
m-files 

As we have seen before, it is generally 
convenient to save programs in some sort of 
file (script, macro, batch, etc.) for program 

development and reuse. 

Matlab offers this feature through m-files, 
which are ascii text files containing a set of 

Matlab commands. 



m-files 

There are two kinds of m-files: 

Scripts, which do not accept input 
arguments or return output arguments. 
They operate on data in the workspace. 

Functions, which can accept input arguments 
and return output arguments. Functions have 
internal variables are local to the function. 

The filename has to end in “.m” 



You have probably been using scripts already 
in your previous matlab homework. 

These files are the same things that you 
would type in when running interactively. 

They can have for and while loops, if-elseif-
else-end. 

They are executed by entering the file name 
in the matlab command window. 



Functions 
Functions are M-files that can accept input 

arguments and return output arguments. 
(Comments in Matlab are denoted using the % symbol.) 



This function, loadsac, calls another 
function, sac, with the filename to read. It 
then works with the 3 matrices returned by 
sac, returning a data matrix, and 3 scalars 

dt, beg, pt. 

We see here 
that functions 
can call other 

functions. 



Global Variables 

If you want more than one function to share 
a single copy of a variable, simply declare the 

variable as global in all the functions.  

Do the same thing at the command line if you 
want the base workspace to access the 

variable. 

The global declaration must occur before 
the variable is actually used in a function.  
Although it is not required, using capital letters for the names of global 

variables helps distinguish them from other variables.  



In an .m file called falling.m 
function h = falling(t)

global GRAVITY

h = 1/2*GRAVITY*t.^2;


In the workspace, enter the statements 
>>global GRAVITY

>>GRAVITY = 32;

>>y = falling((0:.1:5)');


The two global statements make the value 
assigned to GRAVITY at the command 

prompt available inside the function. You can 
then modify GRAVITY interactively and 
obtain new solutions without editing any 

files. 



function tsting

global c

c=4

b=2

[a d]=tstfn(b)

whos

return

function [out1 out2]=tstfn(in)

global c

out1=in.^2

out2=c*out1

whos

return


>> tstingfuns

c =

     4

b =

     2

out1 =

     4

out2 =

    16

  Name      Size            Bytes  Class     Attributes

  c         1x1                 8  double    global    

  in        1x1                 8  double              

  out1      1x1                 8  double              

  out2      1x1                 8  double              

a =

     4

d =

    16

  Name      Size            Bytes  Class     Attributes

  a         1x1                 8  double              

  b         1x1                 8  double              

  c         1x1                 8  double    global    

  d         1x1                 8  double 


Can put multiple 
functions in one m file. 
“b” and “c” declared 
global in both, but only 
assigned in one of 
them.  



Rethinking code for taking advantage of 
matlab vectorization. 

More than just defining vectors and 
matricies using matlab definitions. 

x = rand(1,100);

%In place of :

for k=1:100

y(k) = sin(x(k));

End

% We can use :

y = sin(x); 




Given an=n and bn=(1000-an) , n=1,2,…1000, 
calculate 

� 

ssum = anbn
n=1

1000

∑

Solution: It might be tempting to implement 
the above calculation as 

a = 1:1000;

b = 1000 - a;

ssum=0;

for n=1:1000 %poor style...

   ssum = ssum +a(n)*b(n);

End


Recognizing that the sum is the inner 
product of the vectors a and b, abT , we can 

do better: 

ssum = a*b' 
 
%Vectorized, better!




Say we have a number of seismograms and 
we would like to “window” and scale each one. 

First – what is the “window” process? 
(Blue trace is original 
signal, red trace is 
“window”, dashed red 
trace is negative of 
window to show 
“envelope” – use it to 
scale the original 
signal. Green trace is 
the final result after 
applying the “window” 
to the blue trace. In 
this case the 
windowing is done by a 
point by point multiply 
of the blue and red 
vectors, b.*r, [64 
pts]). 



What if we want to do this to a number of 
seismograms? 

We could use a loop, doing the vectorized 
multiply on each seismogram. 

But can we do better than that? 



We would not be asking leading questions if 
not! 

So how do we do it? 
(Now we want to do 
point by point 
multiplies of each 
trace by the window – 
T1.*w and T2.*w, etc. 
How can we do this in 
one shot? 

What if we make a 
diagonal matrix of the 
window vector 
[elements of the 
vector on the diagonal 
and all else zero]?) 



