Common Languages used in
Scientific programming

What is the best language to learn?

That depends on'what you want to do.

Most common for scientific programming
(in no particular order)

Fortran
C
C++
Matlab

Pearl

High School/Jr.High

10 PRINT "HELLO WORLD"
20 END

Prints "HELLO ' WORLD"

Firstiyear in College

program Hello(input,” output)
begin
writeln{ 'Hello World*®)
end.

Prints "HELLO WORLD"

Senior year in College

(defun hello
(print
(cons 'Hello (1list ''World))))

Prints "HELLO WORLD"

New professional

#include <stdio.h>
void main(void)

{

char *message[] =«{"Hello ", #World'"};
int i;

for(i = 03 i < 2; ++1)

printf("%s", smessage[1])s
printf ("\n");

Prints. "HELLO WORLD"

Seasoned professional

#include <iostream.h>
#inelude <string.h>
class string
{
private:
int size;
char *ptr;
string() : size(0), ptr¥(new char[1l]) { ptr[0] &= 0; }
string(const string ‘&s) : size(s.size)
{
ptr,= new char[size + 11;
strcpy(ptr, s.ptr);
}
~string()
{
delete [] ptr;
}
friend ostream &operator <<(ostream &, censt string &);
string &operator=(const char *);
}i
ostream &gQperator<<(ostream &stream, const string &s)

{

return(@stream << s.ptr);
}
string &string::operator=(const char *chrs)
{
if (this != &chrs)
{
delete [] ptr;
size = strlen(chrs)j;
ptr = new char[size + 1];
strepy (ptxr, chrs);
}

return(*this);

}

int main()

e Prints "HELLO WORLD"

cout << str << endl;
return(0);

Master Programmer

[
uuid(2573F8F4-CEEE-101A-9A9F-00AA00342820)
]
library LHello
{
// bring in the master library
impoertlib("actimp.tlb");
importlib("actexp.tlb");
//- bring in my interfaces
#include "pshlo.idl”
[
uuid(2573F8F5-CFEE-101A-9A9F-00AA00342820)
]
Cotype THello
{
interface IHello;
interface IPersistFile;
bi
bi
[
exe,
uuid(2573F890-CFEE-101A-9A9F-00AA00342820)
]
module CHelloLib
{
//. some code related header files
importheader (<windows.h>);
importheader (<ole2.h>);
importheader (<except.hxx>);
importheader("pshlo.h");
importheader ("shle.hxx");
importheader("mycls.hxx");
// needed typelibs
importlib("actimpstlb");
importlib("actexp.tlb");
importlib("thlo.tlb");

[
uuid(2573F891-CFEE-101A-9A9F-00AA003428204) ,
aggregatable

]

coclass CHello

{
cotype THello;
b
}i
#ineclude' "ipfix.hxx"
extern HANDLE hEvent;
class CHello w public CHelloBase

public:
IPEIX(CLSID CHello);
CHello(IUnknown *pUnk);
~CHello()
HRESULT . stdcall PrintSz(LPWSTR pwszString);
private:
static int cObjRef;
Yi
#include <windows.h>
#include <ole2.h>
#include <stdio.h>
#include <stdlib.h>

#include "thlo.h"

#include "pshlo.h"

#include : "shlo.hxx"

#include "mycls.hxx”

int CHello::cObjRef = 0;

CHello: :CHello(IUnknown *pUnk) : CHelloBase(pUnk)

cObjRef++;
return;

HRESULT | _ stdeall CHello::PrintSz(LPWSTR,pwszString)

printf("sws
» pwszString);
return(ResultFromScode(S_OK));

}
CHello::~CHello(void)

{

/7 whenithe object count goes to zero, stop theyserver

cObjRef~=;
if(cObjRef == 0)
BulseEvent (hEvent) ;

return;

}

#include <windows.h>

#include <ole2.h>

#include, "pshlo.h"

#include "Shloshxx"

#include "mycls.hxx”

HANDLE hEvent;

int _cdecl main(

int argc,

char * argv]]

) A

ULONG ulRef;

DWORD dwRegistration;

CHelloCF - *pCE = new CHelloCF();

hEvent. = CreateEvent (NULL, FALSE, FALSE, NULL);

// Inditialize the OLE libraries

CoInitializeEx(NULL, COINIT. MULTITHREADED) ;

CoRegisterClassObject(CLSID CHello, pCF,
CLSCTX_LOCAL_SERVER,

REGCLS_MULTIPLEUSE, &dwRegistration);

// wait 'on an.eyvent to stop

WaitForSingleObject (hEvent, INFINITE);

//* revokeiand release the class object

CoRevokeClassObject (dwRegistration);

ulRef = pCF->Release();

// Tell OLE we' are going away.

CoUninitialize();

return(0); }

extern CLSID CLSID,CHelloj

extern UUID LIBID CHelloLibj;

CLSID CLSID CHello ='{../* 2573F891-

CFEE-101A-9A9F-00AA00342820 */

0x2573F891,
0xCFEE,
0x101A,
{ 0x9A, 0x9F, 0x00, OxAA, 0x00, 0x34, 0x28,
}i
UUID LIBID CHelloLib = { /* 2573F890-
CFEE-101A-9A9F-00AA00342820 */
0x%2573E890,
0xXCFEE),

0x101A,

{ 0x9A, O0x9F, 0x00, OxAR, 0x00, 0x34, 0x28,:0x20 }

Yi
#include <windows.h>
#include <ole2.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "pshlo.h"
#include "shlo.hxx"
#include "clsid.h”
int _cdecl main(
int argc,
char * argv([]
) &
HRESULT | hRslt;
IHello *pHello;
ULONG ulCnt;
IMoniker * pmk;
WCHAR wcsT[_MAX PATH];
WCHAR wcsPath[2 * MAX PATH]y
// get objett path
wcsPath[0] = '\0";
wesT[0] = '\0';
if(argc > 1) {
mbstowcs (wcsPath, argv[1l], strlen(argv[l]) + 1);
wcsupr (wcsPath)g;
}

else {

fprintf (stdexr, "Object path must be specified\n");

return(l);

