
Representing numbers on the computer. 

Computer memory/processors consist of 
items that exist in one of two possible 

states (binary states). 

These states are usually labeled 
0 and 1. 

Each item in memory stores one “bit” of 
information. (whether it is a 0 or a 1). 



How can we combine these “bits” into 
something useful? 

We can let the two states represent the 
digits 0 and 1 of a positional, base 2 system. 

(similar to our base 10 system, but with only 
2 digits, 0 and 1, rather than 10 digits, 0, 1, 

2, 3, 4, 5, 6, 7, 8, 9). 



This leads to a simple way to represent 
integers - - just use base 2. 

Base 10 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Base 2 
0 
1 

10 
11 

100 
101 
110 
111 

1000 
1001 
1010 
1101 

When you run out of 
symbols, combine 
using idea of 0 and 
positional value 

anbnan-1bn-1…a2b2a1b1a0b0, “b”= base, “a” element of set of 
symbols for base {0, 1,…,b-1} 



glitches 



All the integers we can write down are finite 
(use some finite number digits), but size 

otherwise arbitrary 
(8, 147, 987346036. etc). 

Computer takes this one step further by 
stating up front the number of digits (bits) 
in a number in memory. All numbers will have 

this number of bits (or multiples of it).   



Introduce the “byte” – a group of 8 bits. 

In general the computer does not work with 
individual bits – it works with bytes (8 bits 

at a time) or words (some number of bytes). 

Bytes can be combined into “words”. Words 
were originally defined as 2 bytes (16 bits), 
but as computers got more powerful, words 
grew to 4 bytes (32 bits), and now 8 bytes 
(64 bits). (how things are combined will come back to bite us later) 

Half a byte, 4 bits, is a “nibble”. 



On the SUN, a word is 4 bytes 
(“32 bit machine”). 

On the newest MacPro’s (and PC’s, since they 
both use the same INTEL chips) a word is 8 

bytes (“64 bit machine”). 



So let’s say we are on a machine with 3 bit 
“words”. 

(so we can write out the numbers) 

We have seen that we can represent positive 
integers in base 2. 



With 3 bits we can count to 7. 
(with n bits we can count to 2n-1) 

000 
001 
010 
011 
100 
101 
110 
111 

0 
1 
2 
3 
4 
5 
6 
7 



What about negative integers? 

Now we have a problem. 

We don’t have a minus sign. 

All we have are 0 and 1. 



One solution is to use the most significant 
(MSB) or highest order bit (the leftmost 

one) as a “sign” bit. 

000 
001 
010 
011 
100 
101 
110 
111 

0 
1 
2 
3 
-0 
-1 
-2 
-3 



This has some problems. 

We have two values for zero (positive and 
negative, and we only have 6 distinct 

numbers, not 7). 

This representation will also make binary 
arithmetic (add, subtract) on computers 

awkward (i.e. if numbers are expressed in 
this fashion). 



Actual solution: 

Use MSB to indicate the sign of the number 
– but in a slightly funky manner. 

Use the idea of the 

- Additive inverse - each positive number has 
an additive inverse. 

combined with the fact that the computer 
has 

- Finite precision – uses a fixed number of 
bits to represent a number. 



How does this work? (using 4 digit numbers) 

A=01012 

Want additive inverse of A, a number that 
when added to A produces 0. 

If we add 12 we get 

A’=01012+00012=01102 

So we have made the least significant bit 
(LSB) a zero. 

If we added 112 we get 



If we add 112 we get 

A’=01012+00112=10002 

Now the 3 LSBs are zero. 

If we add 10112 we get 

A’=01012+10112=100002 

But – our numbers are only 4 bits in size, the 
1 is a carry into a 5th bit – but we don’t have 

a 5th bit, it goes into the bit bucket. 



A’=01012+10112=100002 

So with a limit of 4 bits we cannot add the 
two 4 bit positive numbers 01012 and 10112 
because the answer needs 5 bits. Keeping 

only the 4 bits we have. 

A’=01012+10112=00002 

we see that 10112 is the additive inverse of 
01012.  



So we want 01012 to represent 510, 
and 10112 to represent -510, 

While maintaining positional notation. 