Looking at what happens when we do matrix 
multiplication, we see that this does what we 

need. 

% length

%Number traces

N = 64;

M=1:4;

TH=1:N;

X = sin(TH'*M*…

pi*2/(N-1));

plot(X)


% Make a window

w = hamming(N);

W = diag(w);

% Windowed signals

%without loops

XW = W * X




To do the point by point multiply we need to 
match the length of the seismograms (64 

points in this case). 
>> whos

  Name       Size            Bytes  Class     Attributes

  M          1x4                32  double              

  N          1x1                 8  double              

  TH         1x64              512  double              

  W         64x64            32768  double              

  X         64x4              2048  double              

  XW        64x4              2048  double              

  g          1x4                32  double              

  w         64x1               512  double 


So we have a 64x64 * 64x4 producing a 
64x4 result. 



Say we want to scale each seismogram (there 
are 4 of them). We have to multiply each 

point in the seismogram by the same 
number). 

(Now we want to 
multiply each trace by 
its scale – T1*w1 and 
T2*w2, etc. How can we 
do this in one shot? 

What if we make a 
diagonal matrix of the 
weights [elements of 
the vector on the 
diagonal and all else 
zero]?) 



% Make a vector of gain factors

g  = 1./M;

G  = diag(g);


% scale each seismogram by corresponding gain factor

XG = X * G;




Do both windowing and gain scaling together. 
% Windowing and gain scaling is just left and right

% multiplication with appropriate diagonal matrices.

XWG = W * X * G;




Notice that vectorization requires a 
different algorithmic thought pattern in the 

approach to solving problems. 

It will initially take longer to develop the 
program. 

But with practice (effort!, and seeing/
looking for examples), it will become more 

natural and faster to code. 
(If doing the previous example “for real” one would use the sparse matrix 

feature for the diagonal matrices 

W = diag(sparse(w));


This will save on both memory use and execution time.) 



Why Use Vectorized Code? 
Advantages 

      Increased Speed: 

Vectorized code runs significantly faster.  

How much faster? 

This depends on the commands used and the 
application. And although Matlab has made 
great strides in accelerating low-level code, 

vectorized code still runs faster. But in 
general, vectorized code is faster than it’s 

low-level counterpart. 



Why Use Vectorized Code? 
Advantages 

      Compact: Vectorized code is more 
compact and can be easier to read and 

understand. 



Why Use Vectorized Code? 
Disadvantages 

      Difficulty: 

Most people with programming experience 
are used to doing things in a low-level manner 

(i.e. FOR loops). 
Vectorizing code can be a challenge because 
of the different thinking that is required. In 
addition, there is no set formula on how to 

vectorize code. A good working knowledge of 
the available functions within Matlab is 

certainly helpful when it comes to 
vectorization. 



Why Use Vectorized Code? 
Disadvantages 

      Compact: 

Being compact is both a blessing and a curse.  

Vectorized code can be difficult to 
understand because it is so compact.  

If the code is undocumented and does not 
have any comments, it can be a real pain to 

figure what the code does. 



Although vectorization can make your code 
simpler at times, it can also make your code 

archaic and difficult to understand. 

In addition, it can be difficult to vectorize 
your code at times, so it may not be worth 

the time and effort to do so. 

Thus, you may be wondering if it is really 
worth your time to vectorize your code. 



If you find it too difficult to vectorize your 
code, you may be better off just using a low 

level method. 

The most important thing is to make sure 
that your code works! 

After you get your code working, you can 
consider optimizing it through vectorization. 



In conclusion, vectorization is not required, 
but it can certainly be beneficial. 

Unless the arrays you are dealing with are 
quite large (and depending on the operations 

performed), it can be difficult to see the 
benefits of vectorization. 

But in general, I believe that it’s good 
practice to get into the habit of using 
vectorized code as it is more efficient.  



Graphics 



Basics 

Types of Graphics 

Predefined graph types, or 
Create your own graphics 

Creating a Graph 

Use plotting tools to create graphs 
interactively. 

Use the command interface to enter 
commands in the Command Window or create 

plotting programs. 













Creating a plot 

The plot function has many different forms, 
depending on the input arguments. 

If y is a vector, plot(y) produces a piecewise 
linear graph of the elements of y versus the 

index of the elements of y. 

