
Multidimensional Arrays
Arrays with more than two subscripts

>>p = perms(1:4);

>>A = magic(4);

>>M = zeros(4,4,24);

>>for k = 1:24

M(:,:,k) = A(:,p(k,:));

Reshape command

Use to change the shape of matrices
>> x=[1 2 3 4 5 6 7 8]

x =

 1 2 3 4 5 6 7 8

>> x3d=reshape(x,2,2,2)

x3d(:,:,1) =

 1 3

 2 4

x3d(:,:,2) =

 5 7

 6 8

Reshape command
>> x=[1 2;3 4;5 6; 7 8]

x =

 1 2

 3 4

 5 6

 7 8

>> x3d=reshape(x,2,2,2)

x3d(:,:,1) =

 1 5

 3 7

x3d(:,:,2) =

 2 6

 4 8

>> x=reshape(x,2,4)

x =

 1 5 2 6

 3 7 4 8

>>

Building matrices by repeating parts

repmat command
>> x=[1 2;3 4]

x =

 1 2

 3 4

>> xr=repmat(x,2,1)

xr =

 1 2

 3 4

 1 2

 3 4

>> xr=repmat(x,1,2)

xr =

 1 2 1 2

 3 4 3 4

>>

Create constant matrix
>> val=pi

val =

 3.1416

>> siz=[2 2 2]

siz =

 2 2 2

>> x=repmat(val,siz)

x(:,:,1) =

 3.1416 3.1416

 3.1416 3.1416

x(:,:,2) =

 3.1416 3.1416

 3.1416 3.1416

>>

Another way (seems more roundabout)
>> xx(prod(siz))=val

xx =

 0 0 0 0 0 0
0 3.1416

>> xx(:)=xx(end)

xx =

 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
3.1416 3.1416

>> xx=reshape(xx,siz)

xx(:,:,1) =

 3.1416 3.1416

 3.1416 3.1416

xx(:,:,2) =

 3.1416 3.1416

 3.1416 3.1416

Another way (m, n and o have to be scalar
variables)

>> m=2

m =

 2

>> n=2

n =

 2

>> o=2

o =

 2

>> x(m,n,o)=val

x(:,:,1) =

 3.1416 3.1416

 3.1416 3.1416

x(:,:,2) =

 3.1416 3.1416

 3.1416 3.1416

>>

Another way (val has to be a scalar variable,
this syntax just populates the array with val)
>> x=val(ones(siz))

x(:,:,1) =

 3.1416 3.1416

 3.1416 3.1416

x(:,:,2) =

 3.1416 3.1416

 3.1416 3.1416

>>

Avoid using
X = val * ones(siz);

since it does unnecessary multiplications (versus

just storing, above) and only works for classes for
which the multiplication operator is defined.

Another way

Below does not work (NaN not scalar variable, same with Inf)

x = NaN(ones(siz));

But following does work
(NaN can be scalar variable or function)

>> X = repmat(NaN, siz)

X(:,:,1) =

 NaN NaN

 NaN NaN

X(:,:,2) =

 NaN NaN

 NaN NaN

For lots more of this – see Peter Acklam’s
tutorial (on class web site)

Flipping vectors, matrices
>> a=[1 2;3 4]

a =

 1 2

 3 4

>> fliplr(a)

ans =

 2 1

 4 3

>> flipud(a)

ans =

 3 4

 1 2

>> a=[1 2 3;4 5 6]

a =

 1 2 3

 4 5 6

>> rot90(a)

ans =

 3 6

 2 5

 1 4

>> a’

ans =

 1 4

 2 5

 3 6

>> flipdim(a,1)

ans =

 4 5 6

 1 2 3

How to represent “nothing”

Array = []
String = ‘’

Useful for defining a name to be used on
LHS.

Size and length are zero.

Beyond simple array variables

Structures are variables that contain other
variables. It is a way to organize data.

The different fields of a structure, can
contain variables of different types, so if
one gives the fields a meaningful name this
becomes a great way to keep track of the

data.

