
Misc stuff

Saving and reading your workspace

>> eig_mov

>> whos

 Name Size Bytes Class Attributes

 D 2x2 32 double

 V 2x2 32 double

 . . .

 cnt 1x1 8 double

 x 2x361 5776 double

>> save eig_mov_ex.mat

Saves workspace in file stuff.mat
>> clear

>> whos

>> load eig_mov_ex.mat

>> whos

 Name Size Bytes Class Attributes

 D 2x2 32 double

 V 2x2 32 double

 . . .

 cnt 1x1 8 double

 x 2x361 5776 double

>>

Saving what you type
>>diary everythingItype.txt

Saves everything you type
>>dairy

To turn it off

Garbage collection

Any system such as MATLAB that maintains
an environment with variables continually
being created and destroyed must have a

form of “garbage collection” to remove dead
(or unused) space.

Unfortunately, MATLAB has no automatic
garbage collection mechanism.

The function clear allows the user to manage
his workspace and do his own house cleaning.

Even that is not enough, since other
temporary arrays might be created and

destroyed whenever M-files are run.

In place of garbage collection, there is a
MATLAB function called

pack

which saves all the variables in the entire
workspace, clears the workspace, and then

loads the saved variables.

This is time-consuming, but it is the best
way to get some room to work if memory

limits start to hinder your progress.

Supressing “Current plot held”, etc.
messages

be more specific - hold (‘on’), etc.

Importance of thinking through how to
program something

http://www.joelonsoftware.com/articles/fog0000000319.html

(so the world is not stuck with your mistake forever).

Random numbers

How random are they?

Compare – run multiple times
Restart Matlab – run multiple times

Mac vs PC

(seed)

Linear Algebra (a la Matlab) Review

Acknowledgement
This lecture borrows heavily from online

lectures/ppt files posted by

David Jacobs at Univ. of Maryland
Tim Marks at UCSD

Joseph Bradley at Carnegie Mellon

Vectors

>> a=[2 3 5]; 
>> norm(a) 
6.1644 
>> norm(a)^2 
38.000

U = [umn] =

u11 u12 … u1n
u21 u22 … u2n

 …
um1 um2 … umn

The general matrix consists of m rows and n
columns. It is also known as an m x n (read m by n)

array.

Each individual number, uij, of the array is called the
element

Elements uij where m=n is called the principal
diagonal

Matrices

Transpose of a Matrix

>> a=[6 1;2 5] 
a = 
 6 1 
 2 5 
>> a’ 
ans = 
 6 2 
 1 5

Notice how Matlab looks like math.

Matrix & Vector Addition

>> a=[1; 2]

a =

 1

 2

>> b=[3; 4]

b =

 3

 4

>> c=a+b

c =

 4

 6

>>

NO LOOPS
Looks like
Math – just
add them.

Vector/Matrix addition is
associative and commutative
(A+B)+C=A+(B C); A+B=B+A

Matrix and Vector Subtraction

Same as addition
Vector/Matrix subtraction is also

associative and commutative
(A-B)-C =A-(B- C); A-B=B-A

Matrix and Vector Scaling

>> x=[1 2 3]

x =

 1 2 3

>> y=3*x

y =

 3 6 9

>>

For addition and subtraction, the size of the
matrices must be the same

 Anm + Bnm = Cnm

For scalar multiplication,
the size of Anm does not matter

All three of these operations do not differ
from their ordinary number counterparts

The operators work element-by-element
through the array, amn+bmn=cmn

 v ⋅w = (x1,x2) ⋅ (y1, y2) =|| v || ⋅ || w || cosα

�

v ⋅ w = (x1,x2) ⋅ (y1,y2) = x1y1 + x2y2

Projection of one vector (orange) onto another
(green, result - projection – yellow).

Dot product is zero for perpendicular
vectors.

The inner/dot product can be represented
as row matrix multiplied by a column matrix.
A row matrix can be multiplied by a column

matrix, in that order, only if they each have
the same number of elements!