If you specify two vectors as arguments, 
plot(x,y) produces a graph of y versus x. 

>>x = 0:pi/100:2*pi;

>>y = sin(x);

>>plot(x,y)




>>xlabel('x = 0:2\pi')

>>ylabel('Sine of x')

>>title('Plot of the Sine Function','FontSize',12)


(Notice that the fontsize specification is sort of verbose. This aspect of 
setting plot parameters is worse than GMT! It will improve you typing.) 



>> seis=loadsac('BJT.BHZ_00.Q.
2005:01:23:41');

>> plot(seis)

>> ylabel('Digital Counts')

>> xlabel('Number of points')

>> title('BJT BHZ Seismogram')




Plotting multiple data sets 

Multiple x-y pair arguments create multiple 
graphs with a single call to plot, which  

automatically cycles through a predefined 
(but customizable) list of colors 

>>x = 0:pi/100:2*pi;

>>y = sin(x);

>>y2 = sin(x-.25);

>>y3 = sin(x-.5);

>>plot(x,y,x,y2,x,y3)

>>legend('sin(x)',…

'sin(x-.25)','sin(x-.5)')




>> size(seis)


25138 
1


>> x=1:25138;

>> plot(x,seis,x,seis2)

>> legend('Raw','Mean Removed’)




Specifying line colors/styles 

It is possible to specify color, line styles, 
and markers (such as plus signs or circles) 

when you plot your data using the plot 
command: 

>>plot(x,y, 'specify_color_linestyle_markertype')


Change color 

>> plot(x,seis,'r',x,seis2,'b')

>> plot(x,seis,'r',x,seis2,'b:')




Color 
'c' 
'm' 
'y' 
'r' 
'g' 
'b' 
'w' 
'k' 

cyan 
magenta 
yellow 
red 
green 
blue 
white 
black 



Line style 
'-' 
'--' 
':' 
'.-' 
no character 

solid 
dashed 
dotted 
dash-dot 
no line 



Specifying lines and markers 
If you specify a marker type but not a line 

style, only the marker is drawn. 

>>plot(x,y,'ks')


plots black squares at each data point, but 
does not connect the markers with a line 

>>plot(x,y,'r:+')


plots a red-dotted line and places plus sign 
markers at each data point 



>>x1 = 0:pi/100:2*pi;

>>x2 = 0:pi/10:2*pi;

>>plot(x1,sin(x1),'r:',x2,sin(x2),'r+')


Second part only plots the + every 10 points. 
So does.


>>plot(x1,sin(x1),'r:',x1(1:10:end),sin(x1(1:10:end)),'r+’)




Marker Type 
'+' 
'o' 
'*' 
'x' 
's' 
'd' 
'^' 
'v' 
'>' 
'<' 
'p' 
'h' 
no character 

plus mark 
unfilled circle 
asterisk 
letter x 
filled square 
filled diamond 
filled upward triangle 
filled downward triangle 
filled right-pointing triangle 
filled left-pointing triangle 
filled pentagram 
filled hexagram 
no marker 



Graphing imaginary and complex data 

Reminder: complex numbers can be 
represented by the expression a+bi where a 
and b are real numbers and i is a symbol with 

the property i2=-1 

Complex numbers can be plotted using Real 
and Imaginary axes. 



When the arguments to plot are complex, 
the imaginary part is ignored except when 

you pass plot a single complex argument. For 
this special case, the command is a shortcut 

for a graph of the real part versus the 
imaginary part. 

>>t = 0:pi/10:2*pi;

>>plot(exp(i*t),'-o')

>>axis equal

>>xlabel('Real')

>>ylabel('Imaginary')

>>hold on

>>plot(t,t,'r+-')


Plus plotting 
second data set 
with “hold” (else erases 
existing figure with new plot) 



Figure Handling 

Graphing functions automatically open a new 
figure window if there are no figure windows 

already on the screen. 

If a figure window exists, it is used for 
graphics output (and clobbers what’s there if 

hold is off). 

The default is to graph to the current figure 
(usually the last active figure) 

To create a new figure without overwriting 
the old, use the figure command  



When multiple figures already exist, you can 
set one of them to the current figure with 

the command figure(n) where n is the 
number at the top of the figure window. 

