
The Basics plus Plotting in X-Y Space

Goal – make scientific illustrations (“generic”
of GMT is generic to geo sciences)

Goal – make scientific illustrations

Maps

- Color/bw/shaded topography and
bathymetry,

- Point data (earthquakes, seismic or gps
stations, etc.),

- Line data (faults, eq rupture zones, roads),
 - Vector fields w/ error ellipses,

 - Focal mechanisms
- 3D surface

-  Cross sections
- Profiles

- Other stuff

What is GMT

GMT is an open source collection of ~60
tools (and and additional 35 support tools)
for manipulating geographic and Cartesian

data sets

(including filtering, trend fitting, gridding,
projecting, etc.)

What is GMT

Produces PostScript File (PS).

Make illustrations ranging from simple x-y
plots to contour maps to artificially

illuminated surfaces and 3-D perspective
views

GMT supports ~30 map projections and
transformations and comes with support

data such as GSHHS coastlines, rivers, and
political boundaries.

If it does not have a map projection you
want: it is open source and UNIX.

(i.e. you can do it yourself)

Design Philosophy

Follows the design philosophy of UNIX –
filters (linear, single data stream):

data → processing → final illustration.

Processing flow is broken down to a series of
elementary steps.

Each step is accomplished by a separate
GMT or UNIX tool (machine shop philosophy).

Design Philosophy

Benefits (UNIX only has benefits):

(1)  only a few programs are needed
(in the world where 60+35 is a “few”, maybe they are referring to the log of the

number of programs.)

(2) each program is small and easy to update
and maintain

(maybe – alternate is each task is subroutine that is small and easy to maintain)

Design Philosophy

Benefits (UNIX only has benefits):

(3) each step is independent of the previous
step and the data type and can therefore

be used in a variety of applications

(4) the programs can be chained together in
shell scripts or with pipes, thereby

creating a process tailored to do a user-
specific task

Design Philosophy

 GMT was deliberately written for command
line usage, not a windows (or interactive)
environment, in order to maximize power

and flexibility (i.e. it is hard to use).

Written by Paul Wessel and Walter Smith
while graduate students at Lamont Doherty/
Columbia University in the mid 80’s when the
SUN workstations came out (and UNIX took

over the world).
.

(Now at the University of Hawaii and NOAA
respectively

The GMT homepage is: gmt.soest.hawaii.edu

GMT documentation

Tutorial

Technical Reference and Cookbook

(aka Manual)

both available on web

http://gmt.soest.hawaii.edu/

in HTML, PDF, and PostScript format.

As is standard with UNIX

GMT is well documented with (UNIX style)
“man” pages (also on web).

Entering GMT program/filter name all by
itself, or errors in the command

specification (switches, not data) that cause
GMT to fall over – dumps the man page to

standard error.

What does/can GMT do?

- Filtering 1-D and 2-D data

(simple processing, GMT is NOT a general
Number Cruncher)

output is reprocessed data

Plotting 1-D and 2-D data

- points, lines (symbols, fill, geologic symbols
on faults, etc.)

- vector fields

2-D images – grayscale and color,
illumination

3-D perspective of 2-D images

histograms, rose diagrams

text

focal mechanism beachballs

Data preparation

gridding, resampling, conversion

Contouring

data base: extraction, merge

cross sections

projection/map transformation (map sphere
to plane)

output is reprocessed data

Bookkeeping and bunch of other stuff

GMT Processing Output

1-D ASCII Tables — For example, a (x, y)
series may be filtered and the filtered values

output.

ASCII output is written to the standard
output stream.

GMT Processing Output

2-D binary (netCDF or user-defined) grid
files

Programs that grid ASCII (x, y, z) data or
operate on existing grid files produce this

type of output.

GMT Output

Reports – Several GMT programs read input
files and report statistics and other

information.

Nearly all programs have an optional
“verbose” operation, which reports on the

progress of computation.

