
Text Editing (continued)

Command line editors

ed

Don’t even think of using ed, if you
accidently type it, enter ^D to get out.

Command line editors

edit

Don’t even think of using edit, if you
accidently type it, enter “exit” to get out.

Command line editors

sed

sed:

powerful command line text editor.
(“the ultimate” stream editor, non-

interactive).

It takes standard in, edits each line, and
spits it to standard out.

It uses regular expressions for pattern
matches.

I don’t use this often.

sed:

sed has several commands, but most people
only learn the substitute command: s.

The substitute command changes all
occurrences of the regular expression into a

new value.

A simple example is changing "day" in the
"old" file to "night" in the "new" file:

%sed s/day/night/ <old >new

sed:

%echo day | sed s/day/night/  
night

It does what you tell it.
(law of unintended consequences)

%echo Sunday | sed 's/day/night/’

Sunnight

sed:

4 parts to substitute command

s Substitute command

/../../ Delimiter

day Regular Expression Pattern
Search Pattern

night Replacement string

sed:

Most examples of sed are
incomprehensible

sed 's/[^]*/(&)/' <old >new

sed 's/[^][^]*/(&)/g' <old >new

sed 's/^\([^:]*\):[^:]:/\1::/' </etc/passwd >/etc/password.new

count the number of lines in three files that
don't begin with a "#:"

sed 's/^#.*//' f1 f2 f3 | grep -v '^$' | wc -l

sed:

Is very useful when you really need it.

vi and vim
(use the same command set as ed/edit/sed!

This is Unix, reuse the same tools.)

to start it up

%vim [name-of-file]

vi and vim are have what is called a “modal”
interface.

They have two modes

“normal” = command mode
insert = input mode

Entering text takes place in insert mode and
the editing power comes to the fore in

command mode.

Use esc to return to command mode from
insert mode.

moving the cursor

0 $ ^

$ -- go to end of line (eol)
0 -- go to beginning of line (bol)
^ -- go to first character at bol

 ^F -- scroll screen forward
 ^B -- scroll screen backwards

shift shift

^

^
control key

^F

^B

moving the cursor

The “h”, “j”, “k”, and “l” keys move the cursor left, down, up, and right
respectively. This is very fast and efficient for a touch typer.

h j k l

moving the cursor

Use the arrow keys. (slow – have to take you right hand off the
keyboard.)

to enter insert mode

s

I,i

A,a

i -- insert
a -- append
s -- substitute

A -- append at eol
I -- insert at bol
O – start new line & insert

type esc to exit insert mode

O,o

to exit insert mode

esc

esc to exit insert mode.

type esc to exit insert mode

deleting text

dd

x -- delete character behind
 cursor

X -- delete character before
 cursor

dw -- delete word
dd -- delete line
Xdd -- delete next X lines

X,x

dw

copy, paste, undo and redo

p

yy -- copy the line (yank)
yw -- copy the word (yank)
p -- paste the line or word after

 the cursor

u -- undo change
U -- undo all changes to the line
^R -- redo change
. -- repeat last command

U,u yy yw ^R

^

^

control
key

control
key

.

search and replace

/

/[word or words] -- search for the next instance of the word or
words
n -- go to next instance of word or words

Uses regular expressions for the pattern matching.

n

:s/ return :g/ :

search and replace

/

:s/[old]/[new] -- substitute old with new string; cursor is on old
string
:gs/[old]/[new]/g -- globally find old, substitute all old with new

Uses regular expressions for the pattern matching.

n

:s/ return :g/ :

When you want to search for a string of
text and replace it with another string of

text, you can use the syntax

:[range]s/search/replace/[g][c][i].

Range can be -
n,m for lines n to m

n,$ for lines n to last (1,$ for whole file)
or % for whole file

g – global in the line, c – confirmation, i –
ignore case.

:[range]s/search/replace/[g][c][i].

The range, global and confirm fields are
optional.

if you just run

:s/search/replace/

it will search only the current line and
match/replace only the first occurrence of

the match.

Ex with range specified, plus “g” at end is
for global (on line) replace (all matches on

line, not just first)

:8,10 s/search/replace/g

If you want to search an entire file, and
replace all matches, you can use % to

indicate the whole file as the range, and g
for all matches on each line:

:%s/search/replace/g

To match a word

/ word / is a good attempt at a match, but
does not get the word when followed by

punctuation for example.

\<word\> (have to escape the < and >, don’t
need the /’s) now matches the word.

