Representing humbers on the-computer.

Computer memory/processors consist of
items that exist in one of two possible
states.(binary states).

These states are usually labeled
O and 1.

Each item in memory stores one "bit" of
information. (whether it isa 0 or al).




How can we combine these "bits" into
something useful?

We can let the two stdates represent the
digits O and 1 of a positional, base 2 system.

(similar-to our base 10 system, but with-only
2 digits, 0 and 1, rather than 10 digits, O, 1,
2,3,4,5,6,7,8,9).




This leads-to' a simple way to represent
iIntegers - - just use base 2.

Base 10 Base:2
o) 0]
1 1
10
_ 11
When you run out of ' 100

symbols; combine 101
using idea of O and 110
positional value 111

sz///// 1000
9 1001
10 1010
11 1101

a.bta b"1ld,b%a,blayb?, "b"= base, "a" element of set of
symbols for base {0, 1,..5b-1}




glitches




All the infegers we can write down are finite
(use some finite number digits), but.size

otherwise arbitrary
(8,147, 987346036..etfc).

Computer takes this one.step further by
stating up front the number of ‘digits (bits)
in'a number in memory. All numbers will have

this number of bits (or multiples of it).




Infroduce the "byte" - a‘group of 8 bits.

In general the computer does not'work with
individual bits - it works with bytes (8 bits
at a time) or words (some numbeér of bytes).

Bytes can be combined into."words"”. Words
were originally-defined-as 2 bytes (16 bits),
but as computers got more powerful, words
grew to 4 bytes (32 bits), and now 8 bytes

(64 blTS) (how things.are combined will . come back to bite us later)

Half a byte, 4 bits, is a *nibble”.




On the SUN, a word is 4 bytes
(32 bit machine").

On the newest MacPro's.(and PC's, since they

both use the'same INTEL ‘chips) a'word is 8
bytes ("64 bit machine").




50 let's say we are on a machine with 3 bit
“words”,

(so we can ‘write out the numbers)

We have seen that we can represent.positive
integers inbase 2.




With 3 bits we cancount to 7.
(with n bits we can count to 27-1)

000
001
010
011
100
101

110
111

N OOl DW= O




What about negative integers?

Now we have a problem.

We don't have a minus sign.

All we have-are O and 1.




One solution is 16 use the most significant
(MSB) or highest order bit (the leftmost
one) as a 'sign” bif.

000
001
010
011
100
101
110
111




This has some problems.

We-have. two values-for zero (positive and
negative, and we only have 6-distinct
numbers, not 7).

This representation will also make binary

arithmetic (add, subtract) on computers

awkward (i.e. if nhumbers are expressed in
this. fashion).




Actual’solution:

Use MSB.to indicate the sign of the number
- but in a slightly funky. manner,

Use the idea of the

-Additive inverse - each positive number has
an-additive-inverse.

combined with the fact that the computer
has

- Finite precision - uses a fixed number of
bits to represent a number.




How-does this work? {using 4-digit numbers)

A=0101,

Want additive.inverse of A, a number that
when added to A produces O.

If we'add 1, we get
A'=0101,+0001,=0110,

So we have made the least significant bit
(LSB) a zero.




If we add 11, we get
A'=0101,+0011,=1000,
Now the 3'LSBs are zero.
If we add 1011, we get

A'=0101,+1011,=10000,

But'~ our numbers-are only-4 bits in size, the
1 is a-carry into a 5™ bit - but we don't have
a 5™ bit, it goes into the bit bucket.




A'=0101,+1011,=10000,

So with a limit of 4 bits we cannot add the

two 4 bit positive numbers 0101, and 10115

because the answer needs 5 bits. Keeping
only the 4 bits we have.

A'=0101,+1011,=0000,

we:see that 1011..is the additive inverse of
0101,




So we want 01015 to represent 9,
and 1011, to represent =5,
While maintaining positional nofation.

01015 = 0*something+1*22+0*21+1*20=5, ,

and

10112 - *SOmeThin9+o*22+1*21+1*202'510

1011, = 1*something+3;,=-5;5

So something = -8;5= -2°




So now we have,

abcd, = a*(-23)+b*2%+c*21+d*2°

abcd, = a*(-8,5)+b*4,,*+C*245+d*1,,

which alse maintains positional notation.

