
m-files

As we have seen before, it is generally
convenient to save programs in some sort of
file (script, macro, batch, etc.) for program

development and reuse.

Matlab offers this feature through m-files,
which are ascii text files containing a set of

Matlab commands.

m-files

There are two kinds of m-files:

Scripts, which do not accept input
arguments or return output arguments.
They operate on data in the workspace.

Functions, which can accept input arguments
and return output arguments. Functions have
internal variables are local to the function.

The filename has to end in “.m”

You have probably been using scripts already
in your previous matlab homework.

These files are the same things that you
would type in when running interactively.

They can have for and while loops, if-elseif-
else-end.

They are executed by entering the file name
in the matlab command window.

Functions
Functions are M-files that can accept input

arguments and return output arguments.
(Comments in Matlab are denoted using the % symbol.)

This function, loadsac, calls another
function, sac, with the filename to read. It
then works with the 3 matrices returned by
sac, returning a data matrix, and 3 scalars

dt, beg, pt.

We see here
that functions
can call other

functions.

Global Variables

If you want more than one function to share
a single copy of a variable, simply declare the

variable as global in all the functions.

Do the same thing at the command line if you
want the base workspace to access the

variable.

The global declaration must occur before
the variable is actually used in a function.
Although it is not required, using capital letters for the names of global

variables helps distinguish them from other variables.

In an .m file called falling.m
function h = falling(t)

global GRAVITY

h = 1/2*GRAVITY*t.^2;

In the workspace, enter the statements
>>global GRAVITY

>>GRAVITY = 32;

>>y = falling((0:.1:5)');

The two global statements make the value
assigned to GRAVITY at the command

prompt available inside the function. You can
then modify GRAVITY interactively and
obtain new solutions without editing any

files.

function tsting

global c

c=4

b=2

[a d]=tstfn(b)

whos

return

function [out1 out2]=tstfn(in)

global c

out1=in.^2

out2=c*out1

whos

return

>> tstingfuns

c =

 4

b =

 2

out1 =

 4

out2 =

 16

 Name Size Bytes Class Attributes

 c 1x1 8 double global

 in 1x1 8 double

 out1 1x1 8 double

 out2 1x1 8 double

a =

 4

d =

 16

 Name Size Bytes Class Attributes

 a 1x1 8 double

 b 1x1 8 double

 c 1x1 8 double global

 d 1x1 8 double

Can put multiple
functions in one m file.
“b” and “c” declared
global in both, but only
assigned in one of
them.

Rethinking code for taking advantage of
matlab vectorization.

More than just defining vectors and
matricies using matlab definitions.

x = rand(1,100);

%In place of :

for k=1:100

y(k) = sin(x(k));

End

% We can use :

y = sin(x);

Given an=n and bn=(1000-an) , n=1,2,…1000,
calculate

�

ssum = anbn
n=1

1000

∑

Solution: It might be tempting to implement
the above calculation as

a = 1:1000;

b = 1000 - a;

ssum=0;

for n=1:1000 %poor style...

 ssum = ssum +a(n)*b(n);

End

Recognizing that the sum is the inner
product of the vectors a and b, abT , we can

do better:

ssum = a*b'

%Vectorized, better!

Say we have a number of seismograms and
we would like to “window” and scale each one.

First – what is the “window” process?
(Blue trace is original
signal, red trace is
“window”, dashed red
trace is negative of
window to show
“envelope” – use it to
scale the original
signal. Green trace is
the final result after
applying the “window”
to the blue trace. In
this case the
windowing is done by a
point by point multiply
of the blue and red
vectors, b.*r, [64
pts]).

What if we want to do this to a number of
seismograms?

We could use a loop, doing the vectorized
multiply on each seismogram.

But can we do better than that?

We would not be asking leading questions if
not!

So how do we do it?
(Now we want to do
point by point
multiplies of each
trace by the window –
T1.*w and T2.*w, etc.
How can we do this in
one shot?

What if we make a
diagonal matrix of the
window vector
[elements of the
vector on the diagonal
and all else zero]?)

