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an obscure-looking refation that is useful in deriving the exist-
ence of P and § waves,

A.7 Spherical coordinates

The vector operations discussed so far were performed in
Cartesian coordinates, in which the unit basis vectors (&, €,, &;)
point in the same direction everywhere. There are, however,
situations in which non-Cartesian coordinate systems without
these nice properties are useful. In particular, spherical coordin-
ates often simplify the solution of problems with a high degree
of symmetry about a point.

A.7.1 Thespherical coordinate system

In a spherical coordinate system, a point defined by a position
vector X is described by its radial distance from the origin, r =
| x|, and two angles. s the colatitude, or angle between x and
the x, axis, and ¢, the longitude, is measured in the x,-x, plane.
Often the latitude, 90° — 8, is used instead of the colatitude.
Spherical coordinates are often used in seismology because
the earth is approximately spherically symmetric, varying with
depth much more than laterally. Thus properties like velocity
and density are often approximated as functions only of 7, inde-
pendent of #and ¢.

Figure A.7-1 shows the relations between rectangular and
spherical coordinates. If the vector x is written as

x=x8, +x,8, + x5, (1)

then its components in rectangular coordinates (x,, x,, x3) are
described by spherical coordinates as
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rahler, 1969.)
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longitudes correspond to values of ¢ less than 0° or greater than
180°. Thus a point at (10°S, 110°W) has 8= 90° + 10° = 100°,
and ¢=-110°=360°-110"=250°,

At any point, unit spherical basis vectors (¢, &, €,) can be
defined in the direction of increasing 7, 8, and ¢. &, points away
from the origin, and gives the upward vertical direction. &,
points south, and &, points east. These two are sometimes writ-
ten in terms of north- and east-pointing unit vectors, &g, =—8&,
and €py = €y

An important feature of the unit spherical basis vectors is
that at different points they are oriented differently with re-
spect to the Cartesian axes. The Cartesian unit basis vectors
(8, &, &;} point in the same direction everywhere, By contrast,
for example, €, points in the &, direction at the north pole, and
in the —&; direction at the south pole, This effect is described by
the Cartesian (&, &,, ;) compounents of the unit spherical basis
vectors, at a point with colatitude 8and longitude ¢:

—sin ¢ cosf cos ¢ sin 8 cos ¢
€ =] cos¢|, & =|cosOsing |, € =|sinOsing |. (4)
0 ~sin & cos g

The dependence on the colatitude and longitude describes how
the orientation with respect to the Cartesian axes changes.

At any point, the spherical basis vectors (€, &,, &,) form an
orthonormal set. For problems whose spatial extent is small
enough that the curvature of the earth can be ignored, these
basis vectors provide a useful local coordinate system,

A.7.2  Distance and azimuth

Spherical coordinates are especially useful in describing the
geographic relation between two points on the earth’s surface.
A common application is to find the distance between points
and the direction of the great circle arc joining them. A great
circle arc is the shortest path between points on a sphere, so if
seismic velocity varies only with depth, the fastest path along
the surface is the great circle arc, and the fastest paths through
the interior are in the plane of the great circle and the center
of the earth. Because velocities vary laterally by only a few
percent throughout most of the earth {and imperceptibly in
the liquid outer core), this is 2 good approximation for most
seismic applications. The source-to-receiver distance is often
given in terms of the angle A subtended at the center of the earth
by the great circle arc between the two points (Fig. A.7-3). If
A is expressed in radians, then the length s (in km) of the arc
along the earth’s surface is RA, where R is the earth’s radius
{= 6371 km). If A is expressed in degrees, s = RA#/180, s0 one
degree of arcequals 111.2 km.

Consider the great circle arc connecting an earthquake
whose epicenter is at (8, ¢g) and a seismic station at (65, ).
Seismic waves that traveled along the great circle arc (or in the
plane of this arc and the center of the earth) left the earthquake
in a direction given by the azimuth angle & measured clockwise
from the local direction of north at the epicenter to the great
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circle arc. These waves arrive at the seismometer from a direc-
tion described by the back azimuth angle {” measured clock-
wise from the local direction of north at the seismometer to the
great circle arc. To find these quantities, the Cartesian compon-
ents of the position vectors for the earthquake and the station
are written, using Eqn 2:

R sin 8 cos ¢y
Xg = |Rsinbpsingy | X5 =
R cos ¢

R sin 8; cos ¢,
R sin 6 sin s |- (3)
R coség

The distance A, the angle between xg and xg, is given by the
scalar product

Xg - xg=R? cos A, (6)
50
A=cos™! cos 05 cos & +sin O sin 6 cos (¢~ ¢dp)]. (7)

This formula defines A uniquely between 0 and 180°. This
shorter portion of the great circle is called the minor arc con-
necting the two points; the longer portion, known as the major
arc, 1s {360° — A) degrees long.

To compute the azimuth from the earthquake to the station,
consider b, a unit vector normal to the great circle in the local
horizontal plane at x5, which is written using the vector prod-
uct of the position vectors

XSX}-{E:ER2 sin A. (8)

Evaluation of the vector product gives
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A.7.3 Choice of axes

Spherical coordinates are also used with axes different from
the geographic ones. Because the physics of a problem does not
depend on the choice of coordinates, a set of coordinates that
simplifies the relevant expressions is used. For example, in
earthquake source studies, the x, axis can be chosen to go from
the center of the earth to the location of the earthquake. The
prime meridian, and hence x,, axis can be selected so that
the fault is oriented in the direction ¢ = 0. These axes simplify
the description of the seismic waves radiated by an earthquake,
because the distance A from the source is now the colatitude.
Moreover, the radiation pattern generally has a high degree of
symmetry about the fault, so simple functions of ¢ appear. By
contrast, the radiation pattern need have no symmetry about
the North pole and Greenwich meridian, so a description in
those coordinates would usually be more complicated,

Fortunately, a coordinate system referred to the earthquake
location does not make describing the propagation of waves
from the source any more difficult. Because earth structure
varies primarily with depth, the spherical symmetry about
the center of the earth is independent of the axis orientation
chosen. The geographical convention in which the earth rotates
about the x; axis is helpful for navigation, In most seismolo-
gical applications, however, the north direction has no particular
significance because the propagation of seismic waves is essen-
tially unaffected by the earth’s rotation. The choice of a prime
meridian is arbitrary; in the early nineteenth century some
American maps had it throngh Washington DC, and some
French maps had it through Paris.

A.7.4  Vector operators in sphevical coordinates

Because at a point on the sphere the unit spherical basis vectors
are oriented up, south, and east, the basis vectors at different
locations are generally not parallel. This makes the vector
differential operators more complicated, because these oper-
ators involve taking spatial derivatives of vectors. In Cartesian
coordinates the unit basis vectors are not affected by this
differentiation because they do not change orientation, so only
derivatives of the components need be taken, In spherical
coordinates, because a vector uis
u :urér+ueéa+u¢é¢, (13)
differential operators acting on u must incorporate the derivat-
ives of the basis vectors. Thus, in spherical coordinates, for a
scalar field yand a vector field u:

LO0w . low . 1 dy
dy=¢F g 2Yye — W 14
BraG ¥ =5 o '7 30 *rsme 0¢ (14)
J
c!ivuzii{;r2 +-ﬂ¢1—~——i(sin9u)+—.1—mﬁ (15)
r? or rsing 98 rsind ¢