We can now count from -2n1 +o 2n1-1

(ex. for n=3, 23=8, so We can.represent 8
values {-4,-3, -2,-1,0,1, 2. 3})




This representation of numbers.is called
two's complement.

Numbers written this way are two's
complement numbers.




Two's complement numbers can be made
using the “theory" presented, or by noticing
that you'can also'form them by inverting all

the bits and adding a 1!

(5,5) = 0101 -> invert bits 1010,
then add 1
10102 + 00012 - 10112 = ("510). (compare to before)

This method is trivial to do on a computer

(which.canreally only do logical operations

[and, or, exclusive or {negate can be made
from exclusive or}] on pairs of bits.)




So - to add on a computer just add the two
binary humbers.

To subfract on a computer, just'add the

two's compliment 'of the .number you are
subtracting.




Sizes of numbers (integers)

8 bit (byte): -128 to +127
(Unsigned: O to.+255)

16 bit (half word; word, short, int):-32,768
to +32,767 (32K)
(unsigned: O to +65,535 or 64K)

32 bit (longword, word, int).:=2,147,483,648
to.+2 147 483 647
(unsigned: O to +4,294,967,295)




64 bit (double word, long word, quadword,
int68) : -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807
(unsigned: O to
+18,446,744,073,709,551,615)

128 bit(octaword) :
~170,141,183,460,469,231,731,687,303,715/884.105,728 to
+170,141,183,460,469,231,731,687,303,715,884,105,727
(unsighed: O to
+340,282,366,920,938,463 463,374,607 ,431,768;211,455)

{1038 - a pretty big number - but not-big enough to count the atoms in the
universe.- estimated to be 1080}




S50 now we can add and subtract integers
(also'known as fixed point numbers)

(and multiplying-by:repeftitive.addition, divisien by repetitive subfraction).

What about -

Non-integer-numbers?

Numbers.outside the range of integers?




Enter - floating point'numbers.

Non-integer numbers on the compufter are
limited to rational numbers

(a/b where a and b are.integers).
AKin to scientific'notation

a.cde ... * b"

where b is the base:




Floating point humbers can represent a wider
range of numbers (bigger range of
exponents) than fixed.point numbers.

As with scientifie notation - floating point
numbers will have a number of digitsina
decimal'number (with a decimal point, not

base 10) plus an exponent, which.is used to
multiply the decimal number by the base
raised to that:power.

2.235 x10°

But now our number and base will be binary.




Modern floating point format is TEEE 754
standard (there were at least as many as
computer manufacturers for a long time).

Non-integer numbers are represented as

1:5707964 * 2 -
(1+1%2:14+0*2-2+1%2-4+1*2-7+1%2:23)* 21




15707964 %2 -
(1+1%52-1+0%2:2+ | +1%2:4+. +1% 27+ +1%2:23)%0

The decimal number (part:in yellow) is called
the mantissa.

The exponent (part in cyan) is called the
exponent.




Following the 'same restrictions that the
computer placed on integers - we will have
some predefined finite size:for both the

mantissa and-exponent.

We.will also.need to.know where the.radix

(decimal) point is located (we don't have'a radix
point ~ just O.and 1).

And a way to represent negative values for
both the number and the exponent.




Typical size for floating point number is 32
bits - called single precision (double
precision is 64 bifs, quad precision 128 bits).

The IEEE floating point number consists of a

=24 bit mantissa(including hidden bit),

-'an 8 bit exponent (with a'bias or excess to
handle positive and hegative values),

--and a sign bit (fotal 32 bifs).




The decimal point:will always be after (in
TEEE format, it could be before) the most

significant non-zero digit{which can only be
alin base 2).

Implicit or hidden bif.

To milk‘another-digit out of our floating
point representation use the fact that for all
numbers but zero, the first binary digit will
be:a'l, so we can throw it out:

(i;e..- not store it in the number. We have to remember to stick the implicit or
hidden bit back in for'calculations. This is done automatically. by the hardware in
the CPU.)




Rounding:is done by adding 1 to the 24'™ bit
if the 251" bit isal.

(we have 23 bits in the floating point number
for the mantissa after taking the sign bit
ihto..account,

but one bit [the MSB] is implicit, so the last
bit isreally the 24 in the number)




To handle negative exponents we will just
add 127 (inine1EEE standardsone other floating point formats dse 128) T.0
the value of the exponent. Theexponent is
an unsigned integer.