>> x=[1 2]

x =

 1 2

>> y=[2 1]

y =

 2 1

>> x*y’

ans =

 4

>> y=[-2 1]

y =

 -2 1

>> x*y’

ans =

 0

>> y=[2 -1]

y =

 2 -1

>> x*y’

ans =

 0

>>

Several ways to properly calculate the dot
product of two vectors

>>sum(a.*b)

element by element multiplication (.*), then
sum the results – based on definition.

Or making it look like matrix multiplication

>>a’*b

>>a*b’

Or using matlab function
>>c=dot(a,b)

Matrix Multiplication

Two matrices can be multiplied together
if and only if

the number of columns in the first equals
the number of rows in the second.

>> a=[1 2 3;3 2 1]
a =
 1 2 3
 3 2 1
>> b=[4 5;10 2;2 10]
b =
 4 5
 10 2
 2 10
>> c=a*b
c =
 30 39
 34 29
>>

>> a(1,
ans =
 1 2 3
>> b(:,1)
ans =
 4
 10
 2
>> a(1,:)*b(:,1)
ans =
 30
>> a(1,:)*b(:,2)
ans =
 39
>> a(2,:)*b(:,2)
ans =
 29
>> a(2,:)*b(:,1)
ans =
 34

In MATLAB, the * symbol represents
matrix multiplication :

>> c=a*b
c =
 30 39
 34 29
>> c=b*a
c =
 19 18 17
 16 24 32
 32 24 16

•  Matrix multiplication is not commutative!

•  Matrix multiplication is distributive and
associative

A(B+C) = AB + BC

(AB)C = A(BC)

Matrices can represent sets of equations

a11x1+a12x2+…+a1nxn=b1

a21x1+a22x2+…+a2nxn=b2
…

an1x1+an2x2+…+annxn=bn

What’s the matrix representation?

A =

a11 a12 ... a1n
a21 a22 ... a2n

...
an1 an2 ... ann

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 x =

x1
x2
.

xn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 b =

b1
b2
.

bn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

�

Ax = b

Determinant of a Matrix
>> a=magic(3)

a =

 8 1 6

 3 5 7

 4 9 2

>> det(a)

Ans

 -360

>>

Inverse of a Matrix
>> a=[1 2 3;4 5 6; 7 8 9]

a =

 1 2 3

 4 5 6

 7 8 9

>> ainv=inv(a)

ainv =

 0.1472 -0.1444 0.0639

 -0.0611 0.0222 0.1056

 -0.0194 0.1889 -0.1028

>> ainv*a

ans =

 1.0000 0 -0.0000

 0 1.0000 0

 0 0.0000 1.0000

>> a*ainv

ans =

 1.0000 0 -0.0000

 -0.0000 1.0000 0

 0.0000 0 1.0000

>>

If square matrix
invertible, has same
right and left inverse.

the determinant

the principal diagonal elements switch positions

the off diagonal elements
change sign

Square matrices with inverses are said to be
nonsingular

Not all square matrices have an inverse.
These are said to be singular.

Square matrices with determinants = 0 are
singular. (determinant in denominator)

Rectangular matrices are always singular.

Right- and Left- Inverse

If a matrix G exists such that GA = I, than
G is a left-inverse of A

If a matrix H exists such that AH = I, than
H is a right-inverse of A

Rectangular matrices may have right- or
left- inverses, but they are still singular.

For

�

A = m x n, m > n : we have a left inverse AT A()−1
AT A = In ,

 Aleft
−1 = AT A()−1

AT

A = m x n, n > m : we have a left inverse AAT AAT()−1
= Im,

 Aright
−1 = AT AAT()−1

>> a=[1 2 3;4 5 6]
a =
 1 2 3
 4 5 6
>> ainv=a'*inv(a*a’)
ainv =
 -0.9444 0.4444
 -0.1111 0.1111
 0.7222 -0.2222
>> a*ainv
ans =

 1.0000 -0.0000
 -0.0000 1.0000
>> >> det(a'*a)
ans =
 0

Right inverse exists,
but left doesn’t.

Matrix Division in Matlab

In ordinary math, division (a/b) can be
thought of as a*(1/b) or a*b-1.