Such text is written to the standard error
stream

GMT Output

The bulk of GMT output goes to

PostScript

The plotting programs all use the PostScript
page description language to describe the

output.

These commands are stored as ASCII text
(they are a program in the POSTSCRIPT

language).

output is “PostScript” program – generally
ascii text, but not too readable.

(GMT files can get amazingly BIG)
% Map boundaries

%

S 1050 1050 1050 0 360 arc S

S 1050 1050 1074 0 360 arc S

S 24 W

S 1050 1050 1062 -135 -90 arc S

S 1050 1050 1062 135 180 arc S

S 1050 1050 1062 45 90 arc S

S 1050 1050 1062 -45 0 arc S

S 1050 1050 1062 -90 -90 arcn S

S 2 W

S [] 0 B

%

% End of basemap

%

S [] 0 B

%%Trailer

%%BoundingBox: 0 0 647 647

% Reset translations and scale and call showpage

S -295 -295 T 4.16667 4.16667 scale 0 A

showpage

GMT Output

If you are really ambitious, you can directly
edit this file using vi…but in general, don’t.

GMT Output

Postscript is translated by postscript capable
(usually laser) printers.

(it is an extra feature one has to buy).

GMT Output

Postscript is also the native language of

- Adobe Illustrator/Photoshop

- ghostscript,

- ghostview.

GMT Output

I frequently use Illustrator to edit GMT
produces Postscript prior to using the

figures in papers, presentations, or posters

Apart from the built-in support for
coastlines, GMT completely decouples data
retrieval/management from the main GMT

programs.

(puts the onus on user! UNIX philosophy)

GMT uses architecture-independent file
formats

(flat files – least common denominator).

Effective use of GMT is really effective
application of the UNIX philosophy.

 Installation/Maintenance - done for us

(by Mitch – THANKS.

Somewhat complicated, not for average
user.)

Setup – basic setup done for us

(don’t have to define GMTHOME, path, etc.
if use standard CERI .login and .cshrc files)

 Installation/Maintenance.

Some common data sets

(GTOPO-30, ETOPO-5, Predicted bathy,
etc.)

are installed

“.gmtdefaults” (generic, is .gmtdefaults4 for version 4) file in
your home or working directory.

(if you’ve copied something from the tutorial or gotten a script from someone
else and it comes out “funny”, the “default” settings may be the culprit).

Easiest way to get started

1) Find system with GMT already set up

2) Get working program (shell script) from
someone else and modify (hack) it.

Lots examples in

- Tutorial

- available on www

- available from your “friends”

What goes on in GMT

Sources of operational parameters/job
control

i)  command line options/switches or
program defaults

ii) carried over from execution of previous
commands

iii) from your .gmtdefaults file
(first in working directory if exists, if ~exist, then in your home directory if

exists, finally, system/program defaults)

Sources of operational parameters/job
control

 Why a defaults file?

- too many parameters to require setting all
explicitly (powerful)

- customize – can have different defaults in
different directories

Basic GMT use

Most GMT programs read input from
terminal (stdin) or files, and write output to

terminal (stdout) (a few write to files).

To write output to files one can use UNIX
redirection:

GMTprogram switches >> Outputfile

Most GMT programs will accept input-file
names and pipes in lieu of stdin

GMTprogram input-file switches >> Outputfile

GMTprogram switches < input-file >> outputfile

Someprogram | GMTprogram1 | GMTprogram2 >> outputfile

Many GMT programs will also accept input
redirection (in-line input) – reads whatever
follows -- up to character string XXX -- as

input.

GMTprogram switches << END >> output-file

.1 .1

.2 .2

END

Can also do with “commnad substitution”:

GMTprogram switches << FIN >> output-file

`someprogram swithches < input-file…`

FIN

Some GMT programs require input-file
names

(usually when need more than one input file)

GMT and scripts

GMT commands, once installed, act much like
regular Unix commands.

Generally, the commands are enacted within
a shell script so that they may be combined

with other unix commands such as awk.

bash and csh are the most commonly
encountered in academia and passing down
GMT scripts is how much seismology gets

illustrated

Use Comments!