The base for the-exponent is 2

(it was 16 on'the IBM, which gave a much wider range ofivalues for the
exponent, but also much bigger round off errors because every change;in the
exponent shifted%4 rather than 1 bits).




5o our floating point number is

I
SEEEEEEE QMMMMMMMMMMMMMMMMMMMMMMM

example

ITs first 32 bits =11.001001 00001111 11011010 10100010,

e , ,
Round to 24 bits 1:10010010000111111011011;, x- 2!

Take this(23 bits)less hidden-bit (yellow); together-with
sign bit =0 (is positive number),
exponent =1° (11.0.. = 1.10..x21)5,
excess 127, or.bias 127,,'exponent =
&‘12710410:12810:100000002

TT = lOOOOOOO—¢ 10010010000111111011011




Range of floating point numbers.

Single precision
(32 bit number, 24 in mantissa)

About 7 decimal digits.

How to approximate number of base 10
digits from number of-base 2 digits

210z 1024 ~ 103

base 2 exponent/base 10 exponent =
10/3=3.3

(24/33=7.2)




Ranges for various sizes of floating point
numbers

Type Sign Exponent Mantissa Total bits Exponent bias* Bits precision
Single ™ 1 8 (x38) 23 32 127 24, (7)
Double 1 11 (+308) 52 64 1023 535 (161)

Quad | 1 15°(+4,965) 112 128 16383 113, (34yp)




To.add floating point-numbers - have to line
[ up the-mantissas (shift-based on exponent).

Potential problem when adding two numbers
of-very different magnitude.

eg. 1.0+ 0.0000001=1.0

in_single precision
(does not give expected 1.0000001)

because we do not have enough bits to
represent correct value (only7 decimal
digits).
(solution here is t0.go to double precision.)




Another potential problem

Loss of significance when'subtracting two
humbers that are almost:-the same.

1.234567-1.234566-0.000001

Start out with.7 digit numbers, end up with
single significant digit in new - seemingly 7
significant digit - number (1.000000 x 10-°).

This is not solved by increasing precision on
computer.




To multiply floating point numbers - add
exponents, multiply mantissas.,

On computer - result has'same number
significant digits (7 for'single precision) as
the two factors.




Special values:

--Zero (no 1'bit anywhere-to hormalize on -
all zeros)

+/- infinity

-:NaN (result of aperations such as divide by
zero, sqrt -1 [except in.matlab})

-Others




Machine precision

Characterizes accuracy of machine
representation.

epsilonor E, ..

Value depends on humber bits in mantissa
and how rounding is done:




With rounding to zero,
E,.cn = BT (1-P)

Wi’rh rounding to nearest,

mach (1/2)*8 (1 P)

Where B~ (M)=B*,




Emach

Quantifies bounds on the relative errorin
representing any non-zero real number X
within the normalized range of a floating

point system:

[ (A - X))/ x| <=E, .




Math vs what the computer does.

Due to finite precision and rounding the
computer. will (generally) not give what you
might expect mathematically.

Mathematically . sin®6+cos?0=1.

But-on the computer-(finite precision,
rational values only; ...) the test

sin¢0+cos26==1
will return FALSE!




One solution to'this problem is to test
against a small. number - the machine
precision, rather than zero.

So test

abs(sin“0+cos%06-1) <.epsilon

if this is true consider, then we can consider
5in20+c0s20=1.

(same with test a=zb, use abs(a-b) < epsilon).




One last detail
Combining bytes into words.
Many ways to do it, and all-were used (f coirse).

Two of the most popular are both still
around.

Can cause value of numbers to be
interpreted incorrectly.

Can cause major headaches

(some operating systems/programs can figure it out and fix it for you, others

can't and you have to do it).




Endianness

In byte (unsigned integer)

27 26 259423 22 21 20

MSB on left; LSB.on’right.

What happens when I combine 2 bytes into a
16 bit number?




Two possible ways o combine.
(and also_several possible ways to visualize
memory).

MSByte  LSByte
Address o) |

LSByte - MSByte
Address 0 |




A.number:made up.of just one byte would
have that byte placed at address O.

04 135 2808 8 4 - 5% @R &8 9 LE R .C ID REEF
0000 21 00 00:00 00 00,00 00 0O -00 00 OO OO 00O 00 00

How do-we expand this number to two bytes?
We have 2 options. We could allow:it to grow

’ro<vards the.right - the little endian form).