Say you want to find a string and append
something to it.

Try this.

s/run/&s/

Will match run and produce runs.

The & represents the match.

Say you want to find a string and append
something to it.

Try this.

\1 is first match, \2 is second.

So this will also do it.

:%s/\(run\)/\1s/

You need the (), which need to be escaped,
around run

The \(. . . \) delimiters are used to inform
the editor that the text that matches the

regular expression inside the parentheses is
to be remembered for later use (in the \1).

Compress multiple occurrences of blank lines into a single blank line

:v/./,/./-j

Use :helpgrep '\/,\/' *.txt for an explanation.

I'll break down this incredible collapse-multiple-blank-lines command for everyone, now that I finally figured out how it works.

First, however, I'll rewrite it this way to illustrate that some of those slashes have totally different meaning than others:

:v_._,/./-1join

Note that to delimit expressions like these, just about any symbol can be used in place of the typical slashes... in this case, I used
underscores. What we have is an inverse search (:v, same as :g!) for a dot ('.') which means anything except a newline. So this will match
empty lines and proceed to execute [command] on each of them.

:v_._[command]

The remaining [command] is this, which is a fancy join command, abbreviated earlier as just 'j'.

,/./-1join

The comma tells it to work with a range of lines:

:help :,

With nothing before the comma, the range begins at the cursor, which is where that first blank line was. The end of the range is specified
by a search, which to my knowledge actually does require slashes. The slash and dot mean to search for anything (again), which matches the
nearest non-empty line and offsets by {offset} lines.

/./{offset}

The {offset} here is -1, meaning one line above. In the original command we just saw a minus sign, to which vim assumes a count of 1 by
default, so it did the same thing as how I've rewritten it, but simply with one character fewer to type.

/./-1

There is a caveat about join that makes this trick possible. If you specify a range of only one line to "join", it will do nothing. For
example, this command tells vim to join into one line all lines from 5 to 5, which does nothing:

:5,5join

In this case, any time you have more than one empty line (the case of interest), the join will see a range greater than one and join them
together. For all single empty lines, join will leave it alone.

There's no good way use a delete command with :v/./ because you have to delete one line for every empty line you find. Join turned out to be
the answer.

This command only merges truly "empty" lines... if any lines contain spaces and/or tabs, they will not be collapsed. To make sure you kill
those lines, try this:

:v/^[^ \t]\+$/,/^[^ \t]\+$/-j

Or, to just clean such lines up first,

:%s/^[\t]\+$//g

saving and exiting vi/vim

ZZ

:w :q

:w [filename] -- write to (new) file
:w! [filename] -- overwrite (existing) file
:wq -- write and quit
:q --- quit
:q! --- quit without saving
ZZ -- write and quit

:

shift shift

return

other useful features in vi/vim

:![unix command] -- allows you to run
standard unix commands without exiting vim;

very useful with GMT

Example

:!ls *.SAC

In command mode the “:” tells vi that we are
doing a command from the ed/edit/sed

command list.

If you look in the man pages for vi or vim, it
will refer you to them for the command

descriptions.

other useful features in vi/vim

:set hlsearch -- will highlight all instances of
a string when using /[word] to search

>aB -- indent the block/loop defined by {}
when cursor is located within the block in

question

:sp -- split the screen
^WW -- use to move from one split screen
to the next; useful when writing subroutines

within the same file

other useful features in vi/vim

: set number or :set nonumber -- turn line
numbers on/off

:X -- jump to line number X example :1

There are whole books on vi and vim. We are
just scratching the surface.

Once you learn one of these, you tend to use
them instead of the “word” like editors.

Manipulating & Printing Files

CERI Printers

Long Building
3892_grad -- B & W printer in grad area

3892_hpcolor -- Color printer in grad area
3892_hpxlfp -- Poster printer in grad area

House 3
3876_langston -- B & W printer near

Steve’s office
3876_hpcolor -- Color printer near

conference room
3876_grad – B & W duplex printer in Sun

lab

CERI Printers
(Continued)

House 2
3890_hpcolor – Color printer in copier

room
3890_copy – B & W printer in copier

room

House 1
3904_tek -- Color printer

3904_hallway -- B & W printer

Printing Commands

lpr: submit files for printing

%lpr -P3892_grad file.txt

Printing Commands

lpq: show printer queue status useful to find
out if other jobs are before yours.