In MATLAB one can define a structure (as
any other variable) as one goes.

Structures

Like nawk, Matlab allows you create
structures so that you may refer to

elements of an array using textual field
designators

S.name = 'Ed Plum';

S.score = 83;

S.grade = 'B+'

creates a scalar structure with three fields:
S =

name: 'Ed Plum'

score: 83

grade: 'B+'

Fields can be added one at a time
(a vector of the structure elements)

S(2).name = 'Toni Miller';

S(2).score = 91;

S(2).grade = 'A-';

Or entire element added in single statement
S(3) = struct('name','Jerry Garcia',…

'score',70,'grade','C')

S =

1x3 struct array with fields:

Name

Score

Grade

>>scores = [S.score]

scores =

83 91 70

>>avg_score = sum(scores)/length(scores)

avg_score =

81.3333

Unfortunately structures don’t behave as
one might expect (hope?)

The following does not work.
>>avg_score = sum(S.score)/length(S.score)

You have to pull the vector you want to
process out of the structure to use it (and

make it a vector with the []).
>>scores = [S.score]

scores =

83 91 70

>>avg_score = sum(scores)/length(scores)

avg_score =

81.3333

Example of structure and its use.
image.data=[1 2 3; 4 5 6; 7 8 5];

image.date=’13-Jan-2008’;

image.blank=NaN;

image.ra=13.3212;

image.dec=43.3455;

Address element of structure using
structure name, decimal point, and element

name.
image.date

Operate on the fields as you would with any
variable of that particular type. Ex., to

invert the data matrix

inv(image.data).

Example for earthquake data
stn.name=‘mem’;

stn.lat=34.5’

stn.lon=-89.5

stn.elev=70;

stn.inst=‘guralp cmg3’

stn.p=15.673

Pass structure by name of structure
some_fun(stn)

etc.

array of structures (and structure elements
can be arrays).

Can be multidimensional.
stn(1).name=‘mem’;

stn(1).lat=34.5’

stn(1).lon=-89.5

stn(1).elev=70;

stn(1).inst=‘guralp cmg3’

stn(1).arrival(1)=15.673

stn(1).arrival(2)=17.274
stn(2).name=‘ceri’;

stn(2).lat=34.53’

stn(2).lon=-89.57

stn(2).elev=79;

stn(2).inst=‘guralp cmg3’

stn(2).arrival(1)=16.189

stn(2).arrival(2)=19.923

. . .

>> s.x=1

s =

 x: 1

>> s.n='ceri’

s =

 x: 1

 n: 'ceri’

>> x=s(ones(siz))

x =

2x2x2 struct array with fields:

 x

 n

>> x

x =

2x2x2 struct array with fields:

 x

 n

>> x.x

ans =

 1

1

. . . 7 more times . . .

>> x.n

ans =

ceri

. . . 7 more times . . .

>> x(2,2,2)

ans =

 x: 1

 n: 'ceri’

Create constant matrix Ex with non-numeric
data.

Cell Arrays

multidimensional arrays whose elements are
copies of other arrays.

cell arrays are created by enclosing a
miscellaneous collection of things in curly

braces, {}.

The curly braces are also used with
subscripts to access the contents of various

cells.
>>C = {A sum(A) prod(prod(A)) }

[4x4 double] [1x4 double] [20922789888000]

to retrieve a cell from a cell array
C{1} -> A, the magic square

C{2} -> row vector of the sum of the columns of A

C{3} -> 16

Important distinction with respect to other
programming languages –

cell arrays contain copies of other arrays,
not pointers to those arrays.

Cell Arrays vs Multidimensional Arrays

You can use three-dimensional arrays to
store a sequence of matrices of the same

size.

Cell arrays can be used to store a sequence
of matrices of different sizes.