Looking at what happens when we do matrix
multiplication, we see that this does what we

need.

% length

%Number traces

N = 64;

M=1:4;

TH=1:N;

X = sin(TH'*M*…

pi*2/(N-1));

plot(X)

% Make a window

w = hamming(N);

W = diag(w);

% Windowed signals

%without loops

XW = W * X

To do the point by point multiply we need to
match the length of the seismograms (64

points in this case).
>> whos

 Name Size Bytes Class Attributes

 M 1x4 32 double

 N 1x1 8 double

 TH 1x64 512 double

 W 64x64 32768 double

 X 64x4 2048 double

 XW 64x4 2048 double

 g 1x4 32 double

 w 64x1 512 double

So we have a 64x64 * 64x4 producing a
64x4 result.

Say we want to scale each seismogram (there
are 4 of them). We have to multiply each

point in the seismogram by the same
number).

(Now we want to
multiply each trace by
its scale – T1*w1 and
T2*w2, etc. How can we
do this in one shot?

What if we make a
diagonal matrix of the
weights [elements of
the vector on the
diagonal and all else
zero]?)

% Make a vector of gain factors

g = 1./M;

G = diag(g);

% scale each seismogram by corresponding gain factor

XG = X * G;

Do both windowing and gain scaling together.
% Windowing and gain scaling is just left and right

% multiplication with appropriate diagonal matrices.

XWG = W * X * G;

Notice that vectorization requires a
different algorithmic thought pattern in the

approach to solving problems.

It will initially take longer to develop the
program.

But with practice (effort!, and seeing/
looking for examples), it will become more

natural and faster to code.
(If doing the previous example “for real” one would use the sparse matrix

feature for the diagonal matrices

W = diag(sparse(w));

This will save on both memory use and execution time.)

Why Use Vectorized Code?
Advantages

 Increased Speed:

Vectorized code runs significantly faster.

How much faster?

This depends on the commands used and the
application. And although Matlab has made
great strides in accelerating low-level code,

vectorized code still runs faster. But in
general, vectorized code is faster than it’s

low-level counterpart.

Why Use Vectorized Code?
Advantages

 Compact: Vectorized code is more
compact and can be easier to read and

understand.

Why Use Vectorized Code?
Disadvantages

 Difficulty:

Most people with programming experience
are used to doing things in a low-level manner

(i.e. FOR loops).
Vectorizing code can be a challenge because
of the different thinking that is required. In
addition, there is no set formula on how to

vectorize code. A good working knowledge of
the available functions within Matlab is

certainly helpful when it comes to
vectorization.

Why Use Vectorized Code?
Disadvantages

 Compact:

Being compact is both a blessing and a curse.

Vectorized code can be difficult to
understand because it is so compact.

If the code is undocumented and does not
have any comments, it can be a real pain to

figure what the code does.

Although vectorization can make your code
simpler at times, it can also make your code

archaic and difficult to understand.

In addition, it can be difficult to vectorize
your code at times, so it may not be worth

the time and effort to do so.

Thus, you may be wondering if it is really
worth your time to vectorize your code.

If you find it too difficult to vectorize your
code, you may be better off just using a low

level method.

The most important thing is to make sure
that your code works!

After you get your code working, you can
consider optimizing it through vectorization.

In conclusion, vectorization is not required,
but it can certainly be beneficial.

Unless the arrays you are dealing with are
quite large (and depending on the operations

performed), it can be difficult to see the
benefits of vectorization.

But in general, I believe that it’s good
practice to get into the habit of using
vectorized code as it is more efficient.

Graphics

Basics

Types of Graphics

Predefined graph types, or
Create your own graphics

Creating a Graph

Use plotting tools to create graphs
interactively.

Use the command interface to enter
commands in the Command Window or create

plotting programs.

Creating a plot

The plot function has many different forms,
depending on the input arguments.

If y is a vector, plot(y) produces a piecewise
linear graph of the elements of y versus the

index of the elements of y.