There really is no such thing as matrix
division in any simple sense.

A unique inverse matrix of b, b-1, only
potentially exists if b is square.

Also, matrix multiplication is not
communicative, unlike ordinary multiplication.

Matrix Division in Matlab

/ : B/A (right division) is roughly the same as
B*inv(A).

A and B must have the same number of
columns for right division.

More precisely, B/A = (A'\B')’.

Matrix Division in Matlab

\ : If A is a square matrix, A\B (left division) is
roughly the same as inv(A)*B, except it is

computed in a different way.
A and B must have the same number of rows

for left division.
a =
 1 2
 3 4
>> b
b =
 1
 2
>> c=a\b
c =
 0
 0.5000
>> ainv=inv(a)

ainv =
 -2.0000 1.0000
 1.5000 -0.5000
>> ainv*b
ans =
 0
 0.5000
>>>> a*c
ans =
 1
 2

Matrix Division in Matlab

\ : If A is an m-by-n matrix (not square)
and b is a matrix of m rows, Ax=b is solved

by least squares using A\b (left division).
>> A

A =

1.0000 0 0

1.0000 1.0000 0.5000

1.0000 2.0000 2.0000

1.0000 3.0000 4.5000

1.0000 4.0000 8.0000

1.0000 5.0000 12.5000

>> b

b =

 1001

 1093

 1177

 1245

 1305

 1349

>> x_=A\b

x_ =

 1.0e+03 *

 1.0004

 0.0998

 -0.0120

>> (A*x_-b)/mean(b)

ans =

 -0.0005

 0.0011

 -0.0008

 0.0008

 -0.0011

 0.0005

Matlab also has routines to do polynomial
fits (positive powers only).

Data – 11 points (red circles)

5th order polynomial fit to 11 points – fewer
parameters than data – get LS fit (blue line,

blue ‘+’) – does not go through data points
(but misfit “minimized”).

Data – 11 points (red circles)

10th order polynomial fit to 11 points – same
number parameters as data – get exact

solution (red line). Goes though each point
exactly.

Now add some noise.

Data – 11 points (red circles)

Magenta and green – 5th and 10th order
polynomials fit to data with 10% noise.

The fits to the noisy and perfect data look
pretty much the same when plotted.

>> poly_demo

p5 =

 -0.0010 0.0215 -0.1629 0.4980 -0.6166 0.2926

pn5 =

 -0.0009 0.0209 -0.1559 0.4696 -0.5767 0.2733

p10 =

 Columns 1 through 11

 0.0000 -0.0003 0.0051 -0.0474 0.2251 -0.3195 -1.7232 8.6334 -14.0467 7.3647 0.2333

pn10 =

 Columns 1 through 11

 0.0000 -0.0002 0.0024 -0.0145 -0.0298 0.9338 -5.6002 15.8159 -21.1548 10.1628 0.2137

The models (the values for polynomial coefficients), however,
are quite different.

Compare “stability” of the solutions.

? ?

Array Operators (review)

+ Addition

-  Subtraction

.* Element-by-element multiplication

./ Element-by-element division.
(A./B: divides A by B by element)

.\ Element-by-element left division
(A.\B divides B by A by element)

.^ Element-by-element power

.' Unconjugated array transpose
(does not take complex conjugate, unlike a regular [no dot] matrix transpose)

Some Special Matrices

Square matrix: m (# rows) = n (# columns)

Symmetric matrix: subset of square
matrices where AT = A

Diagonal matrix: subset of square matrices
where elements off the principal diagonal

are zero, aij = 0 if i ≠ j

Identity or unit matrix: special diagonal
matrix where all principal diagonal elements

are 1

>> a=[1 2 3;4 5 6;7 8 9]
a =
 1 2 3
 4 5 6
 7 8 9
>> c=trace(a)
c =
 15

>> a=[.96 -.28; .28 .96]
a =
 0.9600 -0.2800
 0.2800 0.9600
>> inv(a)
ans =
 0.9600 0.2800
 -0.2800 0.9600
>> a'*a
ans =
 1 0
 0 1
>>