//"get print string
if (arge > 2)

mbstowes (wesT, argv[2], 'strlen(argv[2]) .+ 1);
else

wcscpy (wesT, L'Hello World');
printf("Linking to object %Wws\n", wcsPath);
printf ("Text String %ws\m"y wesT);
// Initialize the OLE libraries
hRslt = CoInitializeEx(NULL, COINIT MULTITHREADED);
if (SUCCEEDED(hRslt)) {

hRslt = CreateFileMoniker(wesPath, &pmk);

if (SUCCEEDED(hRslt))

hRslt = BindMomiiker(pmk, 0, IID IHello, (void **)&pHello);

if (SUCCEEDED(hRs1t)) {
// print a string out
pHello->PrintSz(wesT) ;

Sleep(2000);

ulCnt = pHello->Release();

3
else

printf("Failure to connect, status: %1x", hRslt);
// Tell OLE we are goingiaway.
CoUninitialize();

return(0);

¥

Prints "HELLO WORLD"

FORTRAN

You will come across two versions-of
FORTRAN, 77-and 90/95

FORTRAN (FORmula TRANslator) is a high-
levellanguage.

Unlike MATLARB, it is not interactive. It
must be translated into the low-level

machine language as a separate step.in order
To run.

This is . done via compiler.and yields an
executablespecific:to that platform

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/intro.html

Basics of Fortran

Simple programs have the following
structure -

Comments
Common block inclusions
Variable declarations
Program

: } :

:

< Column formatting

s

o

Fortran fe

| FORTRAN STATEMENT

';[f'jiaaouonoor:aaoneoooeauounuousas1oo:oeeuoouusuoaoaaoenp@@

1tImmne [_"N°' mocoeoom\/oorn TnNnrm cTnNnsTonmec

JIGIIWID 4 V' | OICI VO | VI Q1T TCITIGI
4“' ‘ o . > - o

CUIANny V. 1 COCTT VEU Ul COTHITEIQU TV

f1111111

(SNl slacclss888558383888855/ 385838838888, 8823,88888888888883888/38883888
$88589998529899993994993498989393190 3
7 »% y 8 &1 @

R HEONB R D WS PN I DNA NI AN YN E DN 0T N
ByL-<-

399999999993a91sf94993503

MRS VRANSHLOUDGUSQRNRNINHIB R ITNEN /

columns _/-/2: statement

-y

Columns 73-80: line/card numbers -

oif

~ Col um_hl,foﬁm;tﬁing“ i}

: pu «
" . Y

_ : _

ave a dial ale .‘ J ‘
R TSR AT S O TN 1 GO M 'iwcis'
g00Noo0oNNooNNoooNNooNo00NIo Moo NG 000030000000 00000000 00|

| 00000000
7'1"“”2122.23325‘82723_33111?.‘.’13-(353&3?1839&4!&20{4‘)%0]4449505!5250545556515658&"”““ |

BES BB RMINIBEHT
'lllllllllllllllllll1||||l|1|||||11llllllllllllllllllllllllll]

] CRAR | REE] RRRS | | IET KT B (B DB IR LU RN LT TERR LT 1| Bl ERe e
f!@ﬂﬁh!4£44lt1|4«6444,!thad44n414||4n;:UU444,4u541444441::44&4f4£141}}§4‘;
BRSNS s 55 MY HsHsHs:ssHAsH.555sBRRSHAPs RAND: ERNENEs PUPS555550at 55555
£ ﬁyiﬁﬁls;;:aéssslsaassslssislssosssls]aaisssiaasissisassSsslelglsssssss‘

UARERE] FEY PRREANT SRS LELAREE-1 5 &4 § t B| REEA bA Bl EREN PEN bA ERIBRESESEE

_-8®aaslcasssssssssaalls:ellllllals3|sselsslslasllssllllllasalaesapysf'

: slsslslaslslllsllsellsls9slslsssllslss9|s|99seeesslsslllslsﬁsSsssss
;_‘nliuqsnt)luﬂnvunxzs:wn:n»nnnxuzn

HUVBHNRUAUDETHIRNNNHT AT LNNS QD HESHERE NN N
7

BERNIANE]

Thefirst line of segment of
fortran source code (a program) (in
a file) indicates what it is

program.[name of program]

subroutine clusterl¢log, nev, ndt,
& idata, minobs ,cc, minobs ct,

& dt cl, dt c2;, ev cusp,

& clust; noclust, nclust)

*Note, the indented "&" indicates a
line continuation

The last line of:the segment (a program)
needs to indicate the segment (program) is

finished

Variable-typing ~-Implicit

IMPLICIT NONE
not standard (soyoushauldnotuse ity, but very useful

(all rules are made to.be brokenl!).

Gives the "Pascal convention” that all

variables have:to be specified.

For Sun the same effect can be obtained
with the switch -u'in the compilation
command

Variable typing - Implicit
IMPLICIT - the default is

IMPLICIT REAL(A-H,0<=Z), INTEGER(I-N)

And you can specify whatever you want

IMPLICIT REAL(A-H)
IMPLICIT DOUBLE(O-Z)
IMPLICIT LOGICAL(K)
IMPLICIT INTEGER(I-J,L-N)

The huge benefit of IMPLICIT NONE is
that it will catch most of your typing errors.

Without it, new:variables are created as
they show up in your source code.

So.a typo makes a new variable.

The Eirst'Computer Bug

Moth found trapped between points.at Relay
70, Panel F, of the Mark IT Aiken Relay
Calculator while it was being tested at
Harvard University, 9 September 1947. The
operators-affixed-the moth to the‘computer
log, with the entry: "First actual case of bug
being found". They put out the word that
they had'"debugged" the machine; thus
introducing the term “debugging a computer
program!.

94 el

Hll D o O Atn M . {/-17«0 7.032 §y7 0LS
J 000 “ ﬂv??‘} "aa(,/om / 9.087 §YC 95 o
137w, (035 MP -pme ﬁﬁm/réﬂ 76/5725055(-3)
©33y Pro » 2. 30yq26Yi§5

Can b 2.130672¢w5 :
RIS | -2 | 032 /,,.J.J ’1‘“’"1 STJ)J Jeosb | 3
{m /J w tew 4t !
; on-
|/ &0 b_j_}\l'-f“l Co.sur\e (Sh\e c-‘\cck) ,

IS 25 ...‘o-.—tc'r:‘. luxI\' / ?er TE§+ |

Rz\ow\#ﬁb ?cx n a‘

Uho'ﬁ) in \QU\

ey GAF‘(SY Q:‘\‘ua\.c.a.s:e. o-f Eucl Lu'm‘ {OQV\(L-
| oo olard S

Comments

A "C" or 'c" (fortran is case insensetivel) in
column 1 IS used to indicate the."line"/
statement is d comment

Version 1.0 = 03/2001
Author: Felix Waldhauser,

started 03/1999

\\Ill

after a fortran statement, indicates a

commenT at'the end'of a statement (it fay aiso be
placed-at the beginning of the line)

integer log I" Log-fide identifier

Variables

Variables do.not need to be declared .in
Fortran

But should be unless you like debugging.

