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While the ideas of gravity and acceleration at and above Earth's surface are taught in first year physics, the 
acceleration due to gravity below the surface is often ignored or approximated with a homogeneous Earth.  This 
essay describes a method of finding the gravitational acceleration within a spherical approximation of Earth using 
a variable density function.   

 
 
The gravitational acceleration at some distance away from a point mass is given by 

2g
GMa
r

=  

where  
ag = Acceleration towards mass M, m·s-2 
G = 6.6743×10-11 m3·kg-1·s-2 Universal gravitational constant 1 
M = Mass, kg 
r = Distance from the center of mass 

The acceleration due to gravity external to a spherically symmetric uniform and continuous distribution of mass 
can be described by the same equation. 
 
Thus, if we make the assumption that the Earth is a sphere, we can use this equation to find the acceleration due to 
Earth's gravity for any position on or above the Earth's surface. 
 
But what of the acceleration below the surface? 
 
For a spherically symmetric uniform and continuous distribution of mass, the mass closer to the center of the 
distribution than the position in question provides a net gravitational acceleration at that position.  The 
acceleration produced by the shell of mass further from the center, however, sums to zero.  A good tutorial on that 
fact may be found here.  

If we make the assumption that the Earth's density is constant with radius—i.e., that the Earth is homogeneous—
then the acceleration falls off in a linear fashion, reaching zero at the center.  That is, if a distribution of mass is 
spherically symmetric and homogeneous, we could simply calculate the volume of a sphere at radius r and 
multiply that volume by the density to find the mass.  Since acceleration is proportional to 1/r2 while volume (and 
hence mass) is proportional to r3, then acceleration is proportional to r within a solid sphere of constant density. 
 
While we will assume that the Earth is spherically symmetric, it is most certainly not homogeneous.  The Earth's 
density is anything but constant with respect to radius, ranging from 13,000 kg·m-3 at the center to 1,000 kg·m-3 at 
the surface.  There are large discontinuities in density between the various material layers within the Earth.  
Moreover, within each material layer the density can change in a non-linear fashion. 
 
What we need is a function that will provide the mass contained in a sphere of a given radius that allows the 
density to change with respect to that radius.  If we can calculate the mass, then we can calculate the acceleration 
due to gravity for that mass.   

 

The solution is to characterize each layer's density as a function of radius, then integrate the density of each layer 
over radius to find mass.  Since we're assuming the Earth to be spherically symmetric, it'll then be easy to 
calculate the acceleration due to gravity for any point within the Earth. 
 

http://hyperphysics.phy-astr.gsu.edu/Hbase/mechanics/sphshell2.html
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The Preliminary Earth Reference Model (PREM) 2 provides a table of densities at different radii within the Earth.  
A spreadsheet can be used to generate a quadratic density function to fit the data points for each material layer.  
The Excel spreadsheet I used may be found here. 
 
We end up with the following piecewise function for the Earth's density 

 
where r is the distance from the center of the Earth and where 

 
and where the indexed constants for each piece of the function are described in the table below.  

2
1( ) ,i i i ir a r b r c h r hρ −= + + < ≤

4(0) 1.3088 10 ‐3kg mρ ⋅= ×

i

i   Layer   Height hi (m)   ai (kg·m-5)   bi (kg·m-4) ci (kg·m-3) 
1   Inner core   1.2215×106   -2.1773×10-10   1.9110×10-8   1.3088×104 
2   Outer core   3.4800×106   -2.4123×10-10   1.3976×10-4   1.2346×104 
3   D'' layer   3.6300×106   0   -5.0007×10-4   7.3067×103 
4   Lower Mantle   5.7010×106   -3.0922×10-11   -2.4441×10-4   6.7823×103 
5   Inner transition zone 1   5.7710×106   0   -2.3286×10-4   5.3197×103 
6   Inner transition zone 2   5.9710×106   0   -1.2603×10-3   1.1249×104 
7   Outer transition zone   6.1510×106   0   -5.9706×10-4   7.1083×103 
8   Low velocity zone & lid   6.3466×106   0   1.0869×10-4   2.6910×103 
9   Inner crust   6.3560×106   0   0   2.9000×103 

10   Outer crust   6.3680×106   0   0   2.6000×103 
11   Ocean   6.3710×106   0   0   1.0200×103 

If we plot this function over the radius of the Earth, we obtain the following. The Mathematica source code may 
be found here. 
 

 
   

http://www.typnet.net/Essays/EarthGravGraphics/Plot1.png�
http://www.typnet.net/Essays/EarthGravGraphics/Earth%20Density%20Model%20from%20PREM%20Data.xls
http://www.typnet.net/Essays/EarthGravGraphics/EarthGrav.nb
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We can find the mass within a sphere of any radius h by integrating the density function ρ(r) in spherical 
coordinates. 

2
2

0 0 0

( ) ( ) sin
h

M h r r dr d
π π

dρ φ φ= ∫ ∫ ∫ θ  

 
If the Earth's density were not a piecewise function, this would be straightforward integration.  However, since the 
density function contains inconvenient discontinuities, we have to integrate each piece of the function—i.e., each 
material layer—separately, then sum the masses of each layer appropriately. 
 