Characters and Text

Matlab treats text like a character vector

Enter text into MATLAB using single quotes.
>>s = 'Hello’

essentially, s is now a 1 x 5 array with each
element equal to a character: H,e,l,l,o

Characters are stored as numbers using
ASCII coding with the type char

a = double(s)

a =

72
 101
108
108
 111

Because characters are stored as numbers,
you can convert numeric vectors to their

ASCII characters, if the character exists
s=char(a)

Printable ASCII characters go from 32 to
127

Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex

(nul) 0 0000 0x00 | (sp) 32 0040 0x20 | @ 64 0100 0x40 | ` 96 0140 0x60

(soh) 1 0001 0x01 | ! 33 0041 0x21 | A 65 0101 0x41 | a 97 0141 0x61

(stx) 2 0002 0x02 | " 34 0042 0x22 | B 66 0102 0x42 | b 98 0142 0x62

(etx) 3 0003 0x03 | # 35 0043 0x23 | C 67 0103 0x43 | c 99 0143 0x63

(eot) 4 0004 0x04 | $ 36 0044 0x24 | D 68 0104 0x44 | d 100 0144 0x64

(enq) 5 0005 0x05 | % 37 0045 0x25 | E 69 0105 0x45 | e 101 0145 0x65

(ack) 6 0006 0x06 | & 38 0046 0x26 | F 70 0106 0x46 | f 102 0146 0x66

(bel) 7 0007 0x07 | ' 39 0047 0x27 | G 71 0107 0x47 | g 103 0147 0x67

(bs) 8 0010 0x08 | (40 0050 0x28 | H 72 0110 0x48 | h 104 0150 0x68

(ht) 9 0011 0x09 |) 41 0051 0x29 | I 73 0111 0x49 | i 105 0151 0x69

(nl) 10 0012 0x0a | * 42 0052 0x2a | J 74 0112 0x4a | j 106 0152 0x6a

(vt) 11 0013 0x0b | + 43 0053 0x2b | K 75 0113 0x4b | k 107 0153 0x6b

(np) 12 0014 0x0c | , 44 0054 0x2c | L 76 0114 0x4c | l 108 0154 0x6c

(cr) 13 0015 0x0d | - 45 0055 0x2d | M 77 0115 0x4d | m 109 0155 0x6d

(so) 14 0016 0x0e | . 46 0056 0x2e | N 78 0116 0x4e | n 110 0156 0x6e

(si) 15 0017 0x0f | / 47 0057 0x2f | O 79 0117 0x4f | o 111 0157 0x6f

(dle) 16 0020 0x10 | 0 48 0060 0x30 | P 80 0120 0x50 | p 112 0160 0x70

(dc1) 17 0021 0x11 | 1 49 0061 0x31 | Q 81 0121 0x51 | q 113 0161 0x71

(dc2) 18 0022 0x12 | 2 50 0062 0x32 | R 82 0122 0x52 | r 114 0162 0x72

(dc3) 19 0023 0x13 | 3 51 0063 0x33 | S 83 0123 0x53 | s 115 0163 0x73

(dc4) 20 0024 0x14 | 4 52 0064 0x34 | T 84 0124 0x54 | t 116 0164 0x74

(nak) 21 0025 0x15 | 5 53 0065 0x35 | U 85 0125 0x55 | u 117 0165 0x75

(syn) 22 0026 0x16 | 6 54 0066 0x36 | V 86 0126 0x56 | v 118 0166 0x76

(etb) 23 0027 0x17 | 7 55 0067 0x37 | W 87 0127 0x57 | w 119 0167 0x77

(can) 24 0030 0x18 | 8 56 0070 0x38 | X 88 0130 0x58 | x 120 0170 0x78

(em) 25 0031 0x19 | 9 57 0071 0x39 | Y 89 0131 0x59 | y 121 0171 0x79

(sub) 26 0032 0x1a | : 58 0072 0x3a | Z 90 0132 0x5a | z 122 0172 0x7a

(esc) 27 0033 0x1b | ; 59 0073 0x3b | [91 0133 0x5b | { 123 0173 0x7b

(fs) 28 0034 0x1c | < 60 0074 0x3c | \ 92 0134 0x5c | | 124 0174 0x7c

(gs) 29 0035 0x1d | = 61 0075 0x3d |] 93 0135 0x5d | } 125 0175 0x7d

(rs) 30 0036 0x1e | > 62 0076 0x3e | ^ 94 0136 0x5e | ~ 126 0176 0x7e

(us) 31 0037 0x1f | ? 63 0077 0x3f | _ 95 0137 0x5f | (del) 127 0177 0x7f

To manipulate a body of text with lines of
different lengths, you have two choices