%lpq -P3892_grad

3892_grad is ready and printing

Rank Owner Job File(s) Total Size

active hdeshon 146 junk.pdf 108544 bytes

Identifies the job.

lprm: cancel print job (by number)

%lprm -P3892_grad 146

lpstat: printer status information
useful for finding out printer names on Macs,
which are not necessarily the same as on the

Unix system
%lpstat –a
_3876langston accepting requests since Wed Aug 27 13:11:36 2008
hp_color_LaserJet_4600 accepting requests since Mon Aug 4 11:50:47 2008

Some more useful commands

Additional useful commands

wc: word count

%wc suma1.hrdpicks

37753 253998 3561084 suma1.hrdpicks

Reports number of lines, words
(separator=space), and characters in the

file.

Additional useful commands

cmp: compare files

alpaca.ceri.memphis.edu496:> cmp hw1.txt hw1a.txt

hw1.txt hw1a.txt differ: char 175, line 12

alpaca.ceri.memphis.edu497:>

No output if the same, else reports byte
and line numbers at which the first

difference occurred (starts at 1).

Additional useful commands

diff: show differences between two files

alpaca.ceri.memphis.edu498:> diff hw1.txt hw1a.txt

12c12

< 2) [2] Create a directory in your account for this course -
you might call it something like ESCI7205.

> 2) [2*] Create a directory in your account for this course -
you might call it something like ESCI7205.

14c14

Sometimes useful (if files completely
different is mess). Less than sign, suck, for

file 1, greater than sign, spit, for file 2.
(if have extra lines, will re-synch,

afterwards.)

Additional useful commands
sort: alphabetical or numeric sort function

sort alphabetically
alpaca.ceri.memphis.edu525:> more samgps.dat

PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002
CHILE OKRT

COGO -31.15343 -70.97526 CAP [3] 1993 1996 2002 CHILE OKRT

MORA -30.20823 -70.78971 CAP [3] 1993 1996 2002 CHILE OKRT

MOR2 -30.20823 -70.78971 CAP [?] CHILE OKRT

TOFO -29.45939 -71.23842 CAP [4] 1993 1996 2001 2002 CHILE
OKRT

SILA -29.24037 -70.74956 CAP [3] 1993 1996 2002 CHILE OKRT

HUAS -28.47848 -71.22235 CAP [3] 1993 1996 2002 CHILE OKRT

. . .

alpaca.ceri.memphis.edu526:> sort samgps.dat

ABAC -24.433 -66.217 SAGA [-] ARGENTINA NORT

ABEL -25.667 -65.483 SAGA [-] ARGENTINA NORT

ACOL -30.78337 -66.21338 CAP [3] 1993 1997 2000 ARGENTINA OKRT

ACPM -33.447181 -70.537434 CAP2 [c] continuous (2005-) CHILE

ADLS -26.08449 -67.4191 CAP [2] 1993 1997 ARGENTINA OKRT

AGAL -24.317 -66.467 SAGA [-] ARGENTINA NORT

. . .

alpaca.ceri.memphis.edu506:> more flong.dat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

sort alphabetically

alpaca.ceri.memphis.edu513:> sort flong.dat | head -4

1

10

11

12

Sort numerically

alpaca.ceri.memphis.edu514:> sort -n flong.dat | head -4
1
2
3
4

Sort numerically on second column

alpaca.ceri.memphis.edu530:> sort -n -k 2 samgps.dat | head -5

W01A -87.41565 -149.43328 WAGN [2] 2002 2005 OKRT

W01B -87.41518 -149.44311 WAGN [2] 2002 2005 OKRT

W02A -85.61192 -68.55633 WAGN [3] 2002 2005 2008 OKRT

W02B -85.61185 -68.55546 WAGN [2] 2002 2005 OKRT

W13B -83.12942 159.50532 WAGN [1] 2003 OKRT

Read the man page to see what else it will do.

NAME

 sort - sort, merge, or sequence check text files

SYNOPSIS

 /usr/bin/sort [-bcdfimMnru] [-k keydef] [-o output]
[-S kmem] [-t char] [-T directory] [-y [kmem]] [-z recsz]
[+pos1 [-pos2]] [file...]

 /usr/xpg4/bin/sort [-bcdfimMnru] [-k keydef] [-o output]
[-S kmem] [-t char] [-T directory] [-y [kmem]] [-z recsz]
[+pos1 [-pos2]] [file...]

From now one, you will be expected to read
the man pages for all the commands we have
used or will use to see how to use them and

what they will do.