Comments are very popular to ignore but if
you don’t comment your script, 2 years later
you may not remember what you were doing.

The spaces and blank lines make your script
readable. While it may take more paper if

you print it, it only takes two bytes to make
new line or a space.

Keeping track of your scripts

You will be glad (someday) if you set up
directories and subdirectories to keep your

maps, data, and scripts organized.

Mitch suggests have something like this in ~/
GMT

 csh/ data/ ps/ scratch/ sh/

There is a directory for csh scripts, for sh
scripts, for data files, for postscript files,

and for scratch files.

OK lets look at some “simple” examples:

Plot x1/2 from 0 to 100 as a dashed line, with
red triangles with green borders at x=n*10.

OK lets look at some examples:

1) We start by making the basemap frame
for a linear x-y plot.

2) We want it to go from 0 to 100 in x,
annotating every 10, and from 0 to 10 in y,

annotating every 2.

3) The final plot should be 4 by 3 inches in
size.

Note GMT does not make any helpful
assumptions such as

a) You want to plot the whole x and y range
of the data and

b) You want it to fit nicely on the page
You have to specify EVERYTHNG (comes

under the excuse of being “powerful”)

Here's how we do it:
psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \

>! plot.ps

We will first look at how the requirements
above are specified to make the map.

This is done using the command line options/
switches.

Requirements 1 and 3 are specified to GMT
together

1) We start by making the basemap frame for
a linear x-y plot.

3) The final plot should be 4 by 3 inches in
size.

psbasemap draws a map frame and sets up
the map parameters (so they don’t have to
be re-specified in later GMT program calls)

The –J option selects the type of projection

In this case we want a linear x-y plot, or no
projection, which is specified by

x or X.

There are 25 projections available in GMT,
each specified by one letter.

There are no provisions for providing your
own projection.

(short of using the open source to roll your
own.)

Requirements 1 and 3 are specified to GMT
together

The –J option also sets the axis scales
(distance per unit, x) or (axis length, X)

Where the “unit” is specified in .gmtdefaults
or explicitly – inches, i, or cm, c.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \

>! plot.ps

2) We want it to go from 0 to 100 in x,
annotating every 10, and from 0 to 10 in y,

annotating every 1.

This is really two conditions

i) We want it to go from 0 to 100 in x, and
from 0 to 10 in y.

Specified by the REGION (-R) option, which
(in the usual form) is

-Rxmin/xmax/ymin/ymax

2) We want it to go from 0 to 100
-Rxmin/xmax/ymin/ymax

Notice that unlike MATLAB, GMT does not
make any assumptions about what you want

(such as the reasonable one that you just might want the region to show all the

input data).

You have to specify every detail. (i.e.
powerful)

(why should the writers of gmt work hard when they can convince the user that

it is “better” if the users do!)

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first plot": -P \

>! plot.ps

There are two forms for the –R option

1)  For projections where the boundaries
follow lines of latitude and longitude

(“rectangle” on sphere) – specify sides.

There are two forms for the –R option

2) For regions where the sides do not follow
lines of latitude and longitude (will make

more sense when we do map projections) -
specify corners by appending an “r” to end

Idea of “region” to plot specified this way
breaks down for azimuthal projections

 (outside border of plot is a circle, you really
want to specify center and radius)

will see some examples later.

2) We want to annotate x every 10, and y
every 1.

This is specified by the –B option (Border?).

This is the most complicated GMT option.

Annotation – every 10 for x (first one) and
every 1 for y (second one). If you wanted
the same annotation for x and y you would

not have to do it twice

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \

>! plot.ps

Not in specs, but controlled by the –B option,
the plot title.

This is a little more complicated.

Labels are between colons, with

“.” for plot title,
nothing for x axis label,

“,’\” for y axis label.

If label/title is more than one word, has to
be in double quotes.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \

>! plot.ps

If this sounds confusing you can look at the
man page for psbasemap for the full

explanation and more examples.