Newmann and Goldstine
Series of reports:
Planning and Coding Problems. for an
Electronic'Computing Instrument

Published "dozens of routines for

mathematical computation with the
expectation that some lowly "coder” would
be able. to convert them into working
programs " (S¢i. Am., Dec 2009)

But "the process of writing programs and
getting them to work was excruicating

difficult.” (Sci. Am., Dec. 2009)

Wilkes
Memoirs

*the realization came over me with full force
that a goo part of the remainder of my life
was going to be spent finding errors’in my
ownh programs’

numeric variable types’include:

inTeger'i inTeger'S (short, regular, long, quad)

r'eGI: flOGTing POinT number' (single, double, quad)

ComPICX: Complex number (single, double, quad)

lOQiCGI: IOgiCOI VGIUC (i.e., true’or false).

string variable types include

character: character.string of a certain
length 256 iong).

Declaring variables
Here.are some examples of variable
declaration

integer = dt idx(MAXDATA) !integer vector declaration
double at '1dx(MAXDATA) !double precision :-vector
real acond !single precision scalar declaration
character dt sta(MAXDATA)*7 !string with length

or

INTEGER, :: ZIP, Mean, Total. (90/95 only)

Variables must-be declared at the beginning
of your program.

I Except for the content of strings, Fortran is
not case sensitive (A is the same as a) .

So as a variable "DENS”, "dens”, "Dens” are
all the same.

In a comparison of chardcter variables "A" is
not equal to "a”.

There is no special syntax.($, @, ete.) for
using a variable.

You dont hayve to end statements with a *;"

4

You should initialize your variables o be
sure They start at O (or where you want them to start).

minwght= 0.00001
rms ccold= 0
rms ctold=10
rms ccOold= 0
rms ctlold= " 0
c-—-- get input: parameter file name:

narguments = jidrgc() !similar to argc in C, counts number of
command Jdine input parameters

you can initialize:a variable when specifying
the type (F90/95)

REAL :: Offset = 0.1, Length = :10.0, tolerance = 1.E-7

You’can put blank. lines, tabs; spaces as you
like for readability (except at beginning -
first 5:characters for statement number,

61 for continuation --- can use tab with
digit 1-9 for continuation immediately
after the tab.).

Globdl Variables/Parameters
You can define constants of any type by
using the parameter call

INTEGER, PARAMETER :: Limit = 30,.Max Count =100

or

integer*4 MAXEVE, MAXDATA, MAXCL
parameter (MAXEVE= 13000

& , IMAXDATA= 1300000

& ; IMAXCL= 50)

(I usually put the comma separating variables at the beginning.of the
continuation line,“rather than at'the end of the line being continued. If T have
to comment-out that line for‘some reason~‘it saves me from.having to-edit out

the comma from the previous line also.)

Global Variables - Common blocks

collections of variab

es that can be shared

between different parts of the program
(main, subroutines).

This is a way %o specify that certain
variables should be shared among different
subroutines.

In.general; those that give advice about
programming suggest that, the use of
common blocks should be minimized.

Common blocks

program main

real alpha, beta

common /coeff/ alpha, beta
. Statements . . .

stop

end

subroutine subl (somé arguments — but not alpha or beta)
real .alpha,' beta

| common /coeff/ alpha, beta
' . Statements
return

end

The main.program and subroutine will

physically share the memory in-the common
block.

Since memory is physically shared, we.don't
I-have to-use the-same names or even the

same types in the different instances of the

“named” common block. (¢an be handy, and very dangerous)

program main

real*4 alpha, beta

common /fcoeff/ alpha, beta
. Statements

stop

end

subroutine subl (some arguments'— but not alpha or beta)

Integer*4° delta, gamma

common /coeff/ delta, gamma
. Statements . .+ -

return

end

Common blocks can also be "unnamed” (justcave

out.the "/name/"

include statements

INCLUDE statements insert the entire
contents of a'separate text file into the
source code
(ex:"include mydefs.inc”, include: files
normally have-“.inc” as-their “extension™.).

This feature can be particularly useful when
the same set of statements has.to be used in
several different program units.

include statements

Such is often the case when defining a set
of constants using PARAMETER statements,
or when declaring-common-blocks with a set
Of COMMON statements without the common below, the

variables would be local to each subroutine).

include” ‘hypoDD.inc¢’ . !in the main program hypoDD.f

contents.of file hypoDD.inc

integer*4 ' MAXEVE, MAXDATA, MAXSTA
c parameters for medium size problems (e.g. : SUN ULTRA-2, 768
MB' RAM)

parameter (MAXEVE= 13000

& , MAXDATA= 1300000

& , MAXSTA= 2000)

common /mycommon/MAXEVE, MAXDATA; MAXSTA

Operators

Operator Associativity
Arithmetic

X right to left
* &/ left to right
+ & - left to right

Relational
It (<).. le(<=) = none
gt (>) ge (>=) !
“()" indicate 90/95convention
eq (==) . ne (/=)
| is negation

Intrinsic Fortran Functions
Mathematical functions (sgrt, sin, cos,tan,
etc) accept REAL typesand.return REAL

Types.

All trig functions use radian or degrees.

sin, sind, etc.

abs (absolute-value) will also accept
INTEGERs.