If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

>>x = 0:pi/100:2*pi;

>>y = sin(x);

>>plot(x,y)

>>xlabel('x = 0:2\pi')

>>ylabel('Sine of x')

>>title('Plot of the Sine Function','FontSize',12)

(Notice that the fontsize specification is sort of verbose. This aspect of
setting plot parameters is worse than GMT! It will improve you typing.)

>> seis=loadsac('BJT.BHZ_00.Q.
2005:01:23:41');

>> plot(seis)

>> ylabel('Digital Counts')

>> xlabel('Number of points')

>> title('BJT BHZ Seismogram')

Plotting multiple data sets

Multiple x-y pair arguments create multiple
graphs with a single call to plot, which

automatically cycles through a predefined
(but customizable) list of colors

>>x = 0:pi/100:2*pi;

>>y = sin(x);

>>y2 = sin(x-.25);

>>y3 = sin(x-.5);

>>plot(x,y,x,y2,x,y3)

>>legend('sin(x)',…

'sin(x-.25)','sin(x-.5)')

>> size(seis)

25138
1

>> x=1:25138;

>> plot(x,seis,x,seis2)

>> legend('Raw','Mean Removed’)

Specifying line colors/styles

It is possible to specify color, line styles,
and markers (such as plus signs or circles)

when you plot your data using the plot
command:

>>plot(x,y, 'specify_color_linestyle_markertype')

Change color

>> plot(x,seis,'r',x,seis2,'b')

>> plot(x,seis,'r',x,seis2,'b:')

Color
'c'
'm'
'y'
'r'
'g'
'b'
'w'
'k'

cyan
magenta
yellow
red
green
blue
white
black

Line style
'-'
'--'
':'
'.-'
no character

solid
dashed
dotted
dash-dot
no line

Specifying lines and markers
If you specify a marker type but not a line

style, only the marker is drawn.

>>plot(x,y,'ks')

plots black squares at each data point, but
does not connect the markers with a line

>>plot(x,y,'r:+')

plots a red-dotted line and places plus sign
markers at each data point

>>x1 = 0:pi/100:2*pi;

>>x2 = 0:pi/10:2*pi;

>>plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

Second part only plots the + every 10 points.
So does.

>>plot(x1,sin(x1),'r:',x1(1:10:end),sin(x1(1:10:end)),'r+’)

Marker Type
'+'
'o'
'*'
'x'
's'
'd'
'^'
'v'
'>'
'<'
'p'
'h'
no character

plus mark
unfilled circle
asterisk
letter x
filled square
filled diamond
filled upward triangle
filled downward triangle
filled right-pointing triangle
filled left-pointing triangle
filled pentagram
filled hexagram
no marker

Graphing imaginary and complex data

Reminder: complex numbers can be
represented by the expression a+bi where a
and b are real numbers and i is a symbol with

the property i2=-1

Complex numbers can be plotted using Real
and Imaginary axes.

When the arguments to plot are complex,
the imaginary part is ignored except when

you pass plot a single complex argument. For
this special case, the command is a shortcut

for a graph of the real part versus the
imaginary part.

>>t = 0:pi/10:2*pi;

>>plot(exp(i*t),'-o')

>>axis equal

>>xlabel('Real')

>>ylabel('Imaginary')

>>hold on

>>plot(t,t,'r+-')

Plus plotting
second data set
with “hold” (else erases
existing figure with new plot)

Figure Handling

Graphing functions automatically open a new
figure window if there are no figure windows

already on the screen.

If a figure window exists, it is used for
graphics output (and clobbers what’s there if

hold is off).

The default is to graph to the current figure
(usually the last active figure)

To create a new figure without overwriting
the old, use the figure command

When multiple figures already exist, you can
set one of them to the current figure with

the command figure(n) where n is the
number at the top of the figure window.