The man page for the –B option, however, is
practically incomprehensible.

The BUGS section of the man page states

“The -B option is somewhat complicated to
explain and comprehend. However, it is
fairly simple for most applications (see

examples). “

Remaining options/switches

-P

Sets the output to Portrait (long side
vertical) mode.

“Default” is Landscape (long side horizontal)
mode.

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first plot": -P \

>! plot.ps

This option actually switches “states”.

Remaining options/switches

If .gmtdefaults defines portrait mode as the
default, then –P will send it to landscape.

(make a figure and see how it comes out, if
you don’t like the orientation stick in a –P).

So, what did we get for all our effort?

Good start – but usually we make plots to
show some sort of data

– so how do we do that?

Now let’s look at a more complicated
example:

Lets call it “full_court_press.sh”
#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

This is a little more than “a little more”
complicated.

#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

But it follows the UNIX philosophy – a
bunch of simple things stuck together to do

something more complex.

Gives you the idea that most useful GMT
produced figures are going to be a LOT of

GMT calls

Here’s what the output looks like
(actually the output is a ascii file containing a PostScript program, this is what

it looks like after displaying with GhostScript or printing to a PostScript
printer).

Let’s look at it piece, buy simple piece.

Set shell
#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1,

...

Set shell to Bourne Shell.

Could also have set it to csh

(change first line to #!/usr/bin/csh -f, this works because this script does not
contain anything that is specific to one shell script – such as variable name

definition. Use -f, fast, option which stops it from running your .cshrc).

Next piece

Name the output file.
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

Being lazy and disorganized - I don’t want to
have to type the output file name in lots of
times nor keep track of which shell script
made which postscript file in my directory.

Next piece

Name the output file.
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

So I want to find a short and easy way to
name the file and I might want to associate
the output file name with the name of the

shell script that made it.

Enter UNIX argument passing to the rescue.

When you call a shell script, the system
passes predefined, pre-named “arguments”
to the shell script from the command line.

So if I enter
“myscript arg1 arg2”

UNIX automatically gives me (in this case 3
arguments)

$0

the name of the shell script

$1

the value of arg1 (character string)

$2

the value of arg2

 All I have to do to use these arguments in
my shell script (within some constraints) is

stick them in.

The Shell will expand them to their proper
values.

So my output file will be named

“full_court_press.sh.ps”,

since $0 will get expanded to
“full_court_press.sh”

(the name of the shell script)

Next piece.

Get (actually make) input data – part 1
#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

sample1d, resamples the input - which in this
case is redirected (<<) to being obtained in-

line from this file (from end of the command
line – which is somewhat far away – to END).

#!/bin/sh

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

We have to specify the resampling step
(-I1, which is steps of 1).

We will leave everything else at the default
values. (see man page if you want more info)

sample1d provides to standard out a list of
numbers from 0 to 100 in steps of 1.

Next piece. Get input data – part 2
We want x and sqrt(x)

#!/bin/sh

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

Pipe the re-sampled data into the program
nawk.

nawk is a great tool for preprocessing data
for GMT.

Next piece.
Generate input data – part 2

Using nawk, one does not have to write
programs to make intermediate files in GMT
input format, but can go right to the source
data file, read it, modify each line into GMT
input format and pipe this directly into the

GMT program.
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | psxy -
R0/100/0/10 \

-JX4/2 -Ba20f10g10/a2f1g2WSne -W5t15_15:0 -Y2 -P -K > $0.ps

0 0

100 0

END

Next piece.
Generate input data – part 2

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | psxy -
R0/100/0/10 \

-JX4/2 -Ba20f10g10/a2f1g2WSne -W5t15_15:0 -Y2 -P -K > $0.ps

0 0

100 0

END

The nawk command says to print the first
column ($1) and the square root of the first

column (sqrt($1)) of every line.

We will (break the UNIX philosophy and)
make an intermediate file as we will need it

more than once.

Next piece.

