
Representing numbers on the computer.

Computer memory/processors consist of
items that exist in one of two possible

states (binary states).

These states are usually labeled
0 and 1.

Each item in memory stores one “bit” of
information. (whether it is a 0 or a 1).

How can we combine these “bits” into
something useful?

We can let the two states represent the
digits 0 and 1 of a positional, base 2 system.

(similar to our base 10 system, but with only
2 digits, 0 and 1, rather than 10 digits, 0, 1,

2, 3, 4, 5, 6, 7, 8, 9).

This leads to a simple way to represent
integers - - just use base 2.

Base 10
0
1
2
3
4
5
6
7
8
9
10
11

Base 2
0
1

10
11

100
101
110
111

1000
1001
1010
1101

When you run out of
symbols, combine
using idea of 0 and
positional value

anbnan-1bn-1…a2b2a1b1a0b0, “b”= base, “a” element of set of
symbols for base {0, 1,…,b-1}

glitches

All the integers we can write down are finite
(use some finite number digits), but size

otherwise arbitrary
(8, 147, 987346036. etc).

Computer takes this one step further by
stating up front the number of digits (bits)
in a number in memory. All numbers will have

this number of bits (or multiples of it).

Introduce the “byte” – a group of 8 bits.

In general the computer does not work with
individual bits – it works with bytes (8 bits

at a time) or words (some number of bytes).

Bytes can be combined into “words”. Words
were originally defined as 2 bytes (16 bits),
but as computers got more powerful, words
grew to 4 bytes (32 bits), and now 8 bytes
(64 bits). (how things are combined will come back to bite us later)

Half a byte, 4 bits, is a “nibble”.

On the SUN, a word is 4 bytes
(“32 bit machine”).

On the newest MacPro’s (and PC’s, since they
both use the same INTEL chips) a word is 8

bytes (“64 bit machine”).

So let’s say we are on a machine with 3 bit
“words”.

(so we can write out the numbers)

We have seen that we can represent positive
integers in base 2.

With 3 bits we can count to 7.
(with n bits we can count to 2n-1)

000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

What about negative integers?

Now we have a problem.

We don’t have a minus sign.

All we have are 0 and 1.

One solution is to use the most significant
(MSB) or highest order bit (the leftmost

one) as a “sign” bit.

000
001
010
011
100
101
110
111

0
1
2
3
-0
-1
-2
-3

This has some problems.

We have two values for zero (positive and
negative, and we only have 6 distinct

numbers, not 7).

This representation will also make binary
arithmetic (add, subtract) on computers

awkward (i.e. if numbers are expressed in
this fashion).

Actual solution:

Use MSB to indicate the sign of the number
– but in a slightly funky manner.

Use the idea of the

- Additive inverse - each positive number has
an additive inverse.

combined with the fact that the computer
has

- Finite precision – uses a fixed number of
bits to represent a number.

How does this work? (using 4 digit numbers)

A=01012

Want additive inverse of A, a number that
when added to A produces 0.

If we add 12 we get

A’=01012+00012=01102

So we have made the least significant bit
(LSB) a zero.

If we added 112 we get

If we add 112 we get

A’=01012+00112=10002

Now the 3 LSBs are zero.

If we add 10112 we get

A’=01012+10112=100002

But – our numbers are only 4 bits in size, the
1 is a carry into a 5th bit – but we don’t have

a 5th bit, it goes into the bit bucket.

A’=01012+10112=100002

So with a limit of 4 bits we cannot add the
two 4 bit positive numbers 01012 and 10112
because the answer needs 5 bits. Keeping

only the 4 bits we have.

A’=01012+10112=00002

we see that 10112 is the additive inverse of
01012.

So we want 01012 to represent 510,
and 10112 to represent -510,

While maintaining positional notation.

01012 = 0*something+1*22+0*21+1*20=510

and

10112 = 1*something+0*22+1*21+1*20=-510

10112 = 1*something+310=-510

So something = -810= -23

So now we have,

abcd2 = a*(-23)+b*22+c*21+d*20

abcd2 = a*(-810)+b*410+c*210+d*110

which also maintains positional notation.