Time

cal: displays a calendar

Default is current month

Will also display the year

Good way to figure out day of year (often
incorrectly called julian day) using the –j flag

smalleys-imac-2:geolfigs smalley$ cal

 September 2009

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

smalleys-imac-2:geolfigs smalley$ cal -j

 September 2009

 Su Mo Tu We Th Fr Sa

 244 245 246 247 248

249 250 251 252 253 254 255

256 257 258 259 260 261 262

263 264 265 266 267 268 269

270 271 272 273

Time

date: displays date and time

%date

Wed Aug 27 17:12:01 CDT 2008

%date –u –r 10

Thu Jan 1 00:00:10 UTC 1970

Basic Math

bc: basic math calculator
+, -, *, /, %, ^, sqrt

also test Boolean expressions and >,<,!=,
etc.

quit or CNTL-D to exit

expr: evaluate the expression
more powerful, command line calculator
for integer math and string comparison

units: unit conversion

Job Control
top: lists all processes currently running

ps: process status, another way to display
process identification numbers (PID)

alpaca.ceri.memphis.edu585:> ps -aef

 UID PID PPID C STIME TTY TIME CMD

 root 0 0 0 Jun 13 ? 0:04 sched

 root 1 0 0 Jun 13 ? 0:10 /etc/init –

. . .

rsmalley 9790 9580 1 23:17:45 pts/12 0:00 ps -aef

rsmalley 9578 9575 1 18:50:33 ? 0:04 /usr/lib/ssh/sshd

kill: allows you to hard kill processes by PID

%kill -9 9578

CNTL-Z: suspends the current job (use to
end man program).

bg: resume job but runs it in the background
(initially set on the command line by

adding an & to the end of the command/
script).

fg: resume job and runs it in the foreground.

jobs: lists all jobs running in the background,
including their PIDs.

Finding/Searching

find: search for files

Say I want to see if I have a file
“Volcanoes.dat” in my “dem” and “bin”

subdirectories.
alpaca.ceri.memphis.edu513:> find ~/dem -name Volcanoes.dat

/gaia/home/rsmalley/dem/Volcanoes.dat

alpaca.ceri.memphis.edu514:> find ~/bin -name "*olcanoes*"

alpaca.ceri.memphis.edu515:>

OK, that’s nice, but not yet too useful (I
could have cd’d into dem and done an ls, no

need for a new command).

Finding/Searching

find: search for files

To make this really useful, we need a way to
search for patterns in the filenames (or

within files).

Enter Regular Expressions.

A regular expression is a set of characters
that specify a pattern.

So now we are going to have two kinds of
special characters, or metacharacters.

Those that mean something special to the
shell (such as the “$” on a shell or

environment variable or the “/” in a path).

Those that are used to specify a pattern.

And will need a way to “turn off”, or escape,

the special meaning.

Say I want to look for all files that start
with a “v” or “V”, and have any

“extension” (the “.dat”, part of the file
name).

alpaca.ceri.memphis.edu514:> find ~/dem -name *olcanoes*

find: No match.

This did not work for some reason.

The find command is not “seeing” the
wildcard “*”. (The shell got hold of it first

and did something with it.)

We have to “escape” the shell’s
interpretation of the “*”, so it gets passed

to find to be used as a wildcard (regular
expression) there.

alpaca.ceri.memphis.edu515:> find ~/dem -name *olcanoes*

/gaia/home/rsmalley/dem/Volcanoes.dat

/gaia/home/rsmalley/dem/volcanoes

/gaia/home/rsmalley/dem/volcanoes.f

alpaca.ceri.memphis.edu516:> find ~/dem -name '*olcanoes*'

/gaia/home/rsmalley/dem/Volcanoes.dat

/gaia/home/rsmalley/dem/volcanoes

/gaia/home/rsmalley/dem/volcanoes.f

alpaca.ceri.memphis.edu517:> find ~/dem -name "*olcanoes*"

/gaia/home/rsmalley/dem/Volcanoes.dat

/gaia/home/rsmalley/dem/volcanoes

/gaia/home/rsmalley/dem/volcanoes.f

alpaca.ceri.memphis.edu518:>

There are three ways to escape
metacharacter interpretation.

Backslash “\”, escapes the next character
from interpretation [the first time \ is
encountered], i.e. the next character is

treated as a regular character.

olcanoes

'*olcanoes*’

"*olcanoes*”

Works for all programs (the shell is just
another program).

olcanoes

So the splat is not used as a wildcard by the
shell (all the files in the directory), the first
program to encounter it, and it is passed as a

* to the program find where it is (finally)
used as a wildcard (any combo of

characters).