Plot it
#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

Finally we get to GMT

psxy is the GMT program that plots points
and lines.

#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

psxy accepts the “standard”/”global” options
of the GMT filters that produce PostScript

output.

We already know what –R, -J, –B and –P do,
although the –B option here is a bit more

complicated looking.

#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

Output file $0.ps (new - is first instance,
append in second – this takes care of UNIX

part)

Use \ to continue command on next line

Next piece.

...

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

...

So, what’s all that extra stuff on the –B?
Each of the letters controls a different

feature/aspect of the plotting of the axis

...
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
...

a is for annotation spacing

f is for frame (famous map frame of black/
white bars – turned off for x/X, ticks)

g is for grid spacing

WSne says to plot the annotation and ticks
on the West and South sides and ticks only

on the north and east sides.
(how would you put annotation without ticks?)

Next piece.

Draw a line -W5t15_15:0
...

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

. . .

Make line 5 units thick (where units depends
on the device and default settings)

-W5t15_15:0

Can also specify color
-W5/0t15_15:0 for black line or

-W5/255/0/0t15_15:0 for red line
...

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

. . .

Make it dashed with dashes 15 units long
followed by 15 unit long open spaces -

W5t15_15:0, and a “phase offset” for the
dashes of zero -W5t15_15:0

 compare to -W5t120_15:60

(line segment 120 long, 15 blank, first line segment 60 long [phase])

This format also works

W[width],[color],[texture]

-W5,0,15_15:-

Gives the same plot.

Next piece. Misc. 1
#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

-Y2 offset plot 2 units in the Y direction
(else x axis labels get cut off across bottom
of plot)

Misc. 2
#!/bin/sh

#plot square root x

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat

0

100

END

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \

-Y2 -P {$0}_1.dat -K > $0.ps

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

-K do not close PostScript file

-O do not initialize PostScript

-K do not close
PostScript file (don’t

output “showpage”) so more
PostScript can be

appended to the file

-O do not initialize
PostScript

(does not output PostScript header

stuff) so this can be
appended to existing
file (that hopefully

does not have a
showpage at the end).

Misc. 3

Several common “gotchas”

– no showpage (can see on screen, but does
not print – actually prints a blank page) (have

a –K in last GMT call)

-  showpage in middle of file (forgot the –K
somewhere) – only get part of file on screen

or in final print or get ghostscript error
message.

- Have header in middle of file (forgot –O
somewhere), get ghostscript error message.

Next piece.
Draw symbols every 10th point

#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Resample our
temporary file –
taking every 10th
point. Pipe output
to psxy

Next piece.
Draw symbols -St0.2

...

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \

-G255/0/0 -W5/0/255/0 -O >> $0.ps

Make triangles, t, 0.2 units big -St0.2

Make line outlining/drawing the symbols 5
units wide, and draw them in green (R/G/B) -
W5/0/255/0

Fill symbols color red (R/G/B) -G255/0/0

Colors specified in R/G/B format
(intensity of Red, Green and Blue color guns – primary colors for additive

system).

We’re done!

That wasn’t so bad now, was it?

There are two other non-map-projected
forms

1) Logarithmic - add l (lower case letter L)
after scale of axis you want logarithmic -

JX4l/2

2) Power/exponential – add p and exponent
after scale of axis you want exponential (can

scale axes individually)

-JX4p0.5/2

Common command options on first, and
possibly subsequent, calls

Need on all calls

-R Define region for plot – will need on
first call and at least “–R” on subsequent

-J define projection for plot – will need
this on all calls if need to define region

Common command options on first, and
possibly subsequent, calls

(Generally) Need on first call only

-B Borders -- annotation, frame, grid. Only
need on first (or a single) call.

-P Switch between landscape and portrait
modes

-X Shift X axis

-Y Shift Y axis

Common command options on first, and
possibly subsequent, calls.

Need when needed.