01012 = 0*something+1*22+0*21+1*20=510 

and 

10112 = 1*something+0*22+1*21+1*20=-510 

10112 = 1*something+310=-510 

So something = -810= -23 



So now we have, 

abcd2 = a*(-23)+b*22+c*21+d*20 

abcd2 = a*(-810)+b*410+c*210+d*110 

which also maintains positional notation. 

We can now count from -2n-1 to 2n-1-1 

(ex. for n=3, 23=8, so we can represent 8 
values {-4, -3, -2, -1, 0, 1, 2, 3}) 



This representation of numbers is called 
two’s complement. 

Numbers written this way are two’s 
complement numbers. 



Two’s complement numbers can be made 
using the “theory” presented, or by noticing 
that you can also form them by inverting all 

the bits and adding a 1! 

(510) = 01012 -> invert bits 10102 
then add 1 

10102 + 00012 = 10112 = (-510). (compare to before) 

This method is trivial to do on a computer 
(which can really only do logical operations 
[and, or, exclusive or {negate can be made 

from exclusive or}] on pairs of bits.) 



So – to add on a computer just add the two 
binary numbers. 

To subtract on a computer, just add the 
two’s compliment of the number you are 

subtracting. 



Sizes of numbers (integers) 

8 bit (byte) :  -128 to +127 
(unsigned: 0 to +255) 

16 bit (half word, word, short, int) : -32,768 
to +32,767 (32K) 

(unsigned: 0 to +65,535 or 64K) 

32 bit (longword, word, int) : −2,147,483,648 
to +2,147,483,647 

(unsigned: 0 to +4,294,967,295) 



64 bit (double word, long word, quadword, 
int68) : −9,223,372,036,854,775,808 to 

+9,223,372,036,854,775,807 
(unsigned: 0 to 

+18,446,744,073,709,551,615) 

128 bit (octaword) : 
−170,141,183,460,469,231,731,687,303,715,884,105,728 to 

+170,141,183,460,469,231,731,687,303,715,884,105,727 
(unsigned: 0 to

+340,282,366,920,938,463,463,374,607,431,768,211,455) 

{1038 – a pretty big number – but not big enough to count the atoms in the 
universe – estimated to be 1080.} 



So now we can add and subtract integers 
(also known as fixed point numbers) 

(and multiplying by repetitive addition, division by repetitive subtraction). 

What about - 

Non-integer numbers? 

Numbers outside the range of integers? 



Enter – floating point numbers. 

Non-integer numbers on the computer are 
limited to rational numbers 

(a/b where a and b are integers). 

Akin to scientific notation 

a.cde … * bn 

where b is the base. 



Floating point numbers can represent a wider 
range of numbers (bigger range of 

exponents) than fixed point numbers. 

As with scientific notation – floating point 
numbers will have a number of digits in a 
decimal number (with a decimal point, not 

base 10) plus an exponent, which is used to 
multiply the decimal number by the base 

raised to that power. 

2.235 x 106 

But now our number and base will be binary. 



Modern floating point format is IEEE 754 
standard (there were at least as many as 
computer manufacturers for a long time). 

Non-integer numbers are represented as 

€ 

1+ bitn
n=1

p−1

∑ 2−n
 

 
 

 

 
  2m

1.5707964 * 2 = 
(1+1*2-1+0*2-2+1*2-4+1*2-7+1*2-23)*21 



1.5707964 * 2 = 
(1.+1*2-1+0*2-2+…+1*2-4+…+1*2-7+…+1*2-23)*20 

The decimal number (part in yellow) is called 
the mantissa. 

The exponent (part in cyan) is called the 
exponent. 



Following the same restrictions that the 
computer placed on integers – we will have 
some predefined finite size for both the 

mantissa and exponent. 

We will also need to know where the radix 
(decimal) point is located (we don’t have a radix 

point – just 0 and 1). 

And a way to represent negative values for 
both the number and the exponent. 



Typical size for floating point number is 32 
bits – called single precision (double 

precision is 64 bits, quad precision 128 bits). 

The IEEE floating point number consists of a 

- 24 bit mantissa (including hidden bit), 

- an 8 bit exponent (with a bias or excess to 
handle positive and negative values), 

- and a sign bit (total 32 bits). 



The decimal point will always be after (in 
IEEE format, it could be before) the most 

significant non-zero digit (which can only be 
a 1 in base 2).  

Implicit or hidden bit. 