We can now count from -2n-1 to 2n-1-1

(ex. for n=3, 23=8, so we can represent 8
values {-4, -3, -2, -1, 0, 1, 2, 3})

This representation of numbers is called
two’s complement.

Numbers written this way are two’s
complement numbers.

Two’s complement numbers can be made
using the “theory” presented, or by noticing
that you can also form them by inverting all

the bits and adding a 1!

(510) = 01012 -> invert bits 10102
then add 1

10102 + 00012 = 10112 = (-510). (compare to before)

This method is trivial to do on a computer
(which can really only do logical operations
[and, or, exclusive or {negate can be made

from exclusive or}] on pairs of bits.)

So – to add on a computer just add the two
binary numbers.

To subtract on a computer, just add the
two’s compliment of the number you are

subtracting.

Sizes of numbers (integers)

8 bit (byte) : -128 to +127
(unsigned: 0 to +255)

16 bit (half word, word, short, int) : -32,768
to +32,767 (32K)

(unsigned: 0 to +65,535 or 64K)

32 bit (longword, word, int) : −2,147,483,648
to +2,147,483,647

(unsigned: 0 to +4,294,967,295)

64 bit (double word, long word, quadword,
int68) : −9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
(unsigned: 0 to

+18,446,744,073,709,551,615)

128 bit (octaword) :
−170,141,183,460,469,231,731,687,303,715,884,105,728 to

+170,141,183,460,469,231,731,687,303,715,884,105,727
(unsigned: 0 to

+340,282,366,920,938,463,463,374,607,431,768,211,455)

{1038 – a pretty big number – but not big enough to count the atoms in the
universe – estimated to be 1080.}

So now we can add and subtract integers
(also known as fixed point numbers)

(and multiplying by repetitive addition, division by repetitive subtraction).

What about -

Non-integer numbers?

Numbers outside the range of integers?

Enter – floating point numbers.

Non-integer numbers on the computer are
limited to rational numbers

(a/b where a and b are integers).

Akin to scientific notation

a.cde … * bn

where b is the base.

Floating point numbers can represent a wider
range of numbers (bigger range of

exponents) than fixed point numbers.

As with scientific notation – floating point
numbers will have a number of digits in a
decimal number (with a decimal point, not

base 10) plus an exponent, which is used to
multiply the decimal number by the base

raised to that power.

2.235 x 106

But now our number and base will be binary.

Modern floating point format is IEEE 754
standard (there were at least as many as
computer manufacturers for a long time).

Non-integer numbers are represented as

€

1+ bitn
n=1

p−1

∑ 2−n








 2m

1.5707964 * 2 =
(1+1*2-1+0*2-2+1*2-4+1*2-7+1*2-23)*21

1.5707964 * 2 =
(1.+1*2-1+0*2-2+…+1*2-4+…+1*2-7+…+1*2-23)*20

The decimal number (part in yellow) is called
the mantissa.

The exponent (part in cyan) is called the
exponent.

Following the same restrictions that the
computer placed on integers – we will have
some predefined finite size for both the

mantissa and exponent.

We will also need to know where the radix
(decimal) point is located (we don’t have a radix

point – just 0 and 1).

And a way to represent negative values for
both the number and the exponent.

Typical size for floating point number is 32
bits – called single precision (double

precision is 64 bits, quad precision 128 bits).

The IEEE floating point number consists of a

- 24 bit mantissa (including hidden bit),

- an 8 bit exponent (with a bias or excess to
handle positive and negative values),

- and a sign bit (total 32 bits).

The decimal point will always be after (in
IEEE format, it could be before) the most

significant non-zero digit (which can only be
a 1 in base 2).

Implicit or hidden bit.

To milk another digit out of our floating
point representation use the fact that for all
numbers but zero, the first binary digit will

be a 1, so we can throw it out.