- a padded character array
- a cell array of strings.

When creating a character array, each row
of the array must be the same length.
The char function pads with spaces to

create equal rows
S = char('A','rolling','stone','gathers','momentum.’)

produces a 5-by-9 character array:
S =

A

rolling

stone

gathers

momentum.

You don’t have to worry about this with a cell
array

C = {'A';'rolling';'stone';'gathers';'momentum.’}

You can convert a padded character array to
a cell array of strings with

C = cellstr(S)

and reverse the process with
S = char(C)

To create a character array from one of the
text fields in a structure (name, for

example), call the char function on the
comma-separated list produced by S.name:

>>names = char(S.name)

names =

Ed Plum

Toni Miller

Jerry Garcia

Checking for special elements (NaN, Inf)

isnan(a) Returns 1 for every NaN in array a.

isinf(a) Returns 1 for every Inf in array a.

isfinite(a) Returns 1 for every finite number
(not a (Nan or Inf)) in array a.

isreal(a) Returns 1 for every non-complex
number array a.

Using special elements to your advantage.

Since NaNs propagate through calculations
(answer is NaN if there is a NaN somewhere
in the calculation), it is sometimes useful to

throw NaNs out of operations like taking the
mean.

(A handy trick to ignore stuff you don’t want while you continue calculating.)
So the function that identifies NaNs can be

very useful:
ix=find(˜isnan(a));

m=mean(a(ix));

this finds all values that are not NaNs and
averages them.

help

Built into matlab

help “command”

To get help on the command “command”

Problem when you don’t know the name of
the command

Just type “help”
>> help

HELP topics:

Documents/MATLAB - (No table of contents file)

matlab/general - General purpose commands.

matlab/ops - Operators and special characters.

matlab/lang - Programming language constructs.

matlab/elmat - Elementary matrices and matrix

manipulation.

matlab/randfun - Random matrices and random streams.

Lists topics of help available

Then to get contents of topics type
help “topic”

>> help elmat

 Elementary matrices and matrix manipulation.

 Elementary matrices.

 zeros - Zeros array.

 ones - Ones array.

 eye - Identity matrix.

 repmat - Replicate and tile array.

 linspace - Linearly spaced vector.

 logspace - Logarithmically spaced vector.

 freqspace - Frequency spacing for frequency response.

 meshgrid - X and Y arrays for 3-D plots.

 accumarray - Construct an array with accumulation.

 : - Regularly spaced vector and index into
matrix.

 Basic array information.

 size - Size of array.

Help on individual command
>> help zeros

 ZEROS Zeros array.

 ZEROS(N) is an N-by-N matrix of zeros.

 ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.

 ZEROS(M,N,P,...) or ZEROS([M N P ...]) is an M-by-N-by-P-
by-... array of

 zeros.

 ZEROS(SIZE(A)) is the same size as A and all zeros.

 ZEROS with no arguments is the scalar 0.

 ZEROS(M,N,...,CLASSNAME) or ZEROS([M,N,...],CLASSNAME) is
an

 M-by-N-by-... array of zeros of class CLASSNAME.

 Note: The size inputs M, N, and P... should be nonnegative
integers.

 Negative integers are treated as 0.

 Example:

 x = zeros(2,3,'int8');

 See also eye, ones.