To milk another digit out of our floating 
point representation use the fact that for all 
numbers but zero, the first binary digit will 

be a 1, so we can throw it out. 

(i.e. - not store it in the number. We have to remember to stick the implicit or 
hidden bit back in for calculations. This is done automatically by the hardware in 

the CPU.) 



Rounding is done by adding 1 to the 24th bit 
if the 25th bit is a 1. 

(we have 23 bits in the floating point number 
for the mantissa after taking the sign bit 

into account, 

but one bit [the MSB] is implicit, so the last 
bit is really the 24th in the number) 



To handle negative exponents we will just 
add 127 (in the IEEE standard, some other floating point formats use 128) to 
the value of the exponent. The exponent is 

an unsigned integer. 

The base for the exponent is 2 
(it was 16 on the IBM, which gave a much wider range of values for the 

exponent, but also much bigger round off errors because every change in the 
exponent shifted 4 rather than 1 bits). 



So our floating point number is 
            1. 
SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM 

example 
Π’s first 32 bits = 11.001001 00001111 11011010 101000102 

Round to 24 bits 1.100100100001111110110112 x 21 

Take this (23 bits) less hidden bit (yellow), together with 
sign bit =0 (is positive number), 

exponent =1    (11.0… = 1.10…x21) 2, 
excess 12710 or bias 12710 exponent = 

12710+110=12810=100000002 
                                    1. 

Π = 0 10000000 10010010000111111011011 



Range of floating point numbers. 

Single precision 
(32 bit number, 24 in mantissa) 

About 7 decimal digits. 

How to approximate number of base 10 
digits from number of base 2 digits 

210 = 1024 ~ 103 

base 2 exponent/base 10 exponent = 
10/3=3.3 

(24/3.3=7.2) 



Type   Sign    Exponent     Mantissa   Total bits   Exponent bias    Bits precision 

Single  1     8  (±38)          23           32     127            242   (710) 

Double  1    11  (±308)       52           64    1023            532   (1610) 

Quad  1    15  (±4,965)    112          128   16383           1132   (3410) 

Ranges for various sizes of floating point 
numbers 



To add floating point numbers – have to line 
up the mantissas (shift based on exponent). 

Potential problem when adding two numbers 
of very different magnitude. 

eg.    1.0 + 0.0000001 = 1.0 

in single precision 
(does not give expected 1.0000001) 

because we do not have enough bits to 
represent correct value (only 7 decimal 

digits). 
(solution here is to go to double precision.) 



Another potential problem 

Loss of significance when subtracting two 
numbers that are almost the same. 

1.234567-1.234566-0.000001 

Start out with 7 digit numbers, end up with 
single significant digit in new - seemingly 7 
significant digit - number (1.000000 x 10-6). 

This is not solved by increasing precision on 
computer.  



To multiply floating point numbers – add 
exponents, multiply mantissas. 

On computer – result has same number 
significant digits (7 for single precision) as 

the two factors. 



Special values: 

- Zero (no 1 bit anywhere to normalize on – 
all zeros) 

+/- infinity 

-  NaN (result of operations such as divide by 
zero, sqrt -1 [except in matlab]) 

- Others 



Machine precision 

Characterizes accuracy of machine 
representation. 

epsilon or Emach 

Value depends on number bits in mantissa 
and how rounding is done. 



With rounding to zero, 

Emach = B^(1-P) 

With rounding to nearest, 
Emach = (1/2)*B^(1-P) 

Where B^(M)=BM. 



Emach 

Quantifies bounds on the relative error in 
representing any non-zero real number x 
within the normalized range of a floating 

point system: 

| (f(x) − x) / x | < = Emach 



Math vs what the computer does. 

Due to finite precision and rounding the 
computer will (generally) not give what you 

might expect mathematically. 

Mathematically    sin2θ+cos2θ=1. 

But on the computer (finite precision, 
rational values only, …) the test 

sin2θ+cos2θ==1 

will return FALSE! 



One solution to this problem is to test 
against a small number – the machine 

precision, rather than zero. 

So test 

abs(sin2θ+cos2θ-1) < epsilon 

if this is true consider, then we can consider 
sin2θ+cos2θ=1. 

(same with test a==b, use abs(a-b) < epsilon). 



One last detail 

Combining bytes into words. 

Many ways to do it, and all were used (of course). 

Two of the most popular are both still 
around. 