Intrinsic Fortran Functions
Conversion functions. ©o/95 conventions)
INT(x) integer part X, REAL2ZINTEGER

NINT(x) nearest integer fo X,
REALZ2INTEGER

FLOOR(x) " greatest integer less than or equal
to x, REAL2INTEGER

FRACTION(x) ' the fractional part of X,
REALZREAL

REAL(x) ‘convert x'to REAL. INTEGERZ2REAL

if/else if/else/endif

if (1flrai(no,neit)seqg.l) then !”"note the testing
syntax
ttime= temps
else if (iflrai(no,neit)seqg.2) then
ttime = atim
if(fheterl.eg.3) then
if(isp.eq.0) then
secp(no,neit)=seco(neit)+pdl(ji)+ttime
else
secp(no,neit)=seco(neit)+sdl{(ji)+ttime
endif
endif
endif

goto/qgo to

One’of the best features.of Fortran’is the
ability to quickly jump to (almost) anywhere
in The code.

One of the worst features of Fortran is the
ability to quickly jump to (almost) anywhere
in the code.

goto/go to

Any command or block may be labeled using a
humeric humber.

Then you can use the goto command to jump
to'that line.

Labels must be unique.

DD Codaiy s
56 if(iter.eqg.maxiter) goto 600 ! all ‘iterations
done,
iter= iter+l
goto+55 I' next-iteration

c--- update origin time (this is only.done for final output!!)
600 continueée

Problem withindiscriminant use of "go to's is
spaghetticode.

Disorganized structure of code makes
VGI idClTiOn (making sure code does what you want it to),
debugging’and maintenance difficult to

impossible.
(program flow tends to look like.a bow! of spaghetti, i.e. twisted and tangled.
[Wikipedia])

See also
Ravioli codegosd)

LGSGQ na COde (good)

Spagheﬁ'l anhd mQGTbG”S code (bad ravioli code)

do/endo. or do/continue
aka the "do loop”

Two forms
1 - block form-(do-enddo)

mbad= 0
k= 1
do i=1,nsrc
if(src.dep(i) -+ (src dz(i)/1000).1t.0) then
amcusp (k)= ev cusp(1i)
k=k+1
endif
enddo
mbad= k-1 ! number of neg depth events

Indenting to make it more readable,
maintainable.

2 - statement number form

(can be executable statement, eg. X=x+1, or non-executable - continue)

do 23184 '1=1,]1
if (snot.(v(l).gt:vlimax)) goto 23186
lmax = 1
tklmax '= thk(1l)
vimax'= v(1l)
23186 continue
23184 continue

What is the value of loop counter inthis case)
when I leave the IC)C)P’.> (¢an I depend of its value and-Use it

for something?)

It depends.on how the loop-"terminates”

do. 23184 1=1,7j1

if (.,not.(v(l).gt.vlmax)) goto 23186
lmax =1
tklmax =" thk(l)
23184 ‘continue

If I'm here the loop ran to completion and | is undefined (we
cannet be sure its value is j1). Solution save'l into another variable.

goto 23188
23186.'continue

If I’m. here Tbranched out of the loop and | keeps its value.

23188, continue

Arrays

I Arrays of any type can be formed in Fortran.

The' syntax. is simple:

type name (dim)

/*you have to know how big the array/vector
will be when you define the array (write the
program)i*/

(Static, not dynamic, memory allocation. But = £90/95 allow dynamic memory:
allocation.)

real sta rmsn (MAXSTA)

real tmp ttp(MAXSTA,MAXEVE)
example usages:

dt dt(1l) = (tmp ttp(i,]j)-tmp ttp(i,k))

Arrays
Array indices are integers, increment by 1.

No restriction.on range of indices.

Real*X(100)

Indices range from 1 10100 in steps of 1.

Real Y(-100:100)

Indices range from -100 1o 100 in steps of 1.

Real Z(-10:10,5)

Indicesrange from -10 to 10 in steps of 1
(first), and 1 to 5.in steps.of 1 (second).

This is a very powerful feature of.Fortran.

It allows one to "map” real coordinates easily
info the array.

Say I‘have a seismogram that goes from 1
second to 12 seconds, sampled at 100 sps

(0.01 sec).

I have 1101 samples. I can define my
seismogram array to go from 100 to 1200
and map the index directly’into time by
multiplying the index value by. 0.01 and vice
versa.

(in Matlab or C it would.be something more complicated.)

Standard I70

To read.in from standard input (first *)

CHARACTER (LEN=10) " :: Title
REA :: Height, Length, Area
read(*,*)i{ Title, Height,- Length, Area

Input example is unformatted (second *).

If the the variables Title, Height,
Length, Area dre declared as numbers, it
reads 4 numbers inany formdt (11.11.3e2..

1) , separated by spaces, commas, or tabs
into them!

I/O:from file

To read in from standard input

CHARACTER(LEN=10) =:: Title
REA . ¢: Height, Length,+Area
read(*,*)! ,Title; Height, Length, Area

Input example is unformatted.

If the the variables Title, “Height:
LLength; Area are declared as character
strings - it reads groups of characters

separated by spaces or-enclosed in quotes
(first second "third and fourth fifth).

Formatted T/0

Hll write (*,'("# lines .= " ,i7,” in. file "“,a)') ncts, filename

Output example is formatted.
It prints out the string in double quotes then
a 7 character integer (no decimal point)
whose value comes from ncts, and the

filename (uses the lengthrof the character string, first byte of Fortran
character stringrhas-length)

The single quotes define the complete
format specification.

think of write as printf with a different
synhtax.

Get same results from.

write (*,'(a,i7,a,a)"') "# lines = ",ncts
& y ™ in file«”,filename

Can also specify format in its own statement

(useful when more than one write statement uses same format).

write (*48)."# lines = .",ncts, * in-file “,filename
format(a,i7,a,a)

and similar results from unformatted
version.

write (*,*) "# lines = ",ncts, ™ in file *,filename

I/0 to-other than standard I/0

Use unit numbers (or modern name - file
handles) to work with external files

c-—-- open log file for writing:

call freeunit(log): !sets file: handle (gets free unit: #)
open(log,file="hypobDD.log',6 status="'unknown’)

strl= 'starting hypoDD (v1.0 =*03/2001)..:’

call datetime(dattim) lcalls .a subroutine
write(log,/'(a45,a) ') strl, dattim/ !formatted i/o

Assighs some unused number to variable "log”
associated with a file specified in the open
statement.

Use "log? to do reads and writes from that
file.