 Reference page in Help browser

 doc zeros

Some unix commands (pwd, ls, ???) “work” in
matlab (they are actually matlab commands)
a=pwd;

b=ls;

Some matlab commands have the same names
as unix commands, but are not the same

“cat” is a matlab command that concatenates
matrices (not files)

Matlab does not pass things it does not
understand to the OS to see if they are OS

commands.

MATLAB vectorized high level language

Requires change in programming style
(if one already knows a non-vectorized

programming language such as Fortran, C,
Pascal, Basic, etc.)

Vectorized languages allow operations over
arrays using simple syntax, essentially the
same syntax one would use to operate over

scalars.
(looks like math again.)

What is vectorization?
(with respect to matlab)

Vectorization is the process of writing code
for MATLAB that uses matrix operations or
other fast builtin functions instead of using

for loops.
The benefits of doing this are usually

sizeable.
The reason for this is that MATLAB is an
interpreted language. Function calls have

very high overhead, and indexing operations
(inherent in a loop operation) are not

particularly fast.

Loop versus vectorized version of same code.
New commands “tic” and “toc” - time the

execution of the code between them.
>> a=rand(1000);

>> tic;b=a*a;toc

Elapsed time is 0.229464 seconds.

>> tic;for k=1:1000,for l=1:1000,c(k,l)=0;for m=1:1000,
c(k,l)=c(k,l)+a(k,m)*a(m,l);end, end, end, toc

Elapsed time is 22.369451 seconds.

>> whos

 Name Size Bytes Class Attributes

 a 1000x1000 8000000 double

 b 1000x1000 8000000 double

 c 1000x1000 8000000 double

 k 1x1 8 double

 l 1x1 8 double

 m 1x1 8 double

>> max(max(b-c))

ans =

 9.6634e-13

Factor 100 difference in time for
multiplication of 106x106 matrix!

�

u(x, t) = sin nπx /L()sin nπxs /L()cos ωnt()exp − ωnτ /4()[]
n=1

∞

∑

Vectorization of
synthetic

seismogram example
from Stein and

Wysession, Intro to
Seismology and

Earth Structure.

u(x,t) = sin nπ xs / L()sin nπ x / L()cos ω nt()exp − ω nτ / 4()⎡⎣ ⎤⎦
n=1

∞

∑
Note : ω n = n *ω0()

u(x,t) = sin nπ xs / L()exp − ω nτ / 4()⎡⎣ ⎤⎦()sin nπ x / L()cos ω nt()
n=1

∞

∑

u(x,t) = an sin nπ x / L()cos ω nt()
n=1

∞

∑

u(x,t) = ′an cos nπ x / L +ω nt() + cos nπ x / L −ω nt()⎡⎣ ⎤⎦
n=1

∞

∑

This is just the Fourier transform for a
standing wave

Wt - no dependence on x or t

Standing wave from 2 opposite direction traveling waves

�

u(tm) = a0

2
+ an cos ωntm()

n=1

N

∑

u(tm) = a0

2
+ a1 a2 a3  an() • cos ω1tm() cos ω2tm() cos ω3tm()  cos ωntm()()

u(tm) = a0

2
+ a1 a2 a3  an()

cos ω1tm()
cos ω2tm()
cos ω3tm()


cos ωntm()

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= a0

2
+ cos ω1tm() cos ω2tm() cos ω3tm()  cos ωntm()()

a1

a2

a3



an

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

 u tm : tm + k() = a0

2
+

cos ω1tm() cos ω2tm() cos ω3tm()  cos ωntm()
cos ω1tm +1() cos ω2tm +1() cos ω3tm +1()  cos ωntm +1()
    

cos ω1tm + k() cos ω2tm + k() cos ω3tm + k()  cos ωntm + k()

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

a1

a2

a3



an

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

 u tm : tm + k() = a0

2
+


W  a

Look at the basic element of Fourier series,
weighted sum of sin and cos functions

(look at cos only to see how works).