>> plot(x,seis,x,seis2)

>> legend('Raw','Mean Removed') 


>> figure 
%creates 2

>> plot(seis,'r')

>>figure(1)   %makes 1 current




1 2 

3 4 

Creating subplots 

The subplot command enables you to display 
multiple plots in the same window or print 

them on the same piece of paper. 
t = 0:pi/10:2*pi;

[X,Y,Z] = cylinder(4*cos(t));

subplot(2,2,1); mesh(X)

subplot(2,2,2); mesh(Y)

subplot(2,2,3); mesh(Z)

subplot(2,2,4); mesh(X,Y,Z)


%creates a 2 x 2 matrix of 

%subplots


>> help cylinder 
 CYLINDER Generate cylinder. 
    [X,Y,Z] = CYLINDER(R,N) forms the unit cylinder based on the generator 
    curve in the vector R. Vector R contains the radius at equally 
    spaced points along the unit height of the cylinder. The cylinder 
    has N points around the circumference. SURF(X,Y,Z) displays the 
    cylinder. 
    [X,Y,Z] = CYLINDER(R), and [X,Y,Z] = CYLINDER default to N = 20 
    and R = [1 1]. 
    Omitting output arguments causes the cylinder to be displayed with 
    a SURF command and no outputs to be returned. 



Controlling axes 

The axis command provides a number of 
options for setting the scaling, orientation, 

and aspect ratio of graphs. 

Set the axis limits 
axis auto


axis([xmin xmax ymin ymax zmin zmax])


Set the axis aspect ratio 
axis auto normal


axis square; axis equal




The axis command provides a number of 
options for setting the scaling, orientation, 

and aspect ratio of graphs. 

Set axis visibility  
axis on; axis off


Set grid lines 
grid on; grid off


axis vs axes 
>> help axis

 AXIS  Control axis scaling and appearance.

>> help axes

 AXES   Create axes in arbitrary positions.




>> figure(2)

>> plot(seis2)

>> axis([6500 10500 -4000 4000])




>> axis auto

>> plot(seis2(6500:10500,:),'r')




Overlaying new graphs 
Use the command hold on to overlay 
different types of plots on one another 
>>[x,y,z] = peaks;

>>pcolor(x,y,z)

>>shading interp

>>hold on

>>contour(x,y,z,20,'k')

>>hold off




>> surf(x,y,z) 
>> clf 
>> [x y z]=peaks; 
>> surf(x,y,z) 
>> shading interp 



Saving & Exporting Graphics 

The default graphics file is a MATLAB 
Figure or .fig formatted file.   

This format retains the most data about how 
it was created within matlab it is not 

particularly portable 

you can also save as eps (encapsulated 
postscript), which can be read by Illustrator 

or you can save in one of the picture formats 
like tiff and jpg which do not allow additional 

editing but maintain good resolution 



Cool Feature 

After creating the perfect figure, you can 
generate an m-file so that the figure can be 
recreated using different data in the future. 

This feature is 
found under the 
File drop down 

menu in the 
Figure toolbar. 



Advanced graphics: Handle graphics. 

Handle graphics provides a rich set (i.e. powerful, 

difficult and confusing) of functions and properties for 
generating imagery using Matlab. 

>> x=1:10;

>> y=x;

>> h=plot(x,y,'*-’)

h =

  171.0034

>>


Notice the output, saved in “h”, from the 
plot command. “h” is a number that identifies 
the “handle” for the graphics object created 

by the plot command. 



>> get(h)

           DisplayName: ''

            Annotation: [1x1 hg.Annotation]

                 Color: [0 0 1]

             LineStyle: '-'

             LineWidth: 0.5000

                Marker: '*'

            MarkerSize: 6

       MarkerEdgeColor: 'auto'

       MarkerFaceColor: 'none'

                 XData: [1 2 3 4 5 6 7 8 9 10]

                 YData: [1 2 3 4 5 6 7 8 9 10]

                 ZData: [1x0 double]

          BeingDeleted: 'off'

         ButtonDownFcn: []

              Children: [0x1 double]

              Clipping: 'on'

             CreateFcn: []

             DeleteFcn: []


            BusyAction: 'queue'

      HandleVisibility: 'on'

               HitTest: 'on'

         Interruptible: 'on'

              Selected: 'off'

    SelectionHighlight: 'on'

                   Tag: ''

                  Type: 'line'

         UIContextMenu: []

              UserData: []

               Visible: 'on'

                Parent: 170.0012

             XDataMode: 'manual'

           XDataSource: ''

           YDataSource: ''

           ZDataSource: ''


>> 


To view the information associated  with the 
handle for the plot, use the get function. 