-K Don’t close PostScript (showpage), use
when more will follow

 - need on all but last GMT call

-O Don’t initialize PostScript, use when
appending to pre-existing file

 - need on all but first GMT call

 - use both –K and –O when putting a large
number of GMT call outputs together

Common command options on first, and
possibly subsequent, calls.

Need when needed.

-V Verbose (prints out stuff to standard
error for user).

-H Header records (tells GMT to skip first
H lines of ascii input file)

How about
making

pretty

MAPS?

(this was
made by
the shell
script I
put in
Mitch’s
GMT -ToT
web page.)

Map projections available in GMT

List of “standard”
command line

options.

The –J option sets
the “projection”

One has to look at
the man page for

each one as
“different things

vary”
We will now look at the

examples from the
tutorial

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps

“All” gmt programs
plot “maps”
through the
projection
command line
option or switch
(even the x-y plot).

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps

All projections
give you two
selections for
specifying the
scale

(note GMT takes the mapmakers
attitude that a map has to have a
predetermined/known scale –
nicely filling the page does not
cut it.)

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps

-Jmparameters

 (Mercator [C]).

Specify one of: -
Jmscale or -JMwidth

Give scale along
equator
(1:xxxx or UNIT/degree).

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps

-Jmlon0/lat0/scale or

-JMlon0/lat0/width

Give central
meridian, standard
latitude and scale
along parallel
(1:xxxx or UNIT/degree, UNIT =
number inches or cms).

Mercator Projection:

One way to address plotting sphere on a
plane (which is whole ‘nother subject)

Conformal (maintains shapes)

Cylindrical projection

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\
Projection": -N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps

Region is
“rectangle” on
the spherical

earth.

-N for
boundaries
(international, US/

Canadian/Mexian state

boundaries “built in”),
rivers.

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\
Projection": -N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps

-A to get rid
of small

water/island
features

Projection (b/
B) – need to

know
something

(center and
standard
parallels).

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\
Projection": \ -N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps

-Jblon0/lat0/lat1/lat2/scale or -JBlon0/lat0/lat1/lat2/width

(Albers [E]). Give projection center, two
standard parallels, and scale (1:xxxx or UNIT/degree).

Albers

Also conformal (maintains/conserves shape)

Conical projection

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 \

-G255/255/255 -S150/50/150 -P >! map.ps

azimuthal
orthographic
projection mimics
looking at earth
from infinite
distance.

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 \

-G255/255/255 -S150/50/150 -P >! map.ps

New option

-Dc

Controls
resolution of
coastline

f full

h high

l low

c crude

Helps manage file

Some useful
maps.

The world
centered on

Memphis.

Use to get
back

azimuth and
distance to
earthquakes
at a glance.

NOTE:

GMT will fall
over in this
projection if
there is land
at the anti-
pode and
you try to
fill it.
(fill should be donut
between coastline and
outside of map but
PostScript
interpreter – which
does fill - will do
something else).

Part I of shell script

Set stuff up
#!/bin/sh
#call with “stn_az_map lat lon name”
ROOT=/gaia/home/smalley
WORLDCOAST=0/360/0/180
RED=250/50/50
BLUE=50/50/255
GREEN=50/255/50
MOREPS=-K
ADDPS=-O
CONTINUEPS=”-K –O”
FILL=200
SCALE=1.75
XOFFSET=0.75
YOFFSET=1.5
GRIDCNTR=180/90/7/90
OUTPUTFILE=$0_$3.ps
rm $OUTPUTFILE

Notice abundant “comments” (use variable
names that are self documenting)

#set up map to be centered on lat lon given in command line

#draw crude coastlines, ocean blue, land green

#do not draw lat long grid (no frame specs on –B, could put w/next) 
pscoast -R$WORLDCOAST -Je$1/$2/$SCALE/180 -B:."Station $3 Map": -
S200/200/255 -G200/250/200 -W1 -Dc -P $MOREPS -X$XOFFSET -Y$YOFFSET >
$OUTPUTFILE  