€¢--- open log . file for-writing:

call freeunit(log) 1sets file handle (gets free unit #)
open(log,file="'hypoDD.log',status='unknown’)

strl=_ 'starting hypoDD, (w1l:0 - 037/2001)..."'

call datetime(dattim) !calls a subroutine
write(log,"'(a45,a)') strl, dattim !formatted i/o

See fortran documentation for other
parameters ih open-statement.

Since UNIX only supports flat files, most of
the options for the.open statement:are not
applicable under UNIX.

unitl associated:with file somewhere else
(previously) in code.

read(unitl,*) i, a !free format for integers and reals

Be careful with, and while mixing, free
format chdracter:input

Checking for file existance.

inquire(FILE= fn inp,exist=ex)
if(.not. ex) ‘stop' >>>ERROR OPENING INPUT FILE."

c read_input control parameters
open(unit=01,file="CNTL" ,status="'0ld'y form='formatted' ,h read

only)

call inputl Ithis subroutine_ actually reads the file

subroutine inputl
implicit none
integer countrecords

C. this routine ‘reads in control parameters, number of eq'’s
C .and also counts them

998

999

countrecords=0

do| while (.true.) DO Whl|€ IOOP

read(l,*,err=999,end=998). negs,nsht,nbls,wtsht, kout
countrecords=countrecords+1

read(1l,#*) nitloc,wtsp,eigtol,rmscut,zmin,dxmax,rderr
read('l,*) hitct,dvpmx,dvsmx,idmp, (vdamp(j),Jj=1,3),stepl
end do

continue processing

handle error

return lalternately you can endsusing stop or.exit

Predefined units

O and 102 -'standard error
5 and 100 - teletype (standard in)
6 and 101 - line printer!! (standard out)

n without an open looks for file “fort.n"

Subroutines'- little programs, but not
independent. Use for stuff you.do lots and
for.organization.

subroutine latlon(x,y,lat,xlat,lon,xlon)
c. convert from Cartesian .coord to lat and long.
¢ Takes X,y and.-returns lat,xXlat,lon, and xlon
common '/shortd/ xltkm,xlnkm,rota,nzco,x1lt,xln,snr,csr
rad=1.7453292e-2
r1lt=9.9330647e-1
fy=csr*y-snr#*x
fxX=snr*y+csr*x
fy=fy/x1ltkm
plt=xlt+fy
xltl=atan(rlt*tan(rad* (plt+xlt)/120.))
fx=fx/(xlnkm*cos(xltl))
plin=xln+fx
lat=plt/60.
xlat=plt-lat*60.
lon=pln/60.
xlon=pln-1on*60.
return
end

C and C++ are higher-level languages that are
designed to be independent of computational

pIC(TfO "M (as is Fortran, COBOL, ALGOL, PL/1; APL;... - and all pretty
much dismal failures.at it.).

Higher-level languages must be translated
into the low-level machine language in order
T0-run (same as‘is Fortran, COBOL, ALGOL/PL/1, APL,...)

This is done via compiler.and yields an
executable specific to that platform.

Dif ferences between C & C++

C++'grew out of C and is mostly a superset of
the latter, but it is considered a different
language

They are not developed to be cross-
compatible and C++ does not supersede the
use of C

Differences between C & C++

C++ introduces many features that are not
available in"'C and in practice almost all code
written in C++ is not valid C code

There are many C syntaxes which are.invalid

or behave differently in.C++

This is all we are going to say about C++

(see the mastersprogrammer example for why).

Basics of C

Simple'C programs have the following
structure

Comments
Library inclusions

Main Program

C program source file names MUST end in:.c
(.cpp for C++)

Lecture based largely on “http://www.physics.drexel.edu/students/courses/
Comp_.Phys/General /C basics/

m Comment blocks
VA S s Used to enclose comments

* This program®prints the ‘message "Hello, “world.”

&7

To make turning comment on/off easily use

Commented out

not commented-out

Libraries

Libraries aré collections of tools
(subroutines/functions) that perform
specific operations.

They are not part of the basic language.
(they'may even be written in ahother
language).

As part of the UNIX philosophy (remember
the power of unix) € does not include

I/Q (basic or otherwise)

math (beyond what is in the CPU as-an
instruction: + = * / and, or, ex-or, not,
shift).

(and they got away with itl)

Weriting I/O-routines, math (exponentiation
for example) are left to the user to write as
they:see fit/need.

Lucky for us - somebady has developed some
of these things

(but we are now relinquishing the power of unix to them).

Since C is so stripped down - libraries are
much more important to.C than previous
languages we have seen/used.

You have to declare’at least'the stdlib.h-for
a pr'ogr'am 10 Compile (notireally, but it is @ good idea).

#include ~<stdlib.h> the standard geheral purpose library
#include <stdio.h> the standard input/output library
#include <math.h> the standard math library

#include “hrdfavorites.h” a personal extended library

The other two libraries above you almost
always need'are the I/0O library; stdio.h;and
the math library, math.h.

m-#include <stdlib.h> the standard general purpose library
#include <stdio.h> the standard.input/output library
#include <math.h> the standard math library
#include “hrdfavorites.h” a ‘personal extended library

The final library is some thingyou wrote.

Notice the filenames all end in .h

Notice the ones that come with C are in <>,
while local ones are.in "

Main Program
This block contains theprogram itself

void main()

{
printf("Hello\n™);

;

Officially, we are defining a function called
main with the body of the function contained

in {}

Variables
Variables need to be declared-in C/C++1ll

numeric variable types.include:
int: integers
short: short integers
long: long integers (more memory)

float: single-precision'real floating point
number
double: double-precision real floating
point (more precision but also more
memory)

string variable types include

Declaring variables
Here are some examples of-variable
declarations

main()

{

int a,b,c;
double dd,ee,ff;

}

Variables mustbe declared at the beginning
of your program/function.

Prototyping

Declaration on steroids.

Not only do wé have to define all the
variables in €, we must also define what each
function returns and its list of arguments.

void —"returns nothing
int = returns integer

float — returns float
etc.

If you forget to type the funcitons, int is
assumed and the compiler will complain.

void main(int'argc, char '*argv[])

|-Main does not return anything and takes two
input/calling arguments;an integer and a
pointer to a.character array,

One has to look-up what-the input/calling
arguments.are (the integer. has the humber

of command line arguments,.and the pointer
to the character array has the address of
the beginning of the character string for
each argument).