>> plot(x,seis,x,seis2)

>> legend('Raw','Mean Removed')

>> figure
%creates 2

>> plot(seis,'r')

>>figure(1) %makes 1 current

1 2

3 4

Creating subplots

The subplot command enables you to display
multiple plots in the same window or print

them on the same piece of paper.
t = 0:pi/10:2*pi;

[X,Y,Z] = cylinder(4*cos(t));

subplot(2,2,1); mesh(X)

subplot(2,2,2); mesh(Y)

subplot(2,2,3); mesh(Z)

subplot(2,2,4); mesh(X,Y,Z)

%creates a 2 x 2 matrix of

%subplots

>> help cylinder
 CYLINDER Generate cylinder.
 [X,Y,Z] = CYLINDER(R,N) forms the unit cylinder based on the generator
 curve in the vector R. Vector R contains the radius at equally
 spaced points along the unit height of the cylinder. The cylinder
 has N points around the circumference. SURF(X,Y,Z) displays the
 cylinder.
 [X,Y,Z] = CYLINDER(R), and [X,Y,Z] = CYLINDER default to N = 20
 and R = [1 1].
 Omitting output arguments causes the cylinder to be displayed with
 a SURF command and no outputs to be returned.

Controlling axes

The axis command provides a number of
options for setting the scaling, orientation,

and aspect ratio of graphs.

Set the axis limits
axis auto

axis([xmin xmax ymin ymax zmin zmax])

Set the axis aspect ratio
axis auto normal

axis square; axis equal

The axis command provides a number of
options for setting the scaling, orientation,

and aspect ratio of graphs.

Set axis visibility
axis on; axis off

Set grid lines
grid on; grid off

axis vs axes
>> help axis

 AXIS Control axis scaling and appearance.

>> help axes

 AXES Create axes in arbitrary positions.

>> figure(2)

>> plot(seis2)

>> axis([6500 10500 -4000 4000])

>> axis auto

>> plot(seis2(6500:10500,:),'r')

Overlaying new graphs
Use the command hold on to overlay
different types of plots on one another
>>[x,y,z] = peaks;

>>pcolor(x,y,z)

>>shading interp

>>hold on

>>contour(x,y,z,20,'k')

>>hold off

>> surf(x,y,z)
>> clf
>> [x y z]=peaks;
>> surf(x,y,z)
>> shading interp

Saving & Exporting Graphics

The default graphics file is a MATLAB
Figure or .fig formatted file.

This format retains the most data about how
it was created within matlab it is not

particularly portable

you can also save as eps (encapsulated
postscript), which can be read by Illustrator

or you can save in one of the picture formats
like tiff and jpg which do not allow additional

editing but maintain good resolution

Cool Feature

After creating the perfect figure, you can
generate an m-file so that the figure can be
recreated using different data in the future.

This feature is
found under the
File drop down

menu in the
Figure toolbar.

Advanced graphics: Handle graphics.

Handle graphics provides a rich set (i.e. powerful,

difficult and confusing) of functions and properties for
generating imagery using Matlab.

>> x=1:10;

>> y=x;

>> h=plot(x,y,'*-’)

h =

 171.0034

>>

Notice the output, saved in “h”, from the
plot command. “h” is a number that identifies
the “handle” for the graphics object created

by the plot command.

>> get(h)

 DisplayName: ''

 Annotation: [1x1 hg.Annotation]

 Color: [0 0 1]

 LineStyle: '-'

 LineWidth: 0.5000

 Marker: '*'

 MarkerSize: 6

 MarkerEdgeColor: 'auto'

 MarkerFaceColor: 'none'

 XData: [1 2 3 4 5 6 7 8 9 10]

 YData: [1 2 3 4 5 6 7 8 9 10]

 ZData: [1x0 double]

 BeingDeleted: 'off'

 ButtonDownFcn: []

 Children: [0x1 double]

 Clipping: 'on'

 CreateFcn: []

 DeleteFcn: []

 BusyAction: 'queue'

 HandleVisibility: 'on'

 HitTest: 'on'

 Interruptible: 'on'

 Selected: 'off'

 SelectionHighlight: 'on'

 Tag: ''

 Type: 'line'

 UIContextMenu: []

 UserData: []

 Visible: 'on'

 Parent: 170.0012

 XDataMode: 'manual'

 XDataSource: ''

 YDataSource: ''

 ZDataSource: ''

>>

To view the information associated with the
handle for the plot, use the get function.

This displays all of the properties of the line
we just plotted.