�

 u tm : tm + k() = a0

2
+

cos ω1tm() cos ω2tm() cos ω3tm()  cos ωntm()
cos ω1tm +1() cos ω2tm +1() cos ω3tm +1()  cos ωntm +1()
    

cos ω1tm + k() cos ω2tm + k() cos ω3tm + k()  cos ωntm + k()

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

a1

a2

a3



an

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

 u tm : tm + k() = a0

2
+


W  a

Look at the basic Fourier series
constant time, weighted sum of cosines at different frequencies at that time

constant frequency cosine as function of time
(basis functions)

Is multiplication of a matrix (with cosines as
functions of frequency – across - and time -
down) times a vector with the Fourier series

weights.

We have just vectorized the equations!

Even though this is a major improvement
over doing this with for loops, and is clear
conceptually, it is still not computable as it

takes O(N2) operations (and therefore time)
to do it. This is OK for small N, but quickly

gets out of hand.

Fourier analysis is typically done using the
Fast Fourier transform algorithm – which is

O(N log N).

Fourier decomposition.
“Basis” functions are
the sine and cosine

functions.

Notice that first sine
term is all zeros (so

don’t really need it) and
last sine term (not

shown) is same as last
cosine term, just

shifted one – so will only
need one of these).

Figure from Smith

Fourier transform

Figure from Smith

�

u(tm) = a0
2

+ an cos ωntm()
n=1

N

∑ + bn sin ωntm()
n=1

N

∑

�

∗ a0

�

∗ a1

�

∗ a2

�

∗ a3

�

∗ a4

�

∗ b1

�

∗ b2

�

∗ b3

The Fast Fourier Transform
(FFT) depends on noticing

that there is a lot of
repetition in the calculations
– each higher frequency basis

function can be made by
selecting points from the w0
function. The weight value is
multiplied by the same basis
function value an increasing

number of times as w
increases.

FFT

Figure from Smith

�

u(tm) = a0
2

+ an cos ωntm()
n=1

N

∑ + bn sin ωntm()
n=1

N

∑

�

∗ a0

�

∗ a1

�

∗ a2

�

∗ a3

�

∗ a4

�

∗ b1

�

∗ b2

�

∗ b3

The FFT basically does each
unique multiplication only

once, stores it, and then does
the bookeeping to add them

all up correctly.

The points in the trace at the
top are made from vertical

sums of the weighted points
at the same time in the cos

and sin traces in the bottom.

%synthetic seismogram for homogeneous string, u(t)

%calculated by normal mode summation

%string length

alngth=1;

%velocity m/sec

c=1.0;

%number modes

nmode=200;

%source position

xsrc=0.2;

%receiver position

xrcvr=0.7;

%seismogram time duration

tdurat=1.25;

%number time steps

nstep=50;

%time step

dt=tdurat/nstep;

%source shape term

tau=0.02;

fprintf('%s\n','synthetic seismogram for string')

fprintf('%s %0.5g\n','number modes', nmode)

fprintf('%s %0.5g %0.5g\n','length and velocity', alngth, c)

fprintf('%s %0.5g %0.5g\n','posn src and rcvr',xsrc,xrcvr)

fprintf('%s %0.5g %0.5g %0.5g\n','durn, time steps, del
t',tdurat,nstep,dt)

fprintf('%s %0.5g\n','source shape', tau)

%initialize displacement

for cnt=1:nstep

 u(cnt)=0;

end

for k=1:nstep

 t(k)=dt*(k-1);

end

%outer loop over modes

for n=1:nmode

 anpial=n*pi/alngth;

%space terms - src & rcvr

 sxs=sin(anpial*xsrc);

 sxr=sin(anpial*xrcvr);

%mode freq

 wn=n*pi*c/alngth;

%time indep terms

 dmp=(tau*wn)^2;

 scale=exp(-dmp/4);

 space=sxs*sxr*scale;

%inner loop oner time steps

 for k=1:nstep

% t=dt*(k-1);

% cwt=cos(wn*t);

 cwt=cos(wn*t(k));

%compute disp

 u(k)=u(k)+cwt*space;

 end

end

plot(t,u)

Traditional
programming
with nested
loops.