This displays all of the properties of the line 
we just plotted. 



>> help get

 GET    Get object properties.

    V = GET(H,'PropertyName') returns the value of the specified

    property for the graphics object with handle H.  If H is a 

    vector of handles, then get will return an M-by-1 cell array

    of values where M is equal to length(H).  If 'PropertyName' is

    replaced by a 1-by-N or N-by-1 cell array of strings containing

    property names, then GET will return an M-by-N cell array of

    values.


    GET(H) displays all property names and their current values for

    the graphics object with handle H.


    V = GET(H) where H is a scalar, returns a structure where each

    field name is the name of a property of H and each field contains

    the value of that property.




Most of the properties can be changed using 
the  set function (a few are read-only). 

>> set(h,'color',[1 0 0])


If you need to change a lot of values, this 
will improve your typing skills even more than 

GMT 



Assigning a graphic’s object to a variable 
simplifies modifying the object after 

creation, but there are also ways to access a 
graphics object even if you forget.  



Access to recently plotted/accessed objects 
is provided through pre-defined variables 

gcf (handle to current figure (get current figure)), 

gca (handle to current axis (get current axis)) and 

gco (handle to current object (get current object), 
which is almost always graphics object 

created as result of last graphics command). 



>> f=get(gcf)

f = 

                 Alphamap: [1x64 double]

             BeingDeleted: 'off'

               BusyAction: 'queue'

            ButtonDownFcn: ''

                 Children: 170.0044

                 Clipping: 'on'

          CloseRequestFcn: 'closereq'

                    Color: [0.8000 0.8000 0.8000]

                 Colormap: [64x3 double]

                CreateFcn: ''

              CurrentAxes: 170.0044

         CurrentCharacter: ''

            CurrentObject: []

             CurrentPoint: [0 0]

                DeleteFcn: ''

             DockControls: 'on'

                 FileName: ''

         HandleVisibility: 'on'

                  HitTest: 'on'

            IntegerHandle: 'on'

            Interruptible: 'on'

           InvertHardcopy: 'on'

              KeyPressFcn: ''

            KeyReleaseFcn: ''

                  MenuBar: 'figure'

                     Name: ''

                 NextPlot: 'add'

              NumberTitle: 'on'

         PaperOrientation: 'portrait'

            PaperPosition: [0.2500 2.5000 8 6]

        PaperPositionMode: 'manual'

                PaperSize: [8.5000 11]


                PaperType: 'usletter'

               PaperUnits: 'inches'

                   Parent: 0

                  Pointer: 'arrow'

        PointerShapeCData: [16x16 double]

      PointerShapeHotSpot: [1 1]

                 Position: [1029 583 560 420]

                 Renderer: 'painters'

             RendererMode: 'auto'

                   Resize: 'on'

                ResizeFcn: ''

                 Selected: 'off'

       SelectionHighlight: 'on'

            SelectionType: 'normal'

                      Tag: ''

                  ToolBar: 'auto'

                     Type: 'figure'

            UIContextMenu: []

                    Units: 'pixels'

                 UserData: []

                  Visible: 'on'

      WindowButtonDownFcn: ''

    WindowButtonMotionFcn: ''

        WindowButtonUpFcn: ''

        WindowKeyPressFcn: ''

      WindowKeyReleaseFcn: ''

     WindowScrollWheelFcn: ''

              WindowStyle: 'normal'

                 XDisplay: '/tmp/launch-GGBpjE/:0'

                  XVisual: '0x24 (TrueColor, depth 
24, RGB mask 0xff0000 0xff00 0x00ff)'

              XVisualMode: 'auto’

>> 


Use get function with predefined variables 
to get parameters. 



And set function with predefined variables 
to set parameters. 

>> set(gcf, 'Units', 'Inches');


As with GMT you have to know all the values 
(you can get the property names from the 
get function), no cheating with menus, etc. 



Modified from mathworks matlab 
documentation web pages 

MATLAB assigns a handle to every graphics 
object it creates. All object creation 

functions optionally return the handle of the 
created object. 

If you want to access the object's 
properties (e.g., from an M-file), assign its 

handle to a variable at creation time to avoid 
searching for it later.  