>> help get

 GET Get object properties.

 V = GET(H,'PropertyName') returns the value of the specified

 property for the graphics object with handle H. If H is a

 vector of handles, then get will return an M-by-1 cell array

 of values where M is equal to length(H). If 'PropertyName' is

 replaced by a 1-by-N or N-by-1 cell array of strings containing

 property names, then GET will return an M-by-N cell array of

 values.

 GET(H) displays all property names and their current values for

 the graphics object with handle H.

 V = GET(H) where H is a scalar, returns a structure where each

 field name is the name of a property of H and each field contains

 the value of that property.

Most of the properties can be changed using
the set function (a few are read-only).

>> set(h,'color',[1 0 0])

If you need to change a lot of values, this
will improve your typing skills even more than

GMT

Assigning a graphic’s object to a variable
simplifies modifying the object after

creation, but there are also ways to access a
graphics object even if you forget.

Access to recently plotted/accessed objects
is provided through pre-defined variables

gcf (handle to current figure (get current figure)),

gca (handle to current axis (get current axis)) and

gco (handle to current object (get current object),
which is almost always graphics object

created as result of last graphics command).

>> f=get(gcf)

f =

 Alphamap: [1x64 double]

 BeingDeleted: 'off'

 BusyAction: 'queue'

 ButtonDownFcn: ''

 Children: 170.0044

 Clipping: 'on'

 CloseRequestFcn: 'closereq'

 Color: [0.8000 0.8000 0.8000]

 Colormap: [64x3 double]

 CreateFcn: ''

 CurrentAxes: 170.0044

 CurrentCharacter: ''

 CurrentObject: []

 CurrentPoint: [0 0]

 DeleteFcn: ''

 DockControls: 'on'

 FileName: ''

 HandleVisibility: 'on'

 HitTest: 'on'

 IntegerHandle: 'on'

 Interruptible: 'on'

 InvertHardcopy: 'on'

 KeyPressFcn: ''

 KeyReleaseFcn: ''

 MenuBar: 'figure'

 Name: ''

 NextPlot: 'add'

 NumberTitle: 'on'

 PaperOrientation: 'portrait'

 PaperPosition: [0.2500 2.5000 8 6]

 PaperPositionMode: 'manual'

 PaperSize: [8.5000 11]

 PaperType: 'usletter'

 PaperUnits: 'inches'

 Parent: 0

 Pointer: 'arrow'

 PointerShapeCData: [16x16 double]

 PointerShapeHotSpot: [1 1]

 Position: [1029 583 560 420]

 Renderer: 'painters'

 RendererMode: 'auto'

 Resize: 'on'

 ResizeFcn: ''

 Selected: 'off'

 SelectionHighlight: 'on'

 SelectionType: 'normal'

 Tag: ''

 ToolBar: 'auto'

 Type: 'figure'

 UIContextMenu: []

 Units: 'pixels'

 UserData: []

 Visible: 'on'

 WindowButtonDownFcn: ''

 WindowButtonMotionFcn: ''

 WindowButtonUpFcn: ''

 WindowKeyPressFcn: ''

 WindowKeyReleaseFcn: ''

 WindowScrollWheelFcn: ''

 WindowStyle: 'normal'

 XDisplay: '/tmp/launch-GGBpjE/:0'

 XVisual: '0x24 (TrueColor, depth
24, RGB mask 0xff0000 0xff00 0x00ff)'

 XVisualMode: 'auto’

>>

Use get function with predefined variables
to get parameters.

And set function with predefined variables
to set parameters.

>> set(gcf, 'Units', 'Inches');

As with GMT you have to know all the values
(you can get the property names from the
get function), no cheating with menus, etc.

Modified from mathworks matlab
documentation web pages

MATLAB assigns a handle to every graphics
object it creates. All object creation

functions optionally return the handle of the
created object.

If you want to access the object's
properties (e.g., from an M-file), assign its

handle to a variable at creation time to avoid
searching for it later.

If you forget to assign the handle when you
plot the figure, you can always obtain the

handle of an existing object with the findobj
function or by listing its parent's Children

property.

