands...

 breaksw

endsw

For the string given in the
switch statement's argument,
commands following the case
statement with the matching

pattern are executed until the
endsw statement.

These patterns may contain ?
and * to match groups of

characters or specific
characters.

switch/case in tcsh syntax

foreach plane(0035.0 0050.0)

set cnt=`expr $cnt + 1`

switch ($cnt)

case 1:

set xpos=-5.

set ypos=4.75

set min=-2.5

set max=2.5

breaksw

case 2:

set xpos=-6.6

set ypos=-3.5

set min=2.5

set max=7

breaksw

endsw

. . . such as excessive amounts of GMT

end

Another example

Get the arguments

set source_dir = $1

set target_dir = $2

shift argv

shift argv

while ($#argv > 0)

 set input = ($argv)

 switch($input[1])

 case -m:

 set module = $input[2]

 breaksw

 case -auto:

 set auto = 'Y'

 breaksw

 case -full:

 set full = 'Y'

 breaksw

 endsw

 shift argv

end

Built-in shell
variables

argv Special
variable used in

shell scripts to hold
the value of
command line
arguments.

Awk (lecture 1)

Awk Programming Language

standard unix language that is geared for
text processing and creating formatted

reports

But is very valuable to seismologists because
it uses floating point math, and is designed

to work with columnar data

syntax similar to C and bash

one of the most useful unix tools at your
command

Considers text files as having records
(lines), which have fields (columns)

Performs floating & integer arithmetic and
string operations

Has loops and conditionals

Can define your own functions (subroutines)

Can execute unix commands within the
scripts and process the results

Versions/Implementations

awk: original awk

nawk: new awk, dates to 1987

gawk: GNU awk has more powerful string
functionality

the CERI unix system has all three. You
want to use nawk. I suggest adding this line

to your .cshrc file

alias awk ‘nawk’

in OS X, awk is already nawk so no changes
are necessary

Command line functionality
you can call awk from the command line two

ways:

awk [options] ‘{ commands }’ variables infile(s)

awk –f scriptfile variables infile(s)

or you can create an executable awk script

%cat << EOF > test.awk

#!/usr/bin/nawk

some set of commands

EOF

%chmod 755 test.awk
%./test.awk

How awk treats text

awk commands are applied to every record or
line of a file

it is designed to separate the data in each
line into a number of fields

essentially, each field becomes a member of
an array so that the first field is $1, second

field $2 and so on.

$0 refers to the entire record.

Field Separator
the default field separator is one or more

white spaces

$1
$2 $3 $4 $5 $6 $7 $8 $9 $10 $11

1  1918 9 22 9 54 49.29 -1.698 98.298 15.1 ehb

So $1 = 1, $2=1918, …, 410=15.1, $11=ebb

Notice that the fields may be integer,
floating point (have a decimal point) or

strings. Nawk is generally smart enough to
figure out how to use them.

Field Separator

the field separator may be modified by
resetting the FS built in variable

Look at passwd file

%head -n1 /etc/passwd

root:x:0:1:Super-User:/:/sbin/sh

Separator is “:”, so reset it.
%awk –F”:” ‘{ print $1, $3}’ /etc/passwd

root 0

Print

One of the most common awk commands

awk is not sensitive to white space in the
commands

%awk –F”:” ‘{ print $1 $3}’ /etc/passwd

Root0

The two output fields (Root and 0) are run
together – two solutions to this

%awk –F”:” ‘{ print $1 “ “ $3}’ /etc/passwd

%awk –F”:” ‘{ print $1, $3}’ /etc/passwd

root 0

any string or numeric text can be explicitly
output using “”

Assume our input file looks like this

1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0
0.0 ehb

1 1 1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0
0.0 ehb FEQ x

%awk '{print "latitude:",$9,"longitude:",$10,"depth:",\
$11}’ SUMA.Loc

latitude: -1.698 longitude: 98.298 depth: 15.0

latitude: 9.599 longitude: 92.802 depth: 30.0

latitude: 4.003 longitude: 94.545 depth: 20.0

you can specify a newline in two ways

%awk '{print "latitude:",$9; print "longitude:",$10}’ SUMA.Loc

%awk '{print "latitude:",$9”\n”,”longitude:",$10}’ SUMA. Loc

latitude: -1.698

longitude: 98.298

Assignment Operators

= : set variable equal to value on right
+= : set variable equal to itself plus the value

on right (VOR)
-= : set variable equal to itself minus VOR
*= : set variable equal to itself times VOR
/= : set variable equal to itself divided by

VOR
%= : set variable equal to the remainder of

itself divided by VOR
^= : set variable equal to itself to the

power/exponent following the equal sign

Unary Operations
A unary expression contains one operand and

one operator

++ : increment the operand by 1

if ++ occurs after, $x++, the original value of
the operand is used in the expression and

then incremented.

if ++ occurs before, ++$x, the incremented
value of the operand is used in the

expression.

Unary Operations

-- : decrement the operand by 1

+ : unary plus maintains the value of the
operand, x=+x

- : unary minus negates the value of the
operand, -1*x=-x

- ! : logical negation evaluates if the operand
is true (returns 1) or false (returns 0)