The backslash “\”, is the strongest method
to escape a character.

It works everywhere.

If you want to place text on two or more
lines for readability, but the program

expects one line, you need a line continuation
character. Just use the backslash as the last

character on the line:
% echo This could be \ 
a very \ 
long line\!  
This could be a very long line!

%

This escapes or quotes the end of line (eol)
character, so it no longer has a special
meaning. (In the above example, the backslash before the exclamation
point is necessary if you are using the C shell, which treats the "!" as a special
character.)

Another example of the thought processes
involved in taking advantage of the power of

Unix.

What would you enter if you were looking for
a file named “*olcanoes”?

(rhetorical question).

Next two methods.

Protect metacharacters from interpretation
by the shell only.

Single quotes.

“quote”, “escape”, or “protect” everything
inside them from the shell.

'*olcanoes*’

Next two methods.

Protect metacharacters from interpretation
by the shell only.

Double quotes.
"*olcanoes*”

“quote”, “escape”, or “protect” everything
inside them from the shell except variables
and backquoted expressions (`)(we will get to that

soon), which are expanded by the shell and
replaced with their value.

Starts where we are (.), looks there and
below.

alpaca.ceri.memphis.edu508:> find . -name cap_ice* -print

./dem/cap_icezooms_.5v2.ps

. . . .

/from_midtown/dem/cap_ice_.5v2.ps

Don’t need the “-print” anymore (but you may
see it). In old days, found the files, but

needed instructions on what to do with them
(did not automatically send to standard out).

grep: search for a pattern inside files (or
standard in).

(general regular expression,
general regular expression processor,

. . .)

highly useful and it is worth your time to sit
down with the man page.

Simple examples

Find the string PELD in the file samgps.dat.

grep sends all lines in input (standard in, file
[don’t need redirect, but can use it], or pipe)

that contain the string “PELD” to the
standard out.

alpaca.ceri.memphis.edu533:> grep PELD samgps.dat

PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT

Takes standard Unix “regular expressions”,
of which we have seen a few.

This finds all the lines that start with a
“P” (“^” is the metacharacter for the
beginning of a line) and sends them to

standard out.

alpaca.ceri.memphis.edu534:> grep ^P samgps.dat

PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT

PSTO -28.17157 -69.79377 CAP [3] 1993 1996 2002 CHILE OKRT

PNAZ -26.14822 -70.65368 CAP [3] 1993 1996 2001 CHILE OKRT

Finds all the lines with “ARGEN” and sends
them to standard out.

alpaca.ceri.memphis.edu535:> grep ARGEN samgps.dat

TND2 -37.3 -59.2167 CAP|C1960 [0] ARGENTINA NORT dropped

ZAPX -38.82775 -70.02394 CAP|C1960 [?] ARGENTINA OKRT

Finds all the lines with “3 ARGEN” and sends
them to standard out.

alpaca.ceri.memphis.edu510:> grep "3 ARGEN" samgps.dat

ZAPL -38.82775 -70.02394 CAP|C1960 [4] 1993 1997 1997 2003 ARGENTINA

BSON -42.01391 -71.20485 CAP|C1960 [3] 1993 1997 2003 ARGENTINA OKRT

I probably use grep every time I’m on a Unix
system!

Regular Expressions

If you master regular expressions, searching
for text becomes easy.

Regular expressions are accepted input for
grep, sed, awk, perl and other unix

commands.

Much like learning the shells, it is all about
syntax & we’ll just scratch the surface here.

Basic “regular expressions”

. : Matches a single character

alpaca.ceri.memphis.edu523:> grep P..D samgps.dat

PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT

MOAT -54.9572 -66.79024 SCARP|CAPP|TDF [4] 1998 2000 2007 ARGENTINA

Basic “regular expressions”

“*”: Matches zero or more instances of the
 preceding character

alpaca.ceri.memphis.edu529:> grep 'AT1*' samgps.dat

SPAT -22.91555 -68.24654 CAP [3] 1993 1996 2001 CHILE OKRT

CATA -16.30061 -68.46202 CAP [2] 1993 1999 BOLIVIA OKRT

CUER -51.63393 -74.51458 CAP|GFZ|SCARP|TRANSFER|BOAT|SENH [3]
1994 1998 1999 CHILE OKRT

AT09 -30.27979 -68.53166 MATE|CAPP [3] 1997 1999 2004
ARGENTINA OKRT

AT10 -30.28933 -68.54643 MATE|CAPP [4] 1997 1999 2000 2004
ARGENTINA OKRT

AT11 -30.23073 -68.43688 MATE|CAPP [3] 1997 1999 2004
ARGENTINA OKRT

Basic “regular expressions”

“*”: Matches zero or more instances of the
 preceding character

alpaca.ceri.memphis.edu529:> grep 'AT1*' samgps.dat

What were we looking for?