(i.e. - not store it in the number. We have to remember to stick the implicit or
hidden bit back in for calculations. This is done automatically by the hardware in

the CPU.)

Rounding is done by adding 1 to the 24th bit
if the 25th bit is a 1.

(we have 23 bits in the floating point number
for the mantissa after taking the sign bit

into account,

but one bit [the MSB] is implicit, so the last
bit is really the 24th in the number)

To handle negative exponents we will just
add 127 (in the IEEE standard, some other floating point formats use 128) to
the value of the exponent. The exponent is

an unsigned integer.

The base for the exponent is 2
(it was 16 on the IBM, which gave a much wider range of values for the

exponent, but also much bigger round off errors because every change in the
exponent shifted 4 rather than 1 bits).

So our floating point number is
 1.
SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM

example
Π’s first 32 bits = 11.001001 00001111 11011010 101000102

Round to 24 bits 1.100100100001111110110112 x 21

Take this (23 bits) less hidden bit (yellow), together with
sign bit =0 (is positive number),

exponent =1 (11.0… = 1.10…x21) 2,
excess 12710 or bias 12710 exponent =

12710+110=12810=100000002
 1.

Π = 0 10000000 10010010000111111011011

Range of floating point numbers.

Single precision
(32 bit number, 24 in mantissa)

About 7 decimal digits.

How to approximate number of base 10
digits from number of base 2 digits

210 = 1024 ~ 103

base 2 exponent/base 10 exponent =
10/3=3.3

(24/3.3=7.2)

Type Sign Exponent Mantissa Total bits Exponent bias Bits precision

Single 1 8 (±38) 23 32 127 242 (710)

Double 1 11 (±308) 52 64 1023 532 (1610)

Quad 1 15 (±4,965) 112 128 16383 1132 (3410)

Ranges for various sizes of floating point
numbers

To add floating point numbers – have to line
up the mantissas (shift based on exponent).

Potential problem when adding two numbers
of very different magnitude.

eg. 1.0 + 0.0000001 = 1.0

in single precision
(does not give expected 1.0000001)

because we do not have enough bits to
represent correct value (only 7 decimal

digits).
(solution here is to go to double precision.)

Another potential problem

Loss of significance when subtracting two
numbers that are almost the same.

1.234567-1.234566-0.000001

Start out with 7 digit numbers, end up with
single significant digit in new - seemingly 7
significant digit - number (1.000000 x 10-6).

This is not solved by increasing precision on
computer.

To multiply floating point numbers – add
exponents, multiply mantissas.

On computer – result has same number
significant digits (7 for single precision) as

the two factors.

Special values:

- Zero (no 1 bit anywhere to normalize on –
all zeros)

+/- infinity

-  NaN (result of operations such as divide by
zero, sqrt -1 [except in matlab])

- Others

Machine precision

Characterizes accuracy of machine
representation.

epsilon or Emach

Value depends on number bits in mantissa
and how rounding is done.

With rounding to zero,

Emach = B^(1-P)

With rounding to nearest,
Emach = (1/2)*B^(1-P)

Where B^(M)=BM.

Emach

Quantifies bounds on the relative error in
representing any non-zero real number x
within the normalized range of a floating

point system:

| (f(x) − x) / x | < = Emach

Math vs what the computer does.

Due to finite precision and rounding the
computer will (generally) not give what you

might expect mathematically.

Mathematically sin2θ+cos2θ=1.

But on the computer (finite precision,
rational values only, …) the test

sin2θ+cos2θ==1

will return FALSE!

One solution to this problem is to test
against a small number – the machine

precision, rather than zero.

So test

abs(sin2θ+cos2θ-1) < epsilon

if this is true consider, then we can consider
sin2θ+cos2θ=1.

(same with test a==b, use abs(a-b) < epsilon).

One last detail

Combining bytes into words.

Many ways to do it, and all were used (of course).

Two of the most popular are both still
around.

Can cause value of numbers to be
interpreted incorrectly.