#set up new map centered on north pole and draw only the lat long grid

psbasemap -R$WORLDCOAST -Je$GRIDCNTR -B15g15 -O -K >> $OUTPUTFILE  

#RESET map to be centered on lat lon given in command line

#to put on some earthquake data read from this file

#data specified in lat long order, psxy assumes long lat (x,y) so

#use the “-:” switch to let psxy know (another common gotcha)

psxy -R$WORLDCOAST -Je$1/$2/$SCALE/180 -Sc0.1 -G250/250/50 -W1/0/0/0
$CONTINUEPS -: <<END >> $OUTPUTFILE 
-9.09 158.44 
35.35 78.13 
END 

#add plate boundaries, notice don’t have to respecify details of
region and projection but do need –R -Je

psxy -R -Je -M$ -W1/$RED $CONTINUEPS $ROOT/ptect/ridges >> $OUTPUTFILE 
psxy -R -Je -M$ -W1/$GREEN $CONTINUEPS $ROOT/ptect/xforms >>
$OUTPUTFILE 
psxy -R -Je -M$ -W1/$BLUE $ADDPS $ROOT/ptect/trenches >> $OUTPUTFILE

Another version of an
azimuthal, equiangular

map centered on Memphis
and it’s anti-pode.

Now it’s a lot easier to
identify landmasses on
the other side of the
globe by their shapes.

Also shows that great
circles (the radial lines)

converge at the anti-
pode.

(also solves antipode fill problem)

Nazca-South America Euler pole

Data plotted in South America reference
frame using oblique Mercator projection

referenced to Euler pole
(points on South America plate have zero – or near zero – velocities.).

Plate motion follows lines of latitude
(horizontal lines).

Kendrick et al, 2003

Typical task:

Somebody gives you a file with earthquake
data (and if you are lucky a description of the file)

So we have

lat in col 8, lon in col 9, depth in col 10 and
magnitude in col 11

ZDEQ 64 1 1 5 14 26.76 37.285 143.002 26.9 4.4 0 15 27.0229 5
1.82 7.21 2.95 200.86 9 0 1 5  
 DEQ 64 1 1 12 21 58.64 -6.872 129.763 111.1 0.0 0 58 95.0280 7
1.19 6.21 2.69 66.99 17 11 3 27  
…

We can use the following nawk command (can
put it into shell script) to produce GMT
output for psxy – lat long and magnitude for
example (psxy can scale the symbols from
the data – use magnitude for scaling).

I usually do it on the fly and pipe or suck it
into the GMT program. If it’s needed in more
than one place – put it in a temporary file.

nawk '{print $9, $8, $11}' EBH.HDF

Produces the following output for GMT
143.002 37.285 4.4
129.763 -6.872 0.0

So what do we do with our nawk command
nawk '{print $9, $8, $11}' EBH.HDF

You can put this into GMT several ways

If this is the only file you want to plot – this
would work

nawk '{print $9, $8, $11}' EBH.HDF | pxsy …

If you had a number of files that needed
conversion you could do it this way (only need

one psxy call)

psxy … << END …

…

`nawk '{print $9, $8, $11}' EBH.HDF`

…

END

Converting each file on the fly.

If you want to do the same thing to a list of
files

filelist=“$SAMDATA/eq-rupt-1995.dat $DEM/eq-rupt-1960.dat”

for FILE in $filelist

do

psxy -R -$PROJ$SCALE -M$ -: $CONTINUE -W$LINETHICK/$PURPLE
$FILE \

$VBSE >> $OUTPUTFILE

done

Other ways to make list
(notice the different kinds of quotes: “,’ and `)

filelist=`ls -1 $ROOT/dem/topocontours/andes_3000_*`

contourlist=‘1 2 3 4’

Some other nawk tricks – doing math and
passing variables to nawk (quote heaven)

SCALE=`echo $STNDTMLON | \

nawk ‘{print ($1>=0?$1:360+$1)”/”’${jTRESCALE}_1’*’$FACTOR’}’ `