Related to the
details of the
math (as if you
were doing it by
hand).

%synthetic seismogram for homogeneous
string, u(t)

%calculated by normal mode summation

%string length

alngth=1;

%velocity m/sec

c=1.0;

%number modes

nmode=200;

%source position

xsrc=0.2;

%receiver position

xrcvr=0.7;

%seismogram time duration

tdurat=1.25;

%number time steps

nstep=50;

%time step

dt=tdurat/nstep;

%source shape term

tau=0.02;

fprintf('%s\n','synthetic seismogram for
string')

fprintf('%s %0.5g\n','number modes',
nmode)

fprintf('%s %0.5g %0.5g\n','length and
velocity', alngth, c)

fprintf('%s %0.5g %0.5g\n','posn src and
rcvr',xsrc,xrcvr)

fprintf('%s %0.5g %0.5g %0.5g\n','durn,
time steps, del t',tdurat,nstep,dt)

fprintf('%s %0.5g\n','source shape',
tau)

%initialize displacement

for cnt=1:nstep

 u(cnt)=0;

end

for k=1:nstep

 t(k)=dt*(k-1);

end

%outer loop over modes

for n=1:nmode

 anpial=n*pi/alngth;

%space terms - src & rcvr

 sxs=sin(anpial*xsrc);

 sxr=sin(anpial*xrcvr);

%mode freq

 wn=n*pi*c/alngth;

%time indep terms

 dmp=(tau*wn)^2;

 scale=exp(-dmp/4);

 space=sxs*sxr*scale;

%inner loop oner time steps

 for k=1:nstep

% t=dt*(k-1);

% cwt=cos(wn*t);

 cwt=cos(wn*t(k));

%compute disp

 u(k)=u(k)+cwt*space;

 end

end

plot(t,u)

Slightly
cleaned up
version of
Fortran
program in
Stein and
Wysession
“translated
” to Matlab.

>> whos

 Name Size Bytes Class Attributes

 alngth 1x1 8 double

 anpial 1x1 8 double

 c 1x1 8 double

 cnt 1x1 8 double

 cwt 1x1 8 double

 dmp 1x1 8 double

 dt 1x1 8 double

 k 1x1 8 double

 n 1x1 8 double

 nmode 1x1 8 double

 nstep 1x1 8 double

 scale 1x1 8 double

 space 1x1 8 double

 sxr 1x1 8 double

 sxs 1x1 8 double

 t 1x1 8 double

 tau 1x1 8 double

 tdurat 1x1 8 double

 u 1x50 400 double

 wn 1x1 8 double

 xrcvr 1x1 8 double

 xsrc 1x1 8 double

Synthetic seismogram produced by Matlab
code on previous slide.

% number of time samples M
% points

% source position xs (meters)

% speed c (meters/sec)

% length L (meters)

% number of modes N

% source pulse duration Tau
% (sec)

% length of seismogram T (sec)

M=50;

xs=0.25;

c=1;

L=1;

N=200;

Tau=0.02;

T=1.25;

%time vector, 1 row by M
% columns

%start, step, stop

dt=T/M;

t=0:dt:T-dt;

% receiver posn

xr = 0.7;

%stein actually starts at mode
% 1

%freq vector from 0 to n*pi*c/L
%, 1 row by N columns

wn=linspace(1,N,N);

wn=wn*pi*c/L;

%time independent terms - modes
%- 1xN vector (row vector)

timeindep=sin(wn*xr).*sin(wn*xs
).*exp(-(wn*Tau).^2/4);

%time dependent terms -
%time*freqs = MxN matrix

timedep=cos(t'*wn);

%use matrix * vector multiply
%to do "loop"

%(MxN)times(Nx1)=(Mx1) (column
%vector)

seism=timedep*timeindep';

plot(t,seism)

Same problem in
Matlab after
vectorization (is
mostly comments!)

Get same figure as before.