In a function you write, you decide what to
pass in.and out,

All this extra typing is supposed fo help the
compiler make sure your code is consistent
(very un-unix like - trying to help the user).

sineruce = sution | 5 There. is no special syntax ($,

#include < math.h>

My @) for using a variable’once it
: has been declared.

double anglesradian, pi, value;

int angle degree;

printf ("\nCompute a table of the sine function\n\n");

/* obtain pi once for all */

/* or just use pi = M PI, where M PI is defined in math.h

4.0*atan(l.0);
printf ("/Value of PI = %f \n\n", pi);
printf (" angle Sine \n'");

anglerdegree=0; /* initial angle’ value */

while (‘Jangle degree <= 360) { /* loop until angle degree > 360 */

angle radian = pi * angle degree/180.0 ;
value = sin(angle.radian);
printf (" %3d &f \n ", angleldegree, value /);

angle degree = angle degree '+ 10; /* iincrement- the loop

L

Floats/doubles are relatively easy to use but
problems tend to occur when performing
division;

An int divided by an int<refurns-anint.

An int divided by a float refurns a float.
A float divided by an int returns a float.

A float divided by a float returns a float.

As an example, 3 is considered as an int, but
3.0'is considered as'a float.

If youwant to store the result-of a division
as a floating-point (decimal) number, make
sure you store it in a float declared variable.

Explicit conversion
you can specify explicit conversion by using a
Type cast

int num, den;
double. quotient;

quotient = num / (double) denj; "~ /*this recasts den as a
double 'so . the ‘value of an int/double’'is a double.

Global Constants
You can define constants of any type by
using the #define compiler directive. Its
syntax is simple--for. instance

#define ANGLE_MIN O
#define ANGLE MAX 360

C distinguishes between lowercase-and
uppercase letters in variable names. It s
customary to use capital letters in defining
global constants.

These are traditional declared after the
#include calls

Loops
C is the original looping language...love it or
hate it

Statement blocks, or a sequences of
statements, are encased using { }.

Statements are executed in sequence from
first to last by.default

(have not mentioned so far, but, statfements in C:are terminated by *;". They
wrap lines, unlike fortran:).

{

first statement;
last statement;

}

While

while: continues to loop as long as condition
exited successfully

count = 0;
while (count’ < 10) {
count += 2;
printf ("count is now ‘$d\n”,count);

}

There is no print; there is printf (print o
file) and prints (print o string).

You have to initialize numeric variables fo
O to avoid getting whatever happens to be
sitting in That location in memory.

if/else if/else
If expression is true, then run the first set
of commands. Else if'a secohd expression is
true. run the second set of commands. Else
if neither is true, run a third set of

commands. End the.if command

if (a > b)) {
statement
} else ifi(a == b) {
statement
} else{
printf ”%d is less than %d.\n”, 4, b;

}

Conditional Operators

Conditionals are logical operations involving
comparison of quantities (of the same type)
using ‘the conditional operators:

greater than
greater thdn or equal to
equal to
not equal to
greater thanor equal o
greater than

Conditional Operators

and the boolean operators

A& and

i or
| not

For
one of-the most common loop structures is
the for loop, which iterates over an array of
objects

for i values in array, do this

for « (1i=0; 'i<=10; i++ ') {
for (3=0 3<=10; J++) {
H[1](]1=0;
¥
}

Switch
The appropriate block of statements-is
executed according to the value of the
expression, compared with the constant
expressions in the case'statement.

This construct is particularly useful in

handling input variables.

switch (n) {
case 1l: printf(”Ace\n”); break;
case i11: { /*there is isome flexibility in
syntax*/
printf(“Jack\n”);
break;

}

default: printf (“%d\n”,n); break;
}

break
break: allows you to break out of'a for, do,
while,.or switch'loop

Default behavior is the break out of the
enclosing loop

for (a=0; a<20; at+) {
if (a > 10) 4
break;

}

last comes here

Arrays
Arrays of any type can be formed in C. The
syntax is simple:

type namef[dim];

double name[1007][50];
/*you have to already know how big the array/vector
will! be!*/

In C,arrays starts at position O.

The-elements of the-array occupy adjacent
locations in-memory:

Pointers
The C-language allows-the programmer-to
' peek-and poke ' directly into.memory
locations.

This gives great flexibility and power to the
language, but it also one.of the great hurdles
that the beginner must overcome in using
the language.

variables-called pointers store the address
of other variables.

Pointers

Have to declare them, they are a special kind
of .integer.

int *p;"" /[*declared that p is a pointer*/

&x returns address of x, which can be
Stored in a variable.

If that variable is a pointer, we can then use
IT.7o access the memory contents at that
address.

p=&x; [*p is the address of x*/

Pointers

Value of pointer is the address in memory.
Value of what is in that address obtained
using *.
x=17;

p=&x; [*p.is the address of x*/
p=17; T same as setting x =17 */

Y=X;
y=2p;

Pointers-are used to pass arrays to
functions. (C always passes arguments-to
functions:by value (acopy1, eXcept when it does
not (arrayst..FOrtran,passes by address)

Strings
You have to think of strings as‘character
vectors (much like matlab)

Strings are manipulated either via pointers
or via special routines available from the
standard string library string.h

(basic C doesyalmost nothingl).

C strings are null terminated (start at
address of string and to fill encounter a null
[zero] byte).

#include’<string.h> " to work efficiently with strings

char string[20];
char message[] = “Helle, world.”;

main()

{

[*

char textr2[100]7%
char *ta, *tb;

int i;

setimessage to be ‘an'arrray of characters; initialize it

*to the constant string "...”.and let the compiler /decide its size by using []

Y

char message[] = "Hello, I am a string; what are you?”;

printf ("Original. méssage: %s\n', Mmessage);

/* use explicit pointer arithmetic.to copy the original message.to text 2

374

ta=message;
tb=text 2;

while ((*tb*+ = *ta++) 1= "\0"") { ; /*set the pointers i equal at
each element until’ FALSE_ (aka ! 0Q) */

printf("Text 2: %s\n", text 2);

Higher-Level.I/O
To read-in from external files

main(int argc, char *argv) {
const char *progname = argv[0];

i1f (arge==5){ /*drgc = number command line files
listed*/

sscanf(argv[l], "%s", cfile); /*argv stores
the files/values*/

sscanf (argv[2], "%s', sfile);

sscanf (argv[34, "%d", &winlen);

sscanf (argv[4], "%f", &thresh);