AT…, AT1…,AT11…,AT111…

Basic “regular expressions”

How do we look for anything and everything
(zero or more instances of any character,

the * wildcard from earlier).

The regular expression “*” does not do it.

Basic “regular expressions”

We have enough information.

All we have to do is think Unix.

Basic “regular expressions”

The “.” represents any character.

The “*” is any number of repetitions
(including none or zero) of the preceding

character.

Basic “regular expressions”

We now have all the pieces, we just have to
put them together in Unix think.

Any guesses?

Basic “regular expressions”

How about

“.*”

(dot, splat)

Any character plus zero or more repetitions
of any character.

You can think of regular expressions as
wildcards on steroids (or LSD).

^ : Represents the beginning of a
line

alpaca.ceri.memphis.edu534:> cat samgps.dat

PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002
CHILE OKRT

COGO -31.15343 -70.97526 CAP [3] 1993 1996 2002 CHILE OKRT

MORA -30.20823 -70.78971 CAP [3] 1993 1996 2002 CHILE OKRT

MOR2 -30.20823 -70.78971 CAP [?] CHILE OKRT

TOFO -29.45939 -71.23842 CAP [4] 1993 1996 2001 2002 CHILE

SILA -29.24037 -70.74956 CAP [3] 1993 1996 2002 CHILE OKRT

HUAS -28.47848 -71.22235 CAP [3] 1993 1996 2002 CHILE OKRT

PSTO -28.17157 -69.79377 CAP [3] 1993 1996 2002 CHILE OKRT

GRDA -27.71571 -69.55836 CAP [2] 1993 1996 CHILE OKRT

CALD -27.0827 -70.86208 CAP [5] 1993 1996 1999 2001 2002 CHILE

PNAZ -26.14822 -70.65368 CAP [3] 1993 1996 2001 CHILE OKRT

alpaca.ceri.memphis.edu532:> grep ^P samgps.dat

PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002
CHILE OKRT

PSTO -28.17157 -69.79377 CAP [3] 1993 1996 2002 CHILE OKRT

PNAZ -26.14822 -70.65368 CAP [3] 1993 1996 2001 CHILE OKRT

PPST -20.97508 -68.83487 CAP [3] 1993 1996 2001 CHILE OKRT

PSAG -19.6023 -70.21962 CAP [3] 1993 1996 2001 CHILE OKR

$: Represents the end of the line

file example IND.pha

1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0 0

COC 274.71 1 P

MAN 346.71 1 P

ZKW 450.71 1 P

1926 6 28 3 23 26.82 -0.128 101.514 15.0 0.0 0 0
COC 303.18 1 P

%grep ‘P_*$’ IND.pha | head –n2

COC 274.71 1 P______

MAN 346.71 1 P______

or

%grep –c ‘P_*$’ IND.pha the –c flag counts matches

831857

Unix think practice.

What represents an empty line?

What represents an empty line?

^$

\ : Escapes the following metacharacter

%grep '*' suma.stations | head –n2

*AGD +11.529000 +042.824000

* AIS -37.797000 +077.569000

[] : Matches members of the sets/ranges within the brackets

%grep '[DB]EQ' SUMA.NEW.loc

3478 2005 7 4 16 7 35.23 10.301 93.576 29.9 4.9
0.0 ehb DEQ Md

3480 2005 7 5 1 52 4.16 1.822 97.068 30.0 6.2
6.8 ehb BEQ Md

3481 2005 7 5 7 57 27.19 2.244 94.978 15.7 5.1
4.5 ehb DEQ Md

Non-printable characters

The following syntax works with a range of
commands and programs that recognize

regular expressions (sed, awk, perl, printf,
etc)

\t : for a tab character
\r : for carriage return

\n : for line feed or new line.
\s : for a white space

awk (nawk):
[Aho, Kernighan, Weinberger]

new-awk

Powerful pattern-directed scanning and
processing language.

So powerful that we will devote a full week
to it in the future.

One of the most used Unix tools.