If you forget to assign the handle when you 
plot the figure, you can always obtain the 

handle of an existing object with the findobj 
function or by listing its parent's Children 

property. 



Special Object Handles 

The root object's handle is always zero. 

The handle of a figure is either: 

- An integer 

- A floating point number requiring full 
MATLAB internal precision 



The figure property IntegerHandle controls 
the type of handle the figure receives. 

All other graphics object handles are 
floating-point numbers. 



You must maintain the full precision of these 
numbers when you reference handles. 

(The “full precision” condition means means 
you cannot read handles off the screen [usually 

an approximation to the actual floating point value in memory] and 
retype them, you must store the value in a 
variable and pass that variable whenever 

MATLAB requires a handle). 



The Current Figure, Axes, and Object 

An important concept in the Handle Graphics 
technology is that of being current. 



The current figure is the window designated 
to receive graphics output. 

Likewise, the current axes is the target for 
commands that create axes children. 

The current object is the last graphics 
object created or clicked on by the mouse. 

MATLAB stores the three handles 
corresponding to these objects in the 

ancestor's property list. 



Relationship between various objects is 
hierarchical. 



As you work with higher-dimensional plots, 
or figures with lots of plots on top of each 

other, the set of handles can 
seem a little unwieldy. 

Fortunately, the set of handles for each 
figure are nicely organized in a parent-child 

hierarchy. 



The figure handle is at the top. 

It’s child is the axes. 

To see this, type the command 
get(gcf,’Children’) and compare 
the result to just typing gca. 

We could also discover that the figure is the 
parent by typing get(gca,’Parent’) and 

comparing the result to just typing gcf. 



The axes are in turn the parent of each plot, 
and also of the xlabel, ylabel, 

and title. 

At this point one is tempted to wonder why 
all this matters... the important result here 

is that we can find 
handles that we did not store in variables 

when the object was created. 



clear all % clears the variable space

close all % closes all figures

x1 = linspace(0,2*pi,1000);

y1 = sin(x1);

y2 = sin(x1)./x1;

x2 = linspace(0,2*pi,9);

y3 = sin(x2);

y4 = sin(x2)./x2;

figure(2) % opens a new figure with

%ID 2, or goes to figure 2 if open

p1 = plot(x1,y1,'color','b');

hold on;

p2 = plot(x1,y2,'color','r');

p3 = plot(x2,y3,'-o','color','c');

p4 = plot(x2,y4,'-s','color','m');

hold off;

set(gca,'XLim',[0 2*pi],'XTick',[0:pi/2:2*pi],'XGrid','on');

set(gca,'XTickLabel',{'0','p/2','p','3p/
2','2p'},'FontName','Symbol','FontSize',12)

xlabel('$\theta$ [rad]','FontSize',14,'Interpreter','latex')

ylabel('$f(\theta)$','FontSize',14,'Interpreter','latex')

title('Plots of $f_1(\theta) = sin(\theta)$ and $f_2(\theta) = 
\frac{sin(\theta)}{\theta}$',...

'FontSize',16,'FontWeight','b','Interpreter','latex');

l1 = legend([p1,p2,p3,p4],'f_1','f_2','f_1 undersampled','f_2 
undersampled',1);

set(l1,'FontName','Helvetica')




[AX,H1,H2]=plotyy(rt,gt,r,pofr);

grid

set(get(AX(1),'Ylabel'),'String','g(r) m/sec^2') 

set(get(AX(2),'Ylabel'),'String','p(r) km/m^3') 

xlabel('distance from center of earth, km')

title('density and gravity of earth’)


Plotting and 
labeling 
multiple 

axes. Two 
sets x and 
y vectors. 



[AX,H1,H2]=plotyy( rt, [gt; rt.*([g(end)/…

r(end)*ones(1,length(r)) repmat(NaN,1,length(ro))])],r,…

[m; mpave]);

set(get(AX(1),'Ylabel'),'String','g(r) m/sec^2 as function of 
radius for uniform density sphere and earth') 

set(get(AX(2),'Ylabel'),'String','m in kg as function of 
radius for uniform density sphere and earth') 

xlabel('distance from center of earth, km')

title('mass distribution and gravity of uniform density sphere 
versus earth')

set(H1,'LineStyle','--')

set(H2,'LineStyle',':')


Plotting multiple 
functions on 
same axes. 
Multiple y 

vectors for each 
x. 