}

fl=fopen("outdesc"y "w");
fc=fopen(cfile,''r");

Here; fl and fc are file handles. If you
include stdio.h, you would declare them as
FILE *fl, *fc

The if block is.an example'of reading the
command line input parameters-(not a file).
Uses sscanf (read from string) rather than
fSCan (r'eﬂd from flle) [fortranwalso does this = by simply

placing the character string you want to read intosthe read statement in place

of.the unit number in the read statement. It is known as an “internal” read.].

main(int argc,; char: *argv) {
const char *prognhame = argv[0];

if (argc==5) { /*arge = number command line files
listed*/

sscanf(argv[l], "%s", cfile); ' ./*argv stores
the files/values*/

sscanf (argv[2], "%s", sfile);

sscanf (argv[3], "%d"¢ &winlen);

sscanf(argvf[4], +%f", &thresh);

}

fl=fopen("'outdesc","w");
fc=fopen(cfide, "r");

’M #include < stdio.h>

void main()

{
FILE *fp;
inti;

fp = fopen("foo.dat", "w"); /* open foo.dat for
writding */

fprintf(fp, "\nSample Code\n\n"); /* write some info
%/

for (i =1; i <= 10 ; i++)
fprintf (fp, "i = 8d\n", i);

/fclose(fp); /% close the.file
*

Subroutines’(called functions in C) [fortran
has both subroutines and functions - the
difference being that a function returns a
value “yzsin(x)". for example; versus “call
sin(angle;value)”]

A function has the fallowing layout:

return-type function-name (argument-list-if-necessary)

{

...local-declarations..
. «.Statements...
return return-value;

}

If return-type is omitted, C defaults to int.

int n char(char string[])

{

int n; /* local wvariable in this function */

/*'strlen(a) returns the lengthrof sStringra
/* defined via the string.h ‘header */
n = strlen(string);

if (n > 50)

printf("String dis .longer:than. 50 characters\n")y

return“n; /* return the value of integér n */

COMPILING

Compiling

Your C or:Fortran program won't work unless
you compile (and link) it

The compiler will convert your program to
mGChine COde Gnd The Iinker (called automatically) Wl”
bUlld YOLlr' Pr'Ogr'Clm (conhects it o all those i/o,.math, etc: library

functions) @S AN executable file (typically in the current

directory), Which youi'can then invoke and run
just like any ether command.

C and Fortran are compiled using different
compilers

Libranes

“the.compiler’

Executable Code

The preprocessor
accepts source code
as input and is
responsible for
removing comments
interpreting special

preprocessor
directives

The compiler
translates source to
assembly code.

Libranes

“the.compiler’

Executable Code

The assembler
creates object code:

If a source file
references library
functions or functions
defined in.other
source files.the link
editor combines these
functions to create dn
executable file.

C compilers
One extremely popular Unix compiler, which
happens to be of extremely high quality, and
also happens to be free, is the Free
Software Foundations's gcc, or GNU C

Compiler:

at CERI:
$which gcc

/opt/local /bin/gcc

3gcc —v
gcc . version 3.4.2

Another C compiler available at CERI.is the
SUN distributioh cc

/opt/Studio/SUNWSspro/bin/cc

There are differences, beyond the scope of
this class, but.in general gcc is a good option
(both come with Mac developer tools)

C++ compilers
The GNU compiler for C++ is g++

The: SUN compiler:for C++is'CC (versus cc
for regular C)

AT .the level of this class, they will work the
same as gcc and cc;-but they have a
dif ferent set of flags.

Simple’example

ggcc -0 hello hello.c

hello.c : text file with C program
hello : executable file

The -o hello part says that the output, the

executable program which the compiler will
build, should be nhamed "hello”

if 'you leave out.the "-o hello” part, the
default is usudlly to leave yourexecutable
program in a file Aamed a.out which will get overwritten

the next time you do compile something without' the -o.part)

Example with math, need math library.

H" If you re compiling a program which uses any
of the math functions declared in the header
file <math:h> you'll typically have torequest
explicitly that the compiler (actually linker)

include the math library:

% gcc -0 myprogram ' myprogram.¢ ~im

Notice that the -Im option which.requests
the math library must be placed after all the
source code elements.

% gGc myprogram.c -lm-o myprogram

Also works.

Finding out library information requires a
trip. to the local unix wizard.

It is poorly documented.

I't is non standard.(each power user-does
their own - the power of -unix).

It varies between machines.

Some Useful Compiler Options (switches)

-g : invoke debugging option. This instructs
the compiler to produce additiondl symbol
table information that is used by a variety of
debugging utilities.

-llibrary : ‘Link with object libraries. This
option must follow the source file arguments.
The object libraries are archived and.can be

standard, third party or user created
libraries

-¢ + Suppress the linking process and
I produce a .0 file for each source file listed.
Several can be subsequently linked by the cc
command, for example:
cc filel.o file2.0 <0 executable

“-Ipathname : Add pathname to the list of

directories. in which to search for.Zinclude
files with relative filenames (not beginning
with slash /). By default, the preprocessor
first searches for #include files in the
directory containing source file, then-in
directories named with -I options (if any),
and finally, in'/usr/include.

-Olevel : performs some optimizationof the
executable and can lead fo significant
increases in executionspeed. Example

gcc -0 hello hello.c:—02

But oftentimes optimization only increases
the speed at which it is doing something
incorrectly.

Forftran compilers
I The'GNU project also supplies Fortran
compilers

at CERI:

swhich' g77
/opt/local/bin/g77

277 =v

gee version 3.4.2 .+ 1This is.not a Typo. gcc
comes with Fortran 77 compilers.
However, on the Mac, g7/ has some
problems with some codes. Always
check for platform dependence.

Another Fortran compiler<available at CERT
is the SUN distribution

/opt/Studio/SUNWspro/bin/f77
/opt/Studio/ SUNWspro/bin/f90
/opt/Studio/ SUNWSspro/bin/f95

File names ending’in .£90.and .f95 are
assumed to be free sotirce form - suitable
for Fortran 90/95 compilation.

File names ending‘in .f and .for are assumed
to be assumed fixed form source -
compatible with old Fortran 77 compilation.