O AR BEEAT 2510 I8 2Nt A YABE T CA D E U TE R
0000 21 43 00 00 00 00 -00 :00 OO 0O 00:00-00 00 .00 00

This puts the numbers "backwards”, but
allows-us to extend the size of number-to
the limits of memory without having fo move
the least significant parts.




L Alternately; we could slide the first byte to
the right, changing it's address, and then
extend the number toward the left, the big
X endian form.

0 T 7248054 "5 5Bt b 8 O UBAEIBE C DIbEENE
0000 43 21 0000 00 00 00:00,00. 00 00 00O OO0 OO0 00 0O

This keeps the digits'in the “correct” order,
but forces a definite size into the number
(one has to move the bytes with lower
significance-as add more bytes).

(the arrow indicates the base address when
referring to the number).




Nothing really.ferces us to-number bytes left to right. If
we wanted, we could number right to left. If we were 1o do
so; the above exercise takes on a whole new look:

F. Ey DEHCEED Al (FOEGR" T -0 BT, 350 . FT-E
0000 00«00 00 00,006- 00 00 00, 00 00.00 00 60:00 00 21

grows to become either (Little Endian):

\

MG Eo DIt TR, B SRR VL 0 IBeed M3 1.2 iRdese)
0000 00_00 00 00,00 00700 0OQ 00 OO0 00 00 00 00 43 21

or (Big Endian) 5

Fi -ExN.DEE B - Ay T8 177 6 T@aerd 7 37 327w 0
0000 00 00 00,00 00 00,00 00 00.00 00 OO 0O 00 21 43

Suddenly, little endian not only looks correct, but also
behaves correctly, grows left without affecting existing
bytes. And, just as suddenly, big endian turnsionto a bizarre
rogue whose byte'ordering doesn't follow the "rules”.




Big-endian

(Looking at memory as column going down:)

Register

Memory OAOBOCOD

Big-endian




Big-endian - with 8=bit atomic element size
and1-byte (octet) address.increment:

increasing addresses —
1 0x0A | OxOB | OxOC | OxOD

The most significant byte (MSB) value, which

is OxOA in our example, is'stored at the
memory.location with the lowest.address,
the next byte value in significance, Ox0B, is
stored at the following memory location and
so on. This is akin to Left-fo-Right reading in
hexadecimal order.




Little-endian

(Looking at memory as column going down:)

Register
OAOBOCOD

Little-endian

(As with left2right or right2left ‘ordering of row form, reasonableness of
behaviors would*switch” if looked at memoryias column going up.)




| Litle-endian - with 8-bif atomic element size
and 1-byte (octet) address increment:

increasing addresses
.+ OxOD| OxOC| Ox0B| Ox0QA: ...

The'least significant byte (LSB)-value, Ox0D;
is at the lowest address. The other bytes
follow in increasing order of significance.




Register
p————— Big endian

EE 32 bit access

] Little endian
F———= Big endian

16 bit access

] Little endian
F— Big endian

:./‘-«_ [ Eil C @ 8 bit access

«—| Little endian

Little endian  Big endian




Which way makes "more sense" depends on
how you picture memory.

AsS rows or columns.

Whether the rows go from left2right or
right2left, or the columns go up or down.




Machines that use little-endian format
include x86, 6502, Z80, VAX, and, largely,
PDP-11

Machines:that use big-endian format include
Motorola (pre'intel macs),. IBM, SUN

(SPARC)

(machines/companies that started out with 8 bits typically used:little-endian
when.they combined bytes. Machines/companies that started out with 16 bits
typically used big-éndianto break'words into bytes.)




What you:need o Know.

For binary data (not asciii[basically letters]
which-is stored in.a.single byte) you have to
know-how it is'stored:If it is stored the
wrong way for your machine, you have o doa
"byte swap” to fix it.

There are programs to do this.

(plus some programs, like the latest version
of SAC, can figure it out - so you don't have
to worry about it)..




When you byte swap, you.also have to swap
each grouping of 2n(e.g. for 32 bit numbers
you have 16 swap words also).

Etc. for 64 bit, 128 bit, values.




When converting fleating point (assuming
base 2 exponent) have to worry about

- the exponent's excess value (IEEE uses
127, some other formats use 128 - a factor

of 2)

- and position of assumed decimal point
(before or after most significant bit with
value of 1 (another factor of 2).

Only have to worry about this stuff when
moving (usually old) binary stuff between
machines/architectures.