As an example, let's derive the equation for the mass of the outer core "below" a height h that lies somewhere 
within the outer core.  Note that we only want the portion of the outer core's mass below h, but we do not want to 
include the mass of the inner core since it falls under a different piece of the density function. 
 
We start by setting up the integral of the density function for i = 2 with limits from h1 to h.  Note that h is a 
variable while h1 is the height of the inner core to outer core boundary given in the table above. 
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where the values of the indexed constants come from the density function table shown above. 
 
The mass functions for the other layers may be similarly derived—but it's fairly obvious that the only difference 
will be in the indexed constants. 
 
The mass of the entire ith layer is therefore 

( ) ( ) ( )5 5 4 4 3
1 1

4 4
5 3i i i i i i i i i iM a h h b h h c h hπ π π− −= − + − + − 3

1−  

where the values of the indexed constants come from the density function table shown above. 
 
To calculate the total mass "below" a given radius r, we sum the masses of the layers that are completely "below" 
height r, then add the partial mass of the layer that contains radius r.  In the equation below, the height of radius r 
lies within the nth layer. 

( ) ( ) ( )
1

5 5 4 4 3 3
1 1 1 1

1

4 4( ) ,
5 3

n

i n n n n n n n
i

nM r M a r h b r h c r h h rπ π π
−

− − − −
=

⎛ ⎞
= + − + − + − <⎜ ⎟
⎝ ⎠
∑ h≤  

where the values of the indexed constants come from the density function table shown above. 
 
Using the volumetric radius of the Earth, 6.3710×106 m, this function evaluates to a total Earth mass of 
5.9727×1024 kg.  This is only 0.015% lower than the NASA figure of 5.9736×1024 kg. 3  That's very close given 
that the PREM densities were inferred from the speed of sound within the Earth using seismographic data. 
 
If we wish to approximate the Earth's internal structure using a constant, average density, we can simply use the 
volume of a sphere with radius r, 

34( )
3avg avg
rM r πρ=  

which is what that triple integral reduces to when the integrand is a constant, and where 

3

3 ( )
4

v
avg

v

M r
r

ρ
π

=  

and where rv = 6.3710×106 m = the volumetric radius of the Earth. 
 
The average density of the Earth evaluates to 5.5139×103 kg·m-3. 
 
Plotting the functions for mass over the radius of the Earth, we obtain the following. The blue line represents the 
true mass profile, while the dashed gray line represents the average density approximation. The Mathematica 
source code may be found here. 
 

http://www.typnet.net/Essays/EarthGravGraphics/EarthGrav.nb
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Now that we have a fairly accurate picture of the mass distribution within the Earth, we can return to where we 
started; that is, to deriving a function for the acceleration due to Earth's gravity that works as well below the 
surface as it does above. 
 
As discussed above, the gravitational acceleration at some distance away from a point mass or spherically 
symmetric distribution of mass is given by 

2g
GMa
r

=  

where  
ag = Acceleration towards mass M, m·s-2 
G = 6.6743×10-11 m3·kg-1·s-2 Universal gravitational constant 1 
M = Mass, kg 
r = Distance from the center of mass 

 
To account for a variable mass and variable density, we substitute our function for mass into the equation for 
gravitational acceleration.  We also provide a condition for radii outside the Earth. 
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where the values of the indexed constants come from the density function table shown above. 
 
 

http://www.typnet.net/Essays/EarthGravGraphics/Plot2.png�
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In the same fashion, we can also generate a function using the average density. 
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Plotting our function for the radius of the Earth, we obtain the following. The blue line represents the true 
gravitational acceleration profile, while the dashed gray line represents the gravitational acceleration using the 
average density approximation. The Mathematica source code may be found here. 
 

 
 
The value calculated for gravitational acceleration at Earth's volumetric radius is 9.8212 m·s-2.  According to the 
World Geodetic System 1984 (WGS84), the true surface acceleration on Earth varies from 9.7803 m·s-2 on the 
equator to 9.8322 m·s-2 at 90° latitude; the mean value is 9.7976 m·s-2. 4  Thus, our derivation is higher than the 
mean by 0.24%.  A slight disagreement with true surface acceleration is to be expected since our derivation does 
not account for centripetal acceleration or the fact that the Earth is an oblate spheroid, not a sphere.  Both 
phenomena are caused by the Earth's rotation. 
 
 

http://www.typnet.net/Essays/EarthGravGraphics/Plot3.png�
http://www.typnet.net/Essays/EarthGravGraphics/EarthGrav.nb
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For reference, the WGS84 gravity formula, which takes these phenomena into account, is: 4 

2

2 2

1 sin( )
1 sin

e
k
e

φγ φ γ
φ

+
=

−
 

where 

1p

e

b
k

a
γ
γ

= −  

where  

γ(φ) = Net surface acceleration, m·s-2 
φ = Geodetic latitude (map latitude) 
γe = 9.7803253359 m·s-2 Surface acceleration at the equator 
γp = 9.8321849378 m·s-2 Surface acceleration at the poles 
a = 6378137.0 m Semi-major axis of the Earth ellipsoid 
b = 6356752.3142 m Semi-minor axis of the Earth ellipsoid 
e = 8.1819190842622×10-2 First eccentricity of the Earth ellipsoid 
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