Special Object Handles

The root object's handle is always zero.

The handle of a figure is either:

- An integer

- A floating point number requiring full
MATLAB internal precision

The figure property IntegerHandle controls
the type of handle the figure receives.

All other graphics object handles are
floating-point numbers.

You must maintain the full precision of these
numbers when you reference handles.

(The “full precision” condition means means
you cannot read handles off the screen [usually

an approximation to the actual floating point value in memory] and
retype them, you must store the value in a
variable and pass that variable whenever

MATLAB requires a handle).

The Current Figure, Axes, and Object

An important concept in the Handle Graphics
technology is that of being current.

The current figure is the window designated
to receive graphics output.

Likewise, the current axes is the target for
commands that create axes children.

The current object is the last graphics
object created or clicked on by the mouse.

MATLAB stores the three handles
corresponding to these objects in the

ancestor's property list.

Relationship between various objects is
hierarchical.

As you work with higher-dimensional plots,
or figures with lots of plots on top of each

other, the set of handles can
seem a little unwieldy.

Fortunately, the set of handles for each
figure are nicely organized in a parent-child

hierarchy.

The figure handle is at the top.

It’s child is the axes.

To see this, type the command
get(gcf,’Children’) and compare
the result to just typing gca.

We could also discover that the figure is the
parent by typing get(gca,’Parent’) and

comparing the result to just typing gcf.

The axes are in turn the parent of each plot,
and also of the xlabel, ylabel,

and title.

At this point one is tempted to wonder why
all this matters... the important result here

is that we can find
handles that we did not store in variables

when the object was created.

clear all % clears the variable space

close all % closes all figures

x1 = linspace(0,2*pi,1000);

y1 = sin(x1);

y2 = sin(x1)./x1;

x2 = linspace(0,2*pi,9);

y3 = sin(x2);

y4 = sin(x2)./x2;

figure(2) % opens a new figure with

%ID 2, or goes to figure 2 if open

p1 = plot(x1,y1,'color','b');

hold on;

p2 = plot(x1,y2,'color','r');

p3 = plot(x2,y3,'-o','color','c');

p4 = plot(x2,y4,'-s','color','m');

hold off;

set(gca,'XLim',[0 2*pi],'XTick',[0:pi/2:2*pi],'XGrid','on');

set(gca,'XTickLabel',{'0','p/2','p','3p/
2','2p'},'FontName','Symbol','FontSize',12)

xlabel('θ [rad]','FontSize',14,'Interpreter','latex')

ylabel('$f(\theta)$','FontSize',14,'Interpreter','latex')

title('Plots of $f_1(\theta) = sin(\theta)$ and $f_2(\theta) =
\frac{sin(\theta)}{\theta}$',...

'FontSize',16,'FontWeight','b','Interpreter','latex');

l1 = legend([p1,p2,p3,p4],'f_1','f_2','f_1 undersampled','f_2
undersampled',1);

set(l1,'FontName','Helvetica')

[AX,H1,H2]=plotyy(rt,gt,r,pofr);

grid

set(get(AX(1),'Ylabel'),'String','g(r) m/sec^2')

set(get(AX(2),'Ylabel'),'String','p(r) km/m^3')

xlabel('distance from center of earth, km')

title('density and gravity of earth’)

Plotting and
labeling
multiple

axes. Two
sets x and
y vectors.

[AX,H1,H2]=plotyy(rt, [gt; rt.*([g(end)/…

r(end)*ones(1,length(r)) repmat(NaN,1,length(ro))])],r,…

[m; mpave]);

set(get(AX(1),'Ylabel'),'String','g(r) m/sec^2 as function of
radius for uniform density sphere and earth')

set(get(AX(2),'Ylabel'),'String','m in kg as function of
radius for uniform density sphere and earth')

xlabel('distance from center of earth, km')

title('mass distribution and gravity of uniform density sphere
versus earth')

set(H1,'LineStyle','--')

set(H2,'LineStyle',':')

Plotting multiple
functions on
same axes.
Multiple y

vectors for each
x.