Can cause value of numbers to be 
interpreted incorrectly. 

Can cause major headaches 
(some operating systems/programs can figure it out and fix it for you, others 

can’t and you have to do it). 



Endianness 

In byte (unsigned integer) 

27, 26, 25, 24, 23, 22, 21 ,20 

MSB on left, LSB on right. 

What happens when I combine 2 bytes into a 
16 bit number?  



Two possible ways to combine. 
(and also several possible ways to visualize 

memory). 

MSByte    LSByte 
Address              0             1 

LSByte    MSByte 
Address              0             1 



A number made up of just one byte would 
have that byte placed at address 0. 

      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F

0000 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00


How do we expand this number to two bytes? 
We have 2 options. We could allow it to grow 
towards the right – the little endian form). 

      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F

0000 21 43 00 00 00 00 00 00 00 00 00 00 00 00 00 00


This puts the numbers "backwards", but 
allows us to extend the size of number to 

the limits of memory without having to move 
the least significant parts. 



Alternately, we could slide the first byte to 
the right, changing it’s address, and then 

extend the number toward the left, the big 
endian form. 

      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F

0000 43 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00


This keeps the digits in the “correct” order, 
but forces a definite size into the number 

(one has to move the bytes with lower 
significance as add more bytes). 

(the arrow indicates the base address when 
referring to the number). 



Nothing really forces us to number bytes left to right. If 
we wanted, we could number right to left. If we were to do 

so, the above exercise takes on a whole new look: 

      F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0

0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21


grows to become either (Little Endian): 

      F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0

0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 43 21


or (Big Endian) 

      F  E  D  C  B  A  9  8  7  6  5  4  3  2  1  0

0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 43


Suddenly, little endian not only looks correct, but also 
behaves correctly, grows left without affecting existing 

bytes. And, just as suddenly, big endian turns onto a bizarre 
rogue whose byte ordering doesn’t follow the "rules". 



Big-endian 

(Looking at memory as column going down.) 



Big-endian - with 8-bit atomic element size 
and 1-byte (octet) address increment: 

increasing addresses  → 
...  0x0A  0x0B  0x0C  0x0D  ... 

The most significant byte (MSB) value, which 
is 0x0A in our example, is stored at the 

memory location with the lowest address, 
the next byte value in significance, 0x0B, is 
stored at the following memory location and 
so on. This is akin to Left-to-Right reading in 

hexadecimal order. 



Little-endian 

(Looking at memory as column going down.) 

(As with left2right or right2left ordering of row form, reasonableness of 
behaviors would “switch” if looked at memory as column going up.) 



Litle-endian - with 8-bit atomic element size 
and 1-byte (octet) address increment: 

increasing addresses  → 
...  0x0D  0x0C  0x0B  0x0A  ... 

The least significant byte (LSB) value, 0x0D, 
is at the lowest address. The other bytes 
follow in increasing order of significance. 





Which way makes “more sense” depends on 
how you picture memory. 

As rows or columns. 

Whether the rows go from left2right or 
right2left, or the columns go up or down. 



Machines that use little-endian format 
include x86, 6502, Z80, VAX, and, largely, 

PDP-11 

Machines that use big-endian format include 
Motorola (pre intel macs),  IBM, SUN 

(SPARC) 

(machines/companies that started out with 8 bits typically used little-endian 
when they combined bytes. Machines/companies that started out with 16 bits 

typically used big-endian to break words into bytes.) 



What you need to know. 

For binary data (not ascii [basically letters] 
which is stored in a single byte) you have to 

know how it is stored. If it is stored the 
wrong way for your machine, you have to do a 

“byte swap” to fix it. 

There are programs to do this. 

(plus some programs, like the latest version 
of SAC, can figure it out – so you don’t have 

to worry about it).. 



When you byte swap, you also have to swap 
each grouping of 2n (e.g. for 32 bit numbers 

you have to swap words also). 

Etc. for 64 bit, 128 bit, values. 



When converting floating point (assuming 
base 2 exponent) have to worry about 

- the exponent’s excess value (IEEE uses 
127, some other formats use 128 – a factor 

of 2) 

- and position of assumed decimal point 
(before or after most significant bit with 

value of 1 (another factor of 2). 

Only have to worry about this stuff when 
moving (usually old) binary stuff between 

machines/architectures. 