Simple example

%5g77 hello.f =0 hello

hello.f : text file with Fortran 77
hello s executable file

The -o hello part says that the output, the
executable program which the compiter will

build, should be-named hello

if you leave out the -o hello part, the default
is usually to leave your.executable program
in a file named a.out

Example with ihclude files

The path of include files can be given with
the -T option, for example:

g77 myprog.f =06 myprog -I/home/fred/fortran/inc

or

g77 myprog.f -o myprog -ISMYINC

where the environment variable MYINC is
set with:

MYINC=/home/hdeshon/fortran/inc/

Some Useful.Compiler Options

-Olevel : performs some optimization of the
executable and can lead to significant
increases in execution speed. Example:

g77 myprog.f -o myprog -02

-Wlevel : enables most warning messages
that can be 'switched on by the programmer.
Such messages are generated at.compile-
fime warning the programmer of, for
example, tnused or unset variables. Example:

g77 myprog.f -o myprog -02 =Wall

Various run-time options can be selected,
" these options cause extra code-to be added
to the executable and so can.cause
significant decreases in‘execution speed.

However these options can be very useful
during program development and debugging.

Example

g77 myprog.f90 -o myprog =02 -fbounds-check

This causes the executable tocheck for
"array index out of bounds .conditions” (and siows

your code way down)s

Recommended options

g77: myprog.f -0 myprog -Wuninitialized -Wimplicit-none -
Wunused-vars =Wunset-vars -=fbounds-check
-ftrace=full /-02

If speed of execution is important then the
following options will improve speed:

g77 myprog+f -o myprog-~Wuninitialized -Wimplicit-none =
Wunused-vars -Wunset-vars —02

Compiling subprogram-source files.

It is sometimes useful to place sub-programs
into separate source files especially if the
sub-programs are large or shared with other
brograms or programmers.

If a Fortranproject contains:more than one
program source file, then to compile all
source files to an executable program you
can use the following .command:

g77.main.f subl.f sub2.f sub3.f -o myprog

You can also build your own libraries

(same idea.as with subroutines on last

example, but.compile and build library

once, and then link to:to library with
the -l switch.)

Makefiles

Makefiles are special format files that
together with the make unix utility will help

you To automatically build and manage your
projects.

make utility

If you run make, this program will look for a
file named makefile in your directory, and
then execute if.

If you have several makefiles; then you can
execute them with the command:

make -f MyMakefile

Example of a simple makefile
The basic makefile is composed. of:

target: dependencies
[tab] system command

All:

gt++ main.cpp hello.cpp
factorial.cpp <o hello

Dependencies
Sotmetimes is useful to use different
targets. This is because if you modify a
single file in your project, you don t.have 1o
recompile everything, only what modified.

all: hello

hello: main.o helloso
g++ main.o hello.o’'=-o hello

main.os:; main.cpp
g++ -Cc main.cpp

hello.o¢ hello.cpp
g++ —-c helloicpp

clean:
rm —-rf *o hello

#'I am a ' comment, the wariable CC/will be the compiler to use.
CC=g++
Hey!, I'm comment number -2. CFLAGS are options for compiler.

CFLAGS=-c -Wall

all: ‘hello Typical example

hello: main.o hello.o

S(CC) main.o hello.o -o hello

main.o0: main.cpp

S(CC) S$(CFLAGS) main.cpp

hello.o: hello.cpp
$(CC) $(CFLAGS) hello.cpp

clean:

rm -rf *o hello

Combining € and Fortfran

= hypoDD
cC = gcc #Specified the C.compiler
FC = g77 #Specified the Fortran compiler
SRCS = $(CMD).f \ #List the main program first..in this
case hypoDD.f
aprod.f clusterl.f covar:f datum.f.,\
delaz.f delaz2.f directl.f dist.f dtres.f exist.f \
freeunit.f getdata.f getinp.f ifindi.f \
indexxi.f juliam.f 1sfit 1sqr.f 1lsfit svd.f \
lsgr.fimatmultl.f ‘matmult2.f matmult3.f mdianl.f \
normlz.f partials.f ran.f redist.f refract.f \
rfesstat.f scopy.f sdc2.f setorg.f skip.f \
snrm2.f sort.f sorti.f sscal.f \
svdsfi tiddid.f strialsrc.f trimlen.f \
ttime.f vmodel.f weighting.f
CSRCS =atoangle ".c atoangile.c datetime”.c hypot w.c rpad .c
sscanf3 .c

#The underscore is added prior to the .c to-indicate that
these are'C programs to the fortran assembler

INCLDIR = ../.¢/include
LDFLAGS =0

Flags for GNUig77 compilexr

FELAGS = -0 =I$(INCLDIR) -g -fno-silent -ffixed-line-length-none
—Wall¥ -implicit

#Flags for the GNU gcc compiler
CELAGS = -0 '-g.-IS$(INCLDIR)

0OBJS $(SRCS:%.£=%.0) $(CGSRCS:%.c=%.0)

all: $(CMD) #make all makes hypoDD and all dependencies

S(CMD): $(OBJS) #To make hypoDD, link all OBJS with
the fortran. comp

$S(FC) $(LDFLAGS) $(OBJIsSY) —o s@

#long version of the shortcut under OBJS
S(FC)s $(FFLAGS) =c S$(QF:.0=.f) -0 $@

CC gt++

FC gcc

CFLAGS -g ~-DDEBUG -=Wall
FFLAGS -Wall

OBJS1 becseis.o A\

sacHeader.o sacSeisgram.o distaz.o_readSacData.o, \

mathFuncs.o’ fourier.o complex.o -\

staswo<’‘evData.o seisData.o tmDelay.o calecTravTm.o -\
getMaxShiftLag.o calcTmDelays.o0 calcCCTmDelay.o calcSubTmDelay.o calcBSTmDelay.o \

.0 directl.e refract.o vmodel.o tiddid.o #These are fortran, the others are ¢
../+./bin

bcseis

${CC} S$(CFLAGS) -c $<

${FC} $(FFLAGS) -c $<

S{PROG}

becseis: ${OBJS1}

${CC} ${CFLAGS} -1lm -o $@ ${OBJS1}
mv $@ ${BIN}

Web page
Excel/spreadsheets