Can cause major headaches
(some operating systems/programs can figure it out and fix it for you, others

can’t and you have to do it).

Endianness

In byte (unsigned integer)

27, 26, 25, 24, 23, 22, 21 ,20

MSB on left, LSB on right.

What happens when I combine 2 bytes into a
16 bit number?

Two possible ways to combine.
(and also several possible ways to visualize

memory).

MSByte LSByte
Address 0 1

LSByte MSByte
Address 0 1

A number made up of just one byte would
have that byte placed at address 0.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

How do we expand this number to two bytes?
We have 2 options. We could allow it to grow
towards the right – the little endian form).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 21 43 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This puts the numbers "backwards", but
allows us to extend the size of number to

the limits of memory without having to move
the least significant parts.

Alternately, we could slide the first byte to
the right, changing it’s address, and then

extend the number toward the left, the big
endian form.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 43 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This keeps the digits in the “correct” order,
but forces a definite size into the number

(one has to move the bytes with lower
significance as add more bytes).

(the arrow indicates the base address when
referring to the number).

Nothing really forces us to number bytes left to right. If
we wanted, we could number right to left. If we were to do

so, the above exercise takes on a whole new look:

 F E D C B A 9 8 7 6 5 4 3 2 1 0

0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21

grows to become either (Little Endian):

 F E D C B A 9 8 7 6 5 4 3 2 1 0

0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 43 21

or (Big Endian)

 F E D C B A 9 8 7 6 5 4 3 2 1 0

0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 43

Suddenly, little endian not only looks correct, but also
behaves correctly, grows left without affecting existing

bytes. And, just as suddenly, big endian turns onto a bizarre
rogue whose byte ordering doesn’t follow the "rules".

Big-endian

(Looking at memory as column going down.)

Big-endian - with 8-bit atomic element size
and 1-byte (octet) address increment:

increasing addresses →
... 0x0A 0x0B 0x0C 0x0D ...

The most significant byte (MSB) value, which
is 0x0A in our example, is stored at the

memory location with the lowest address,
the next byte value in significance, 0x0B, is
stored at the following memory location and
so on. This is akin to Left-to-Right reading in

hexadecimal order.

Little-endian

(Looking at memory as column going down.)

(As with left2right or right2left ordering of row form, reasonableness of
behaviors would “switch” if looked at memory as column going up.)

Litle-endian - with 8-bit atomic element size
and 1-byte (octet) address increment:

increasing addresses →
... 0x0D 0x0C 0x0B 0x0A ...

The least significant byte (LSB) value, 0x0D,
is at the lowest address. The other bytes
follow in increasing order of significance.

Which way makes “more sense” depends on
how you picture memory.

As rows or columns.

Whether the rows go from left2right or
right2left, or the columns go up or down.

Machines that use little-endian format
include x86, 6502, Z80, VAX, and, largely,

PDP-11

Machines that use big-endian format include
Motorola (pre intel macs), IBM, SUN

(SPARC)

(machines/companies that started out with 8 bits typically used little-endian
when they combined bytes. Machines/companies that started out with 16 bits

typically used big-endian to break words into bytes.)

What you need to know.

For binary data (not ascii [basically letters]
which is stored in a single byte) you have to

know how it is stored. If it is stored the
wrong way for your machine, you have to do a

“byte swap” to fix it.

There are programs to do this.

(plus some programs, like the latest version
of SAC, can figure it out – so you don’t have

to worry about it)..

When you byte swap, you also have to swap
each grouping of 2n (e.g. for 32 bit numbers

you have to swap words also).

Etc. for 64 bit, 128 bit, values.

When converting floating point (assuming
base 2 exponent) have to worry about

- the exponent’s excess value (IEEE uses
127, some other formats use 128 – a factor

of 2)

- and position of assumed decimal point
(before or after most significant bit with

value of 1 (another factor of 2).

Only have to worry about this stuff when
moving (usually old) binary stuff between

machines/architectures.